柯西积分逆定理

合集下载

柯西积分公式

柯西积分公式

可以借助于公式( ② 可以借助于公式 ( 3.3.3 ) 计算某些围线的复 积分. 积分. 求下列积分值(围线取正向) 例1、求下列积分值(围线取正向)
(1) cos π z ∫ z = 2 (z 1)5dz
(2)
∫z
ez
=2
(z + 1)
2
2
dz
解: (1) 函数f(z ) = cos π z在整个复平面内解析, 由式(3.3.4) 由式(3.3.4)有
1 f (z 0 ) = 2π


0
f(z0 + Reiθ ) θ d
(3.3.3)
即f (z )在圆心z0的值等于它在圆周上的值的
算术平均值,常称为解析函数的平均值定理。 算术平均值,常称为解析函数的平均值定理。
2、解析函数的无穷可微性: 解析函数的无穷可微性: 在实变函数中,一阶导数的存在, 在实变函数中,一阶导数的存在,并不能 提供高阶导数是否存在的结论, 提供高阶导数是否存在的结论,但在复变函数 中则不然,有下面的定理。 中则不然,有下面的定理。
f(z + z ) f(z ) f ′(z0 ) = lim z → 0 z
1 f (z ) f(z ) = lim [∫ dz ∫ dz ] C z z z C z z z → 0 2i πz 0 0
1 = lim z → 0 2π i
f(z ) ∫C (z z )2dz + 0
cos π z 2π i ∫ z = 2 (z 1)5dz = 4 ! cos π z i π 5 = z =1 12
(2) 函数
e
2
z
2
(z + 1)
在 z = 2内的不解析点z = ±i ,

§1 复变函数的积分§2 柯西定理及其推广

§1 复变函数的积分§2 柯西定理及其推广

第二章 复变函数的积分§1. 复变函数的积分设l 为复平面上以0z 为起点,而以z为终点的光滑曲线(()y y x =有连续导数),在l 上取一系列分点011,,,,n n z z z z z-= 把l 分为n 段,在每一小段1k k z z -上任取一点k ξ作和数()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑,1k k k z z z -∆=-当n →∞,且每一小段的长度趋于零时,若lim n n S →∞存在,则称()f z 沿l 可积,lim n n S →∞称为()f z 沿l 的路径积分。

l 为积分路径,记为()l f z dz ⎰【若l 为围线(闭的曲线),则记为()l f z dz ⎰ 】。

()()1lim lim nnk k ln n k f z dz Sf z ξ→∞→∞===∆∑⎰(()f z 在l 上取值,即z 在l 上变化)。

积分的计算z x iy =+,dz dx idy =+,()()(),,f z u x y iv x y =+,于是()()()(),,llf z dz u x y iv x y dx idy =++⎡⎤⎣⎦⎰⎰ ()()()(),,,,llu x y dx v x y dy i v x y dx u x y dy =-++⎰⎰,所以复变函数的积分可以归结为两个实变函数的线积分,它们分别是复变函数积分的实部和虚部。

复变函数积分的参数表示:设曲线l 的参数方程为()()()z z t x t iy t ==+,或表为()x x t =,()y y t =,t αβ≤≤,()0z z α=,()zz β= ,记 ()()(),u x t y t u t =⎡⎤⎣⎦,()()(),v x t y t v t =⎡⎤⎣⎦,于是()dx x t dt '=,()dy y t dt '=,()dz z t dt '=,()()()z t x t iy t '''=+,则()()()()()()()()()cf z dz u t x t v t y t dt i v t x t u t y t dt ββαα''''=-++⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰⎰ ()()()()()()u t iv t x t iy t dt f z t z t dt ββαα'''=++=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰。

