遗传知识点整理
遗传部分知识点总结

遗传部分知识点总结遗传学是生物学的一个重要分支,研究从一代到下一代生物个体之间遗传特征的传递规律。
遗传学知识对于我们理解生物的进化、开展基因工程、研究遗传疾病等方面都有重要意义。
下面对遗传学的一些重要知识点进行总结。
1. 遗传物质遗传物质是决定生物遗传特征的物质基础。
在细胞核内,遗传物质主要由DNA组成。
DNA分子由脱氧核苷酸组成,包括脱氧核糖、磷酸基团和四种碱基(腺嘌呤、鸟嘌呤、胞嘧啶和鸟嘌呤)。
2. 基因与表现型基因是决定遗传特征的基本单位,它是影响一种特征性状的DNA序列。
基因存在于染色体上,每个基因都有特定的位置。
表现型是由基因决定的,包括外在形态、生理功能、行为特征等。
3. 遗传规律孟德尔是遗传学的奠基人,他通过豌豆杂交实验,提出了孟德尔遗传规律。
孟德尔遗传规律包括显性与隐性、分离定律、自由结合定律等,为后来遗传学的发展奠定了基础。
4. 遗传的变异遗传变异是指普通群体中基因型和表现型的差异。
遗传变异可以通过随机变异和遗传突变等方式产生,是生物进化的原动力。
5. 遗传的继承遗传的继承包括体细胞和生殖细胞的遗传。
体细胞遗传是指从父母细胞传给子代细胞的遗传,而生殖细胞遗传是指从父母传给后代的遗传。
6. 遗传的突变突变是指基因产生变异,导致个体表现型或基因型发生不同于常态的变化。
突变是遗传物质变异的原因之一,是生物进化的重要驱动力。
7. 杂交与杂种优势遗传的杂交是指两个不同种属的生物进行交配和繁殖。
杂种优势是指杂交后代比亲本更为适应环境和耐逆性更强的现象。
8. 遗传疾病遗传疾病是由基因突变引起的疾病。
常见的遗传疾病包括红细胞性贫血、地中海贫血、囊性纤维化、唐氏综合征等。
9. 基因工程与克隆基因工程是指利用人工手段改变生物体遗传物质的过程,包括基因的克隆、转移、修复等技术。
克隆是指利用细胞核移植等技术获得与母体一样的基因型个体。
10. 应用遗传学的知识在医学、农业、养殖业、环境保护等领域都有广泛的应用。
遗传学基础知识点整理

遗传学基础知识点整理遗传学是研究生物遗传和变异规律的科学,它对于理解生命的奥秘、生物的进化以及人类的健康等方面都具有极其重要的意义。
以下是一些遗传学的基础知识点:一、遗传物质遗传物质是指生物体细胞内携带遗传信息的物质,目前已知的遗传物质主要是 DNA(脱氧核糖核酸)。
DNA 是由两条反向平行的核苷酸链通过碱基互补配对形成双螺旋结构。
DNA 中的碱基有四种,分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
A 与 T 配对,G 与 C 配对,这种碱基互补配对原则保证了 DNA 复制和遗传信息传递的准确性。
除了 DNA,在某些病毒中,遗传物质是 RNA(核糖核酸)。
RNA一般为单链结构,其碱基组成与 DNA 略有不同,用尿嘧啶(U)代替了胸腺嘧啶(T)。
二、基因基因是具有遗传效应的 DNA 片段,它是控制生物性状的基本遗传单位。
基因通过指导蛋白质的合成来表达其遗传信息。
基因的表达包括转录和翻译两个过程。
转录是指以 DNA 的一条链为模板,合成 RNA 的过程。
翻译则是在核糖体上,以 mRNA(信使 RNA)为模板,按照密码子的规则合成多肽链,最终形成蛋白质。
基因具有突变性,突变可以是点突变(单个碱基的改变)、插入或缺失突变等。
基因突变可能导致生物性状的改变,有些突变是有害的,可能导致疾病;而有些突变则可能是中性的或有益的,为生物的进化提供了原材料。