第三章复变函数的积分第一节、柯西定理

第三章复变函数的积分第一节、柯西定理

第三章复变函数的积分(Integration of function of thecomplex variable)第一讲授课题目:§3.1复积分的概念§3.2柯西积分定理教学内容:复变函数的积分的定义、复变函数积分的计算问题、复变函数积分的基本性质、柯西积分定理.学时安排:2学时教学目标:1、了解复变函数积分的定义和性质,会求复变函数在曲线上的积分2、会用柯西积分定理和复合闭路定理计算积分,了解不定积分的概念教学重点:复变函数积分的计算问题教学难点:柯西积分定理教学方式:多媒体与板书相结合P思考题:1、2、习题三:1-10作业布置:7576板书设计:一、复变函数积分的计算问题二、柯西积分定理三、举例参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》,高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005年5月.4、《复变函数与积分变换》苏变萍陈东立编,高等教育出版社,2008年4月.课后记事:1、会求复变函数在曲线上的积分2、用柯西积分定理和复合闭路定理计算积分计算方法掌握不理想3、利用课余时间多和学生交流教学过程:§3.1 复积分的概念(The conception of complex integration)一、复变函数的积分的定义(Complex function of theintegral definition )定义(Definition )3.1设在复平面上有一条连接A 及B 两点的光滑简单曲线C 设),(),()(y x iv y x u z f +=是在C 上的连续函数.其中),(y x u 及),(y x v 是)(z f 的实部及虚部.把曲线C 用分点B z z z z z A n n ==-,...,,,1210分成n 个小弧段,其中),...,2,1,0(n k y x z k k k =+=在每个狐段上任取一点k k k ηξς+=,作和式))((11-=-∑k n k k k z z f ς(1) 令|}{|max 11-≤≤-=k k n k z z λ,当0→λ时,若(1)式的极限存在,且此极限值不依赖于k k k ηξς+=的选择,也不依赖于曲线C 的分法,则就称此极限值为)(z f 沿曲线C 的积分.记作=⎰C z z f d )())((lim 110-=→-∑k nk k k z z f ςλ当)(z f 沿曲线C 的负方向(从B 到A )积分,记作⎰-C z z f d )(当)(z f 沿闭曲线C 的积分,记作()dz z f C⎰ 定理(Theorem)3.1 若),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,则)(z f 沿C 可积,且,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f CC C ++-=⎰⎰⎰(2) 证明:))((11-=-∑k n k k k z z f ς)]())][(,(),([111k k nk k k k k k k y y i x x iv u -+-+=+=+∑ηξηξ],))(,())(,([))(,())(,(1111111111∑∑∑∑-=+=+-=+=+-+-+---=n k k k k k n k k k k k n k k k k k n k k k k k y y u x x v i y y v x x u ηξηξηξηξ由),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,可知),(),,(y x v y x u 沿光滑简单曲线C 也连续,当0→λ时,有0|}{|max 11→--≤≤k k n k x x 0|}{|max 11→--≤≤k k nk y y 于是上式右端的极限存在,且有,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f CC C ++-=⎰⎰⎰ 二、复变函数积分的计算(Complex integration of computational problems) 设有光滑曲线C : ()()()t iy t x t z z +== ()βα≤≤t ,即()t z '在[]βα,上连续且有不为零的导数()()()t y i t x t z '+'='.又设()z f 沿C 连续.由公式(2)我们有[()()()()()()()()]dtt y t y t x v t x t y t x u y y x u x y x v i y y x v x y x u z z f CC C '-'=++-=⎰⎰⎰⎰βα,,),(),(),(),()(d d d d d [()()()()()()()()]dt t y t y t x u t x t y t x v i '+'+⎰βα,,即()()[](),dt t z t z f dz z f c '⎰=⎰βα (3) 或 ()Re βα⎰=⎰dz z f c ()[]{()}()[]{()}dt t z t z f i dt t z t z f '⎰+'Im βα (4)用公式(3)或(4)计算复变函数的积分,是从积分路径C 的参数方程着手,称为参数方程法.注:当是分段光滑简单曲线时,我们仍然可以得到这些结论. 例1 计算dz z C⎰,其中C 是 (1) 从点1到i 的直线段1C ;(2) 从点1到0的直线段2C ,再从点0到i 得直线段3C 所连接成的折线段32C C C +=.解:(1))()(;1011≤≤+-==t it t t z C C ,有:⎰⎰⎰⎰=+-=+---=101010)12()1)(1(i dt i dt t dt i it t dz z c (2)).10()(:),10(1)(:2312≤≤=≤≤-=t it t z C t t t z C ,有:⎰⎰⎰⎰⎰=+--=+=10100)1(32tdt dt t dz z dz z dz z c c c例2 计算dz z ii I ⎰-=其中C 是 (1)连接i i 到-的直线段;(2)连接i i 到-的单位圆的左半圆(3)连接i i 到-的单位圆的右半圆解: i t i tdt i idt it dz z i i I t it z i =⋅==-=-=≤≤-=-⎰⎰⎰1221201211,11,)1( 于是程为:到i的直线段的参数方 ie de idt e e dz z i i I ,t e z it it it it it 2232232223,)2(223===⋅=-==⎰⎰⎰ππππππππ于是到从方程为单位圆的左半圆的参数 i e e d e dz z I ,t e z it it it i i it 2)(20,)3(2222=====---⎰⎰πππππ到从方程为单位圆的右半圆的参数上述二例说明:复变函数的积分与积分路径有关例3()0n Cdz z z -⎰,其中n 为任意整数,C 为以0z 为中心,r 为半径的圆周.解 C 的参数方程为0,02i z z re θθπ=+≤≤,由公式得()22(1)1000221100cos(1)sin(1)2,1,0, 1.i i n n n in n Cn n dz ire i d e d r e r z z i i n d n d r ri n n θππθθππθθθθθθπ-----==-=-+-=⎧=⎨≠⎩⎰⎰⎰⎰⎰ 此例的结果很重要,以后经常要用到.以上结果与积分路径圆周的中心和半径没有关系,应记住这一特点.例4 计算Czdz ⎰,其中C 为从原点到点34i +的直线段. 解: 此直线方程可写作3,4,01x t y t t ==≤≤ 或 34,01z t i t t =+≤≤. 在C 上,(34),(34)z i t dz i dt =+=+,于是()()()112220013434342C zdz i tdt i tdt i =+=+=+⎰⎰⎰. 因()()C CC C zdz x iy dx idy xdx ydy i ydx xdy =++=-++⎰⎰⎰⎰易验证,右边两个线积分都与路线C 无关,所以C zdz ⎰的值,不论是对怎样的连接原点到34i +的曲线,都等于()21342i +. 例5 设C 是圆ρα=-||z ,其中α是一个复数,ρ是一个正数,则按逆时针方向所取的积分i z dz C πα2=-⎰ 证明:令 θραi e z =-,于是 θρθd d i ie z =,从而 i id z dz Cπθαπ220⎰⎰==- 三、复变函数积分的基本性质(Complex integration of the basic nature)设)(z f 及)(z g 在简单曲线C 上连续,则有(1)是一个复常数其中k z z f k z z kf C C,d )(d )(⎰⎰= (2);d )(d )(d )]()([⎰⎰⎰±=±C C C z z g z z f z z g z f(3)⎰⎰⎰⎰+++=n C C C C z z f z z f z z f z z f d )(...d )(d )(d )(21其中曲线C 是有光滑的曲线n C C C ,...,,21连接而成;(4)⎰⎰-=-C C z z f z z f d )(d )( 定理3.2(积分估值) 如果在曲线C 上,()M z f ≤,而L 是曲线C 的长度,其中M 及L 