三、染色体染色体是细胞核中能被碱性染料染成深色的物质,它由 DNA 和蛋白质组成。
在细胞分裂过程中,染色体的形态和结构会发生明显的变化。
在有丝分裂中,染色体复制后平均分配到两个子细胞中,保证了细胞遗传物质的稳定性和遗传信息的传递。
在减数分裂中,染色体进行特殊的分裂过程,产生配子(精子和卵子),使得配子中的染色体数目减半,当雌雄配子结合形成受精卵时,染色体数目又恢复到正常水平,保证了物种遗传物质的相对稳定和遗传多样性。
人类体细胞中有 46 条染色体,包括 22 对常染色体和 1 对性染色体(XX 为女性,XY 为男性)。
遗传学知识点

遗传学知识点遗传学是研究遗传现象和遗传规律的科学领域,它研究的对象是生物的遗传信息的传递和变异。
本文将介绍一些常见的遗传学知识点,帮助读者更好地理解遗传学的基本原理和应用。
一、遗传物质遗传物质是指决定个体遗传特征的物质,包括DNA和RNA。
DNA 是双螺旋结构的分子,在细胞中起着存储、复制和传递遗传信息的作用。
RNA是由DNA转录而成的单链分子,参与蛋白质的合成。
二、基因基因是指位于染色体上的遗传信息的基本单位。
它决定了一个个体的遗传特征。
人类基因由核苷酸序列组成,它们按照一定顺序排列,编码了蛋白质的合成。
基因的突变和重组是遗传变异的基础。
三、遗传规律遗传规律是指遗传现象中存在的一些普遍规律。
其中最著名的是孟德尔的遗传规律,它包括显性和隐性遗传、基因分离和基因自由组合两个方面。
孟德尔的遗传规律为后来的遗传学发展奠定了基础。
四、遗传性状遗传性状是个体所具备的遗传特征,包括形态、生理、行为等方面的特征。
遗传性状可以通过基因的表达来确定,例如眼睛的颜色、血型等。
有些遗传性状是显性的,即只需一个显性基因即可表达;而有些是隐性的,需要两个隐性基因才能表达。
五、遗传病遗传病是由于基因突变引起的疾病。
遗传病可以分为常染色体遗传和性染色体遗传两类。
常染色体遗传包括显性遗传、隐性遗传和连锁遗传等,而性染色体遗传则包括X连锁和Y连锁遗传。
六、基因工程基因工程是指利用遗传学知识进行人为的基因操作。
它可以用于治疗遗传病、改良农作物、开发新药等方面。
基因工程的应用是遗传学在实践中的重要体现,有着广阔的前景。
七、进化与遗传进化是物种适应环境变化而产生的变异和适应的过程。
遗传是进化的基础,通过遗传物质的传递和变异,物种才能不断适应环境。
遗传学研究了进化的遗传基础和遗传机制。
综上所述,遗传学是一门重要的科学领域,它研究的是生物遗传信息的传递和变异。
遗传学的知识有助于我们理解个体遗传特征的形成原理和遗传病的发生机制。
同时,基因工程等应用也为人类的生活带来了许多福祉。
大一遗传学知识点汇总

大一遗传学知识点汇总遗传学是研究遗传规律和遗传现象的科学,它在生物学领域中占据重要地位。
下面将对大一遗传学的一些重要知识点进行汇总。
一、基本概念1. 遗传学的定义:研究性状在遗传上的规律传递和遗传变异的科学。
2. 基因:遗传物质的基本单位,携带着遗传信息。
3. 染色体:细胞中储存基因的结构,人体细胞中有46条染色体。
4. 纯合和杂合:个体基因型中是否存在相同的等位基因决定了其纯合或杂合状态。
二、遗传规律1. 孟德尔遗传定律:包括单因素遗传定律、二因素遗传定律和多因素遗传定律。
2. 基因型和表型:基因型决定了个体的表型,表型结果受到基因型和环境的共同影响。
3. 显性和隐性:显性基因表现在个体的表型上,而隐性基因只有在纯合状态下才会表现出来。
三、遗传变异1. 突变:某个或某些基因发生突然而明显的变化,引起遗传物质的改变。
2. 染色体畸变:由于染色体异常引起的遗传变异,如染色体缺失、重复、倒位等。
3. 基因重组:染色体上的互换和基因间的重组,使得基因搭配产生新的组合。
四、遗传疾病1. 单基因遗传病:由单一基因突变引起的遗传疾病,如先天性遗传性失明、脊髓性肌萎缩症等。
2. 多因素遗传病:由多个基因和环境因素共同作用引起的遗传疾病,如糖尿病、高血压等。
3. 染色体异常病:由于染色体畸变引起的遗传疾病,如唐氏综合征、克氏综合征等。
五、遗传工程和基因编辑1. PCR技术:聚合酶链式反应,用于扩增DNA片段。
2. 基因工程:通过改变生物体的遗传物质来实现特定的目的,如基因克隆、重组DNA技术等。
3. 基因编辑:通过CRISPR-Cas9技术等手段对生物体的基因进行精确编辑。
六、人类遗传学1. 人类遗传特点:人类遗传物质与其他生物有许多共同之处,但也具有自己的特点。
2. 人类基因组计划:旨在解析出人类基因组的组成和功能,对人类遗传学的研究有重要影响。
3. 遗传咨询:通过遗传咨询师向个体提供有关遗传疾病风险和生育选择等方面的专业建议。
2024高考生物遗传学知识点清单遗传规律总结与题型总结

2024高考生物遗传学知识点清单遗传规律总结与题型总结遗传学是生物学中的一个重要分支,研究生物的遗传规律以及遗传现象。
对于2024年高考生物考试来说,掌握好遗传学的知识点,了解遗传规律,并熟悉相关的题型,将有助于提高考试成绩。
本文将为大家提供2024高考生物遗传学知识点清单、遗传规律总结以及常见题型总结,帮助考生备考。
遗传学知识点清单:1. DNA的结构和功能DNA是遗传物质,它具有双螺旋结构,由碱基、糖和磷酸组成,具有储存和传递遗传信息的功能。
2. RNA的结构和功能RNA在基因表达中起着重要的作用,包括mRNA、tRNA和rRNA 等类型,具有转录和翻译的功能。
3. 遗传物质的复制DNA复制是指在细胞分裂过程中,DNA分子按一定规律复制自身的过程,保证细胞遗传信息的传递。
4. 染色体的结构和功能染色体是核酸和蛋白质组成的细胞器,携带着遗传信息。
人类体细胞中有23对染色体,其中一对性染色体决定着个体的性别。
5. 基因的结构和功能基因是特定功能的遗传因子,控制着细胞内某一种蛋白质的合成。
基因由DNA编码,每个基因对应着一个蛋白质。
6. 遗传变异和突变遗传变异指的是物种中基因型和表型的多样性,突变是指基因或染色体发生结构或序列的变化,是遗传变异的一种重要形式。
7. 孟德尔遗传规律孟德尔遗传规律包括一对因子的分离规律、隐性和显性规律以及自由组合规律,这些规律在遗传学中起着重要的作用。
8. 杂交和杂种优势杂交是指不同种属、不同种群、不同亚种或不同品种的个体进行交配,产生的后代称为杂种。
杂种优势指的是杂种比亲本具有更强的适应性和生长力。
9. 遗传病和遗传咨询遗传病是由基因突变引起的病症,遗传咨询则是为了了解个体的遗传状况、预测遗传风险以及进行遗传咨询和干预等。
遗传规律总结:1. 孟德尔遗传规律孟德尔遗传规律包括一对因子的分离规律、隐性和显性规律以及自由组合规律。
这些规律揭示了基因在遗传中的传递和表现方式。
遗传学知识点总结

遗传学知识点总结一、遗传物质的结构与功能1. DNA的结构DNA是生物体内的遗传物质,是由脱氧核糖核酸(Deoxyribonucleic Acid)组成的长链分子。