都是有限的正数,那么有()ML dz z f z z f CC ≤≤⎰⎰|d )(|, (5) 证明:因为ML z z M z z f k n k k k n k k k ≤-≤-∑∑-=+-=+|||))((|111111ζ两边取极限即可得:()ML dz z f z z f CC ≤≤⎰⎰|d )(| 例6 试证:⎰=→=+r z r dz z z 01lim 230 证:不妨设1<r ,我们用估值不等式(5)式估计积分的模,因为在r z =上,⎰⎰==-≤+≤+r z r z r r dz z z dz z z 24232312||1|1π上式右端当0→r 时极限为0,故左端极限也为0,所以⎰=→=+r z r dz z z 01lim 230 本节重点掌握: (1)复变函数积分的计算;(2)复变函数积分的基本性质§3.2 柯西积分定理(Cauchy integral theorem)下面讨论复变函数积分与路径无关问题定理(Theorem)3.3设)(z f 是在单连通区域D 内的解析函数,则)(z f 在D 内沿任意一条闭曲线C 的积分0d )(=⎰C z z f ,在这里沿C 的积分是按反时针方向取的.此定理是1825年Cauchy 给出的.1851年Riemann 在)(z f '连续的假设下给出了简单证明如下 证明:已知)(z f 在单连通区域D 内解析,所以)(z f '存在,设)(z f '在区域D 内连续,可知u 、v 的一阶偏导数在区域D 内连续,有0d )(=⎰Cz z f ⎰⎰⎰++-=⊂∀C C c udyvdx i vdy udx dz )z (f D C ,,又⎰⎰⎰⎰⎰⎰=-=+=--=-Dy x c D y x c dxdy v u udy vdx dxdy u v vdy udx Green 0)(,0)(公式由注1: 此定理证明假设“)(z f '在区域D 内连续”,失去定理的真实性,法国数学家古萨(E.Goursat )在1900年给出了真实证明,但比较麻烦.注2: 若C 是区域D 的边界,)(z f 在单连通区域D 内解析,在D 上连续,则定理仍成立.定理(Theorem)3.4若)(z f 是在单连通区域D 内的解析函数,1C 、1C 是在D 内连接0z 及z 两点的任意两条简单曲线,则=⎰1)(C dz z f ⎰2)(C dz z f证明:由柯西积分定理-⎰1)(C dz z f ⎰2)(C dz z f ()021==⎰+dz z f C C将柯西积分定理推广到多连通区域上定理(Theorem)3.5(复合围线积分定理)设有n +1条简单闭曲线,,...,,n C C C 1曲线n C C ,...,1中每一条都在其余曲线的外区域内,而且所有这些曲线都在的C 内区域,n C C C ,...,,1围成一个有界多连通区域D ,D 及其边界构成一个闭区域D .设f (z )在D 上解析,那么令Γ表示D 的全部边界,我们有0=⎰Γdz z f )(其中积分是沿Γ按关于区域D 的正向取的.即沿C 按逆时针方向,沿n C C ,...,1按顺时针方向取积分;或者说当点沿着C 按所选定取积分的方向一同运动时,区域D 总在它的左侧.因此0 1=+++=⎰⎰⎰⎰--ΓnC C Cdz z f dz z f dz z f dz z f )()()()(即 ⎰⎰⎰++=nC C C dz z f dz z f dz z f )(...)()(1例7 计算dz z z e zz ⎰-=)1(23,其中C 是包含0与1、-1的简单闭曲线.解:作互不相交的互不包含的三个小圆周321,,c c c 分别包含0,1,-1,且都在3=z 内,应用复合围线积分定理,有)2()22(21)1(1)1(11)1()1()1()1(111222223321321-+=++=+⋅-+-⋅++⋅-=-+-+-=---=⎰⎰⎰⎰⎰⎰⎰e e i e e e i z dzz z e z dz z z e z dz z dz z z e dz z z e dz z z e dz z z e z cz c c zc z c z c z z ππ由柯西积分定理可知:若)(z f 是在单连通区域D 内的解析函数,则沿着区域D 内的简单闭曲线C 的积分⎰Cd f ςς)(与路径无关,只与起点0z 及终点z 有关,此时也可写成⎰zz d f 0)(ζζ在单连通区域D 内固定0z ,当z 在区域D 内变动时,⎰zz d f 0)(ζζ确定了上限z 的一个函数,记作⎰=z z d f z F 0)()(ζζ定理(Theorem)3.6 设)(z f 是单连通区域D 的解析函数,则⎰=zz d f z F 0)()(ζζ也是区域D 内的解析函数,且)()('z f z F =证明: D z z ∈∆+∀,得⎰zz d f 0)(ζζ与路径无关,则⎰⎰-=-∆+∆+z z zz z d f d f z F z z F 0)()()()(ζζζζ=⎰∆+zz zd f ζζ)(其中积分路径取z 到z z ∆+得直线段,有()()()zz f z z F z z F ∆=-∆-∆+1(())⎰∆+-zz zd x f f ζζ)(因)(z f 在D 内连续,δδε<∆>∃>∀z ,0,0,有()()()ε<-∆-∆+z f zz F z z F即)()('z f z F =定义(Definition)3.2设在是单连通区域D 内,有)()('z f z F =,则称()z F 是)(z f 的原函数.