DNA的结构包括磷酸基团、脱氧核糖糖分子和碱基,其中碱基包括腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)和鸟嘧啶(Cytosine)。
2. DNA的功能DNA携带了生物体的遗传信息,其功能包括遗传信息的存储、复制、传递和表达。
DNA通过蛋白质合成过程中的转录和翻译来表达遗传信息,从而控制生物体的内部结构和功能。
3. RNA的结构与功能RNA是核糖核酸(Ribonucleic Acid)的缩写,其结构与DNA类似,但在碱基配对中胸腺嘧啶被尿嘧啶(Uracil)代替。
RNA主要包括mRNA、tRNA和rRNA等,具有遗传信息传递和调控蛋白质合成的功能。
二、遗传信息的传递与表达1. 遗传信息的传递遗传信息的传递是指生物体将DNA携带的遗传信息传递给下一代的过程,其中包括有丝分裂和减数分裂两种方式。
有丝分裂是体细胞的有丝分裂,其目的是细胞增殖;减数分裂是生殖细胞的有丝分裂,其目的是产生生殖细胞。
2. 遗传信息的表达遗传信息的表达是指DNA携带的遗传信息通过转录和翻译的过程表达为蛋白质的过程。
蛋白质是生物体内大部分功能酶和结构蛋白的主要组成部分,控制着生物体的内部结构和功能。
三、遗传变异与突变1. 遗传变异遗传变异是指生物体在遗传信息传递和表达过程中发生的基因型、表现型及遗传频率的变化。
遗传变异是生物种群适应环境变化及进化的基础。
2. 突变突变是指生物体的DNA分子发生的永久性的基因突变,其结果是导致个体遗传信息的改变,从而影响表型的性状。
突变是造成遗传变异的重要原因之一。
四、遗传疾病1. 遗传疾病的分类遗传疾病是由单基因或多基因遗传缺陷引起的一类疾病,包括单基因遗传病、多基因遗传病、细胞遗传病和染色体遗传病等。
遗传学知识点总结

遗传学知识点总结第一章1.杂交:基因型不同的生物间相互交配的过程。
自交:基因型相同的生物体间相互交配;植物体中指自花授粉和雌雄异花的同株授粉,自交是获得纯系的有效方法。
测交:就是让杂种第一代与隐性个体相交,用来测定F1基因型。
测交是检验某生物个是纯合体还是杂合体的有效方法。
2.性状:生物体的形态特征和生理特征的总称。
隐性性状:具有相对性状的亲本杂交,F1未表现出来的哪个亲本性状。
性状分离:杂种的自交后代中,呈现不同性状的现象。
3.等位基因:同源染色体的相同位置上控制相对性状的基因。
表现型:是指生物个体所表现出来的性状。
基因型:是指与表现型有关的基因组成。
表现型=基因型+环境条件。
4.纯合体:是由含有相同配子结合成合子发育而成的个体。
杂合体:是由含有不同基因的配子结合成合子发育而成的个体。
5.摩尔根的果蝇伴性遗传实验的3:1第二章1.对 PrP c 和PrP sc 两种蛋白质做结构分析。
都是由 208 个氨基酸残基组成的疏水性很强糖蛋白。
氨基酸序列,RNA剪辑,翻译后修饰均无差别。
最后,终于找到差别 PrP c 和 PrP sc 在高级结构上有巨大差别 PrP c PrP scα-螺旋 42% 30%β-折叠 30% 43%PrP c 和 PrP sc 在高级结构上的差别, 在细胞内的行为和代谢特征上也反映出来。
PrP c PrP sc胞内定位细胞表面胞质内蛋白酶水解水解完全局部水解第三章1.•互补基因(complementary genes):非等位基因相互作用,出现了新的性状。
任意非等位基因发生改变时,都会导致产生同一种变性。
这些非等位基因称为互补基因。
2.抑制基因:•本身没表型但可以调控其它非等位基因基因表达的基因。