定理(Theorem)3.7若)(z f 是在单连通区域D 内的解析函数,()z F 是)(z f 的一个原函数.则⎰=zz dz z f 0)(()z F -()0z F其中D z D z ∈∈,0注3: 此定理说明,如果某一个区域内的连续函数有原函数,那么它沿这个区域内曲线的积分可以用原函数来计算,这是数学分析中牛顿-莱布尼茨公式的推广. 例8 ( 重要积分)) 试证明:⎩⎨⎧Z ∈≠==-⎰n n n i a z dzc n ,1012)(π 这里 C 表示绕行a 一周的简单闭曲线.证明: 作圆周 1C : |z-a | = ρ, 使得 C 在 1C 的内区域中. 则有=-⎰c n a z dz )(⎰-1)(c n a z dz由例5结果即得证.例9 计算⎰+cdz z )1ln(,其中C 是从-i 到i 的直线段解 因为)1ln(z +是在全平面除去负实轴上一段1-≤x 的区域D 内为(单值)解析,又因为区域D 是单连通的,在D 内有[]ii i i i i i i z z i i i i dzzi i i i dzzzz z dz z iii i ii ii c )22ln 2()1ln()1ln(2)1ln()1ln()1ln()1ln()1ln()111()1ln()1ln(1|)1ln()1ln(π++-=--++--++=+---++=+---++=+-+=+----⎰⎰⎰本节重点掌握:1、柯西积分定理 2、柯西积分定理的推广 内容小结:1、复变函数的积分的定义2、复变函数积分的计算问题3、复变函数积分的基本性质4、柯西积分定理5、柯西积分定理的推广()()[](),dt t z t z f dz z f c '⎰=⎰βα2 1§3.3柯西积分公式§3.4解析函数的高阶导数柯西积分公式、解析函数的无穷可微性、柯西不等式与刘维尔定理、莫勒拉定理.1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、理解刘维尔定理与莫勒拉定理柯西积分公式解析函数的无穷可微性讲授法多媒体与板书相结合P思考题:1、2、习题三:11-157576一、柯西积分公式二、解析函数的无穷可微性三、举例[1]《复变函数》,西交大高等数学教研室,高等教育出版社.[2]《复变函数与积分变换学习辅导与习题全解》,高等教育出版社.[3]《复变函数论》,(钟玉泉编,高等教育出版社,第二版)2005.[4]《复变函数与积分变换》,苏变萍陈东立编,高等教育出版社,2008.1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、解析函数的无穷可微性理解很好3、利用课余时间对学生进行答疑第二讲授课题目:§3.3柯西积分公式§3.4解析函数的高阶导数教学内容:柯西积分公式、解析函数的无穷可微性、柯西不等式与刘维尔定理、莫勒拉定理.学时安排:2学时教学目标:1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、理解刘维尔定理与莫勒拉定理教学重点:柯西积分公式教学难点:解析函数的无穷可微性教学方式:多媒体与板书相结合作业布置:习题三:11-15板书设计:一、柯西积分公式二、解析函数的无穷可微性三、举例参考资料:1、《复变函数》,西交大高等数学教研室,高等教育出版社.2、《复变函数与积分变换学习辅导与习题全解》高等教育出版.3、《复变函数论》,(钟玉泉编,高等教育出版社,第二版).4、《积分变换》,南京工学院数学教研室,高等教育出版社.课后记事:1、掌握用柯西积分公式及高阶导数的求导公式计算积分的方法2、解析函数的无穷可微性理解很好3、利用课余时间对学生进行答疑教学过程:§3.3 柯西积分公式 (Cauchy integral formula )柯西积分公式(Cauchy integral formula )设)(z f 在以圆)0(|:|000+∞<<=-ρρz z C 为边界的闭圆盘上连续,C 的内部D 上解析,由柯西积分定理0d )(=⎰Cz z f 考虑⎰-C d z f ζζζ)(设D z ∈,显然函数在zf -ζζ)(满足z D ≠∈ζζ,的点ζ处解析. 