3.上位效应:一对基因决定了另一对非等位基因表现的现象。
一个基因掩盖另一个非等位基因的显性效应。
4复等位基因:•一个群体中,一个同源染色体的同一基因座上存在着2个以上的等位基因。
遗传遗传知识点总结

遗传遗传知识点总结一、基本遗传知识1. 遗传物质:DNA是生物体内的遗传物质,携带着生物体的遗传信息。
DNA是由核糖核酸(RNA)和蛋白质组成的,它决定了生物的遗传性状。
2. 基因:基因是DNA分子上特定的DNA序列,负责携带和表达一个或多个特定的遗传特征。
3. 遗传变异:遗传变异是指在遗传过程中,由于基因重组、突变等原因,导致新的遗传信息出现的现象。
4. 遗传物质的传递:遗传物质的传递是指遗传信息从父母传递给子代的过程。
在有性生殖中,DNA通过卵子和精子传递给下一代。
5. 遗传学定律:孟德尔定律是遗传学的基本定律,包括显性隐性定律、分离定律和自由组合定律。
这些定律总结了基因的遗传规律,对后世的遗传学研究产生了重要影响。
二、遗传物质DNA的结构和功能1. DNA的结构:DNA的结构为双螺旋结构,由磷酸、脱氧核糖和四种不同的碱基(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶)组成。
2. DNA的功能:DNA的主要功能是存储遗传信息,并通过转录和翻译过程,指导蛋白质的合成。
这种转录和翻译过程被称为中心法则。
三、遗传变异与突变1. 遗传变异的原因:遗传变异可以由自然选择、基因重组、突变等多种原因引起。
2. 突变:突变是指遗传物质的变化,包括点突变、插入突变和缺失突变等。
突变可能导致基因功能的改变,从而影响生物的表型特征。
3. 遗传多样性:遗传多样性是指生物个体之间遗传差异的存在。
这种多样性是基因重组和突变等遗传变异的结果。
四、遗传测定与遗传连锁1. 遗传测定:遗传测定是指通过基因型(allele组合)来推测个体表型的方法。
常用的遗传测定方法有孟德尔方格、3:1比例检验、卡方检验等。
2. 遗传连锁:遗传连锁是指两个或多个基因由于位于同一染色体上而具有一定联系,它们的分离程度远小于因出现在不同染色体上而易于分离的基因。
遗传连锁吻合性的大小取决于两个或多个基因间的距离,可以通过连锁图谱来描述。
五、基因组学和人类遗传学1. 基因组学:基因组学是对整个基因组结构和功能的研究,包括基因组测序、基因组比较、功能基因组学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★绪论1.遗传病:一般将遗传因素作为唯一或主要病因的疾病成为遗传病。
按经典的概念,遗传病是其发生需要有一定的遗传基础,并通过这种遗传基础、按一定方式传于后代发育形成的疾病。
2.医学遗传学:以遗传病作为研究对象的学科称为医学遗传学,是医学与遗传相结合的一门边缘科学、是现代医学的一个新领域。
它是医学各专业的一门重要的基础医学课程。
它研究人类疾病与遗传的关系,主要任务是研究遗传病的发病机理、传递规律、诊断、治疗和预防,从而提高人类的健康素质。
医学遗传学,研究人类的形态、结构、生理、生化、免疫、行为等各种性状在遗传上的类别、人类群体的遗传规律以及人类遗传性疾病的发生机理、传递规律及预防等.着重于人类遗传性疾病的研究。
常用的方法有系谱分析法,从某一症状或病状入手,这一般用于单基因遗传性状分析。
数理统计则用于多基因性状的分析,多基因性状在群体中呈正态分布,并易受环境的影响,所以常以遗传力来表示遗传因素和环境因素的相对效应。
由染色体数目或结构异常而引起的染色体病则依靠细胞遗传学方法分析。
染色体技术和人类性染色质的研究结果广泛应用于染色体病诊断和性别鉴定等。
3.人类遗传学:人类遗传学主要从人种和人类发展史的角度来已研究人的遗传性状,例如人体形态的测量以及人种的特征,同时广泛地研究形态结构、生理功能上的变异,例如毛发的颜色、耳的形状等。
在临床上,这些变异并不干扰或破坏正常的生命活动,其临床意义不大4.医用遗传学:是用人类遗传学的理论和方法来研究这些“遗传病”从亲代传至子代的特点和规律、起源和发生、病理机制、病变过程及其与临床关系(包括诊断、治疗和预防)的一门综合性学科5.遗传病的特点:(一)遗传病的传播方式:遗传病与传染性疾病、营养性疾病不同,它不延伸至无亲缘关系的个体。
如果某些疾病是由于环境因素致病,在群体中应该按水平方式出现;如果是遗传性的,一般则以垂直方式出现,不延伸至无亲缘关系的个体(二)遗传病的数量分布:患者在亲祖代和子孙中是以一定数量比例出现的,即患者与正常成员间有一定数量的关系,通过特定的数量关系,可以了解疾病的遗传特点和发病规律,并预期再发风险(三)遗传病的先天性:遗传病往往有先天性特点(四)遗传病的家族性:遗传病往往有家族性特点(五)遗传病的传染性:遗传病是没有传染性的,在传播方式上是垂直传递而不是水平传递。
环境致畸因子:主要有五类,即生物性致畸因子、物理性致畸因子、致畸性药物、致畸性化学物质和其它致崎因子★第一章人类基因和基因组1.基因(gene):是细胞内遗传物质的结构和功能单位,它以脱氧核糖核酸(DNA)化学形式存在于染色体上,DNA或RNA分子上具有遗传信息的特定核苷酸序列。
(现代遗传学认为,基因(gene)是决定一定功能产物的DNA序列。
一个基因的结构除了编码特定功能产物的DNA序列外,还包括对这个特定产物表达所需的邻接DNA序列)2.断裂基因/割裂基因:由外显子与内含子组成的真核生物的结构基因,真核生物基因的编码序列往往被非编码序列所分割,呈现断裂状的结构,故而也称断裂基因。
3.外显子/内含子:编码序列称为外显子(exon),间隔的非编码序列称为内含子4.遗传密码:在DNA的脱氧核苷酸长链上,每三个相邻的碱基序列构成一个遗传密码,每个密码能编码一种氨基酸5.DNA链的复制过程特点:互补性、半保留性、反向平行性、不对称性、不连续性6.人类基因组(genome):是人的所有遗传信息的总和。
它包括两个相对独立而相互关联的基因组:核基因组与线粒体基因组。
通常人类基因组指的是核基因组7.基因组:单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组★第二章基因突变1.基因突变:受一定内外环境因素的作用和影响,遗传物质可能发生某些变化,称为突变。
基因突变是发生在分子水平上DNA碱基对组成和序列的突变。
2.基因突变的一般特性:(一)多向性:同一基因座上的基因可独立发生多次不同的突变而形成复等位基因(二)可逆性:突变的方向可逆,可以是正突变,也可以是回复突变(三)有害性:突变会导致人类许多疾病的发生(四)稀有性:在自然状态下发生突变的频率很低(五)随机性(六)可重复性3.诱发基因突变的因素:(一)物理因素:紫外线、电离辐射(二)化学因素:羟胺类(hydroxylamine,HA)、亚硝酸类化合物、烷化剂类物质、碱基类似物、芳香族化合物(三)生物因素:病毒、细菌与真菌4.DNA损伤的修复:生物体内存在着多种DNA修复系统,当DNA受到损伤时,在一定条件下,这些修复系统可以部分地修正DNA分子的损伤,从而大大降低突变所引起的有害效应,保持遗传物质的稳定性。