以z 为心,作一个包含在D 内的圆盘,设其半径为ρ,边界为圆ρC .在D 上,挖去以ρC 为边界的圆盘,余下的点集是一个闭区域ρD .在ρD 上,函数)(ζf 以及zf -ζζ)(解析,所以有 ⎰⎰-=-ρζζζζζζC C d z f d z f )()(于是又如下定理定理(Theorem)3.8设)(z f 在在简单闭曲线C 所围成的区域D 内解析在C D D ⋃=上连续,0z 是区域D 内任一点,则有dzz z z f i z f C ⎰-=0)(21)(π (1)其中,沿曲线C 的积分是按反时针方向取的,(1)式就是柯西积分公式.它是解析函数的积分表达式,因而是今后我们研究解析函数的重要工具. 说明:1、有界闭区域上的解析函数,它在区域内任一点所取的值可以用它在边界上的值表示出来.2、柯西公式是解析函数的最基本的性质之一,可以帮助我们研究解析函数的许多重要性质.推论1(平均值公式)设)(z f 在)(z f R z z C <-|:|0内解析,在R z z C =-|:|0上连续,则π21)(0=z f ⎰+πθθ200)Re (d z f i推论 2 设)(z f 在由简单闭曲线1C 、2C 围成的二连通区域D 内解析,并在曲线1C 、2C 上连续,2C 在1C 的内部,0z 为区域D 内一点,则⎰-=100)(21)(C dz z z z f i z f π⎰--20)(21C dz z z z f i π例1 求下列积分的值(1)()⎰⎰==+-222.))(9(2;sin z z dz i z z zdz zz 解:(1)0|sin 2sin 02====⎰z z z i dz zzπ (2)⎰⎰=-===-=---=+-2122225|92)(9))(9(z z z z z i dz i z z z dz i z z z ππ 由平均值公式还可以推出解析函数的一个重要性质,即解析函数的最大模原理.解析函数的最大模原理,是解析函数的一个非常兆耀的原理,它说明了一个解析函数的模,在区域内部的任何一点都达不到最大值,除非这个函数恒等于常数.定理(Theorem)3.9(最大模原理) 设)(z f 在区域D 内解析,)(z f 不是常数,则在区域D 内()z f 没有最大值. 推论1在区域D 内的解析函数,若其模在区域D 内达到最大值,则此函数必恒等于常数推论2设)(z f 在有界区域D 内解析,在D 上连续,则()z f 必在区域D 的边界上达到最大值.证明:若)(z f 在区域D 内为常数,显然成立,若)(z f 在区域D 内不恒为常数,有连续函数的性质及本定理即可得证. 本节重点掌握:柯西积分公式§3.4 解析函数的高阶导数(The higher order derivative of analytic function) 一、解析函数的无穷可微性(Analytic functions ofinfinitely differentiable)定理(Theorem)3.10 设函数)(z f 在简单闭曲线C 所围成的区域D 内解析,在D 上连续,则)(z f 的各阶导数均在区域D 内解析,对区域D 内任一点z ,有,...)3,2,1( )()(2!)(1)(=-=⎰+n d z f i n z f C n n ζζζπ,证明:先证明1=n 时的情形.对区域D 内任一点z ,设D h z ∈+.⎰---=Cd z h z f ihζζζζπ2))(()(2 现在估计上式右边的积分.设以z 为心,以δ2为半径的圆盘完全在D 内,并且在这个圆盘内取h z +,使得δ<<h 0,那么当D ∈ζ时,,||,||δζδζ>-->-h z z设()z f 在C 上的最大值是M ,并且设C 的长度是L ,于是由积分估值定理有,2|||))(()(2|22δπζζζζπMLh d z h z f i hC ⋅≤---⎰ ])()(2)(21)(21[1)()(21)()(22⎰⎰⎰⎰------=---+C C C C d z f i h d z f i d h z f i h d z f i h z f h z f ζζζπζζζπζζζπζζζπ这就证明了当h 趋近于0时,积分⎰---Cd z h z f i hζζζζπ2))(()(2趋于0.即当1=n 时定理成立.设k n =时定理成立.当1+=k n 时,对区域D 内任一点z ,设D h z ∈+.仿1=n 时的证明方法,可推得定理成立.