5.DNA修复系统:紫外线引起的DNA损伤的修复:(一)光复活修复:细胞内存在着一种光复活酶。
在可见光的照射下,光复活酶被激活,从而能识别嘧啶二聚体并与之结合,形成酶-DNA复合物,然后利用可见光提供的能量,解开二聚体,此后光复活酶从复合物中释放出来,完成修复过程,这一过程称为光复活修复(二)切除修复:也称为暗修复(dark repair)。
光在这种修复过程中不起任何作用。
切除修复发生在复制之前,需要其它酶的参与(三)重组修复(recombination repair):含有嘧啶二聚体或其它结构损伤的DNA仍可进行复制,当复制到损伤部位时,DNA子链中与损伤部位相对应的部位出现缺口。
复制结束后,完整的母链与有缺口的子链重组,使缺口转移到母链上,母链上的缺口由DNA聚合酶合成互补片段,再由连接酶连接完整,从而使复制出来的DNA分子的结构恢复正常。
该过程发生在复制之后。
电离辐射引起的DNA损伤的修复:(四)超快修复:修复速度极快,在适宜条件下,大约2分钟内即可完成修复(五)快修复:一般在X线照射后数分钟内,即可使超快修复所剩下的断裂单链的90%被修复(六)慢修复:是由重组修复系统对快修复所不能修复的单链断裂加以修复的过程。
一般修复时间较长。
6.多质性:指多种中性突变mtDNA共存于组织细胞中的现象;★第四章单基因疾病的遗传系谱:所谓系谱是从先证者或索引病例开始,追溯调查其家族各个成员的亲缘关系和某种遗传病的发病(或某种性状分布)情况的资料,用特定的系谱符号按一定的方式绘制而成的图解。
1.单基因遗传病概念:某种疾病的发生主要受一对等位基因控制,它们的传递方式遵循孟德尔遗传律2.单基因遗传病分类:①常染色体遗传:常染色体显性遗传、常染色体隐性遗传②X伴性遗传:X连锁显性遗传、X连锁隐性遗传③Y连锁遗传3.常染色体完全显性遗传(短指症A1型、家族性高胆固醇血症、急性间歇性卟啉症、成骨不全、神经纤维瘤、多发性家族性结肠息肉、Α珠蛋白生成障碍性贫血、肌强直性营养不良)的特征:(一)由于致病基因位于常染色体上,因而致病基因的遗传与性别无关,即男女患病的机会均等(二)患者的双亲中必有一个为患者,致病基因由患病的亲代传来,此时患者的同胞中约有1/2的发病可能;双亲无病时,子女一般不会患病(三)患者的子代有1/2的发病可能(四)系谱中通常连续几代都可以看到患者,即存在连续传递的现象4.常染色体完全隐性遗传(眼皮肤白化病IA型、镰状细胞贫血、婴儿黑朦性痴呆、β-地中海贫血、同型胱氨酸尿症、苯丙酮尿症、尿黑酸尿症、Friedreich 家族性共济失调、半乳糖血症、肝豆状核变性、粘多糖累积症I型)的特征:(一)由于致病基因位于常染色体上,因而致病基因的遗传与性别无关,即男女患病的机会均等(二)患者的双亲表型往往正常,但都是致病基因的携带者(三)患者的同胞有1/4的发病风险,患者表型正常的同胞中有2/3的可能为携带者;患者的子女一般不发病,但肯定都是携带者(四)系谱中患者的分布往往是散发的,通常看不到连续传递现象,有时在整个系谱中甚至只有先证者一个患者5.X连锁显性遗传(抗维生素D佝偻病、口面指综合征、I型高氨血症、I型(鸟氨酸氨甲酰基转移酶缺乏)、Alport综合征色素失调症)的特征:(一)人群中女性患者多于男性患者,在罕见的XD遗传病中,女性患者的数目约为男性患者的2倍,但女性患者病情通常较轻(二)患者双方中一方患病;如果双亲无病,则来源于新生突变(三)由于交叉遗传,男性患者的女儿全部都为患者,儿子全部正常;女性杂合子患者的子女中各有50%的可能性发病(四)系谱中常可看到连续传递现象,这点与常染色体显性遗传一致6.X连锁隐性遗传病(色盲、鱼鳞癣、Lesch-Nyhan综合征、眼白化病、Hunter 综合征、无丙种球蛋白血症、Fabry病(糖鞘脂贮积症)、Wiskott-Aldrich综合征、G-6-PD缺乏症、肾性尿崩症、慢性肉芽肿病、血友病)的遗传特征:(一)人群中男性患者远多于女性患者,在一些罕见的XR遗传病中,往往只能看到男性患者(二)双亲无病时,儿子有1/2的可能发病,女儿则不会发病,表明致病基因是从母亲传来的;如果母亲不是携带者,则来源于新生突变(三)由于交叉遗传,男性患者的兄弟、舅父、姨表兄弟、外甥、外孙等也有可能是患者;患者的外祖父也可能是患者,这种情况下,患者的舅父一般不发病(四)系谱中常看到几代经过女性携带者传递、男性发病的现象;如果存在女性患者,其父亲一定是患者,母亲一定是携带者7.Y连锁遗传病(外耳道多毛)的遗传特征:具有Y连锁基因者均为男性,这些基因将随Y染色体进行传递,父转子、子传孙,因此称为全男性遗传母系遗传:在精卵结合时,卵母细胞拥有上百万拷贝的mtDNA,而精子中只有很少的线粒体,受精时几乎不进入受精卵,因此,受精卵中的线粒体DNA几乎全都来自于卵子,来源于精子的mtDNA对表型无明显作用,这种双亲信息的不等量表现决定了线粒体遗传病的传递方式不符合孟德尔遗传,而是表现为母系遗传,即母亲将mtDNA传递给她的儿子和女儿,但只有女儿能将其mtDNA传递给下一代线粒体遗传的特点:母系遗传、多质性、异质性、阈值效应、不均等的有丝分裂分离8.不规则显性遗传:指杂合子的显性基因在一些个体中表达相应的显性性状,在另一些个体中表现隐形。
这种遗传是杂合子的显性基因由于某种原因而不表现出相应的性状,因此在系谱中可以出现隔代遗传的现象9.遗传印记(genetic imprinting):一个个体来自双亲的同源染色体或等位基因表现出功能上的差异,当它们其一发生改变时,所形成的表型也有不同,这种现象称为遗传印记或基因组印记(genomic imprinting)、亲代印记(parental imprinting)10.不完全显性遗传(incomplete dominace):也称为半显性(semi-dominance)遗传。
它是杂合子Dd的表现介于显性纯合子DD和隐性纯合子dd的表现型之间,即在杂合子Dd中显性基因D和隐性基因d的作用均得到一定程度的表现11.遗传早显(anticipation):遗传早现是指一些遗传病(通常为显性遗传病)在连续几代的遗传中,发病年龄提前而且病情严重程度增加12.延迟显性(delayed dominance):杂合子在生命的早期,因致病基因并不表达或虽表达但尚不足以引起明显的临床表现,只在达到一定的年龄后才表现出疾病,这一显性形式称为延迟显性13.从性遗传(sex-conditioned inheritance):位于常染色体上的基因,由于性别的差异而显示出男女性分布比例上的差异或基因表达程度上的差异14.限性遗传(sex-limited inheritance):常染色体上的基因,由于基因表达的性别限制,只在一种性别表现,而在另一种性别则完全不能表现15.X染色体失活(X inactivation):即Lyon假说,女性两条X染色体在胚胎发育早期就随机失活了其中的一条,因此女性的两条X染色体存在嵌合现象。