证毕例2 计算下列各积分)())()()⎰⎰⎰>==>=-+-1223221511121cos 1r z z zr z dzz z dzze dzz zπ解:)()()()()⎰>=-==-=-1545121cos !1521cos 1r z i z z i dz z zππππ)()()()()()⎰⎰⎰+-+-+=+>=12222212212CCzzr z zdz i z i z e dz i z i z e dz z e()()⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+='⎪⎪⎭⎫ ⎝⎛+=41sin 2222πππi i z i z e i z i z e i z z3)被积函数22)1(1-z z 有两个奇点:01=z 和12=z ,都在2=z 内,2)1(1-z 在31=z 内解析,21z在311=-z 内解析,作圆周3113121=-=z c z c :,:,利用复合围线积分定理, ⎰⎰⎰⎰⎰=-==-==-+--=-+-=-311233132311233123223)1(1)0()1(1)1()1()1(z z z z z dz z z dz z z z z dz z z dz z z dz由高阶导数公式,得()0661!1211!22)1(1302223=-='⎪⎭⎫ ⎝⎛+"⎪⎪⎭⎫ ⎝⎛-=-===⎰i i z i z i z z dzz z z ππππ应用上述定理可得出解析函数的无穷可微性定理(Theorem)3.11 设函数)(z f 在区域D 内解析,那么)(z f 在D 内有任意阶导数.并且它们也在区域D 内解析注3: 任意阶导数公式是柯西公式的直接推论;二、柯西不等式与刘维尔定理(Cauchy inequality and Liouville's theorem)柯西不等式(Cauchy inequality ) 设函数)(z f 在以R z z <-||0内解析,在以R z z <-||0内()M z f ≤,则,...)2,1,0(!!|)(|0)(=≤n RMn n z fn n 证明:令1R C 是圆)0(||110R R R z z <<=-,)(z f 在以10||R z z ≤-上解析,由高阶导数公式,有,2,1,0!22|)()(2!||)(|1111100)(1==⋅⋅≤-=++⎰n R M n R R M n!dz z z z f in z fnn C n n R πππ令R R →1,得 ,2,1,0!|)(|10)(=≤n R Mn z fn n上述的不等式称为柯西不等式.如果函数)(z f 在整个复平面上解析,那么就称)(z f 为一个整函数,例如z e z z ,cos ,sin 都是整函数.关于整函数,我们有下面的刘维尔定理:定理3.12(刘维尔Liouvlle 定理) 有界整函数一定恒等常数.证明:设)(z f 是有界整函数,即存在),0(+∞∈M ,使得M z f z <∈∀|)(|C,.),0(,C 0+∞∈∀∈∀R z ,)(z f 在R z z <-||0内解析.由柯西公式,有RM z f ≤|)('|0, 令+∞→R , 0)(',C 00=∈∀z f z ,由此可知)(z f 在C 上恒等于常数.三、莫勒拉定理(Mole La Theorem):应用解析函数有任意阶导数,可以证明柯西定理的逆定理,称为莫勒拉定理.定理(Theorem)3.13如果函数)(z f 在区域D 内连续,并且对于D 内的任一条简单闭曲线C ,我们有0)(=⎰Cdz z f那么)(z f 在区域D 内解析.本节重点掌握:(1) 解析函数的无穷可微性;(2)柯西不等式 内容小结: 1、柯西积分公式 2、解析函数的无穷可微性3、柯西不等式与刘维尔定理4、莫勒拉定理5、柯西定理的逆定理。

3.2 柯西积分定理

3.2 柯西积分定理
I sin z d z sin z d z
C
0
Γ
sin x d x cos x
2
2 0
1 cos 2 .
问: 是否可以直接计算?
即 I sin z d z sin z d z cos z
C
0 2
2 0
1 cos 2 .
五、原函数
§3.2 柯西积分定理
一、柯西积分定理 二、闭路变形原理 三、复合闭路定理 四、路径无关性 五、原函数
一、柯西积分定理
定理 设函数 f (z) 在单连通域 D 内解析,
P60 定理 3.2
D G
G 为 D 内的任意一条简单闭曲线,
则有
Γ f ( z ) d z 0 .
Green公式
(?) C - R方程
[G( z ) H ( z )] G( z ) H ( z ) f ( z ) f ( z ) 0 ,
G( z ) H ( z ) c , 其中,c 为任意常数。
定义 函数 f ( z ) 的原函数 F ( z ) c 称为 f ( z ) 的不定积分,
F F ( z Δ z ) F ( z ) 1 zΔ z 证明 (1) f ( ) d , z z z z (思路)
(跳过?)
1 zΔ z f (z) f ( z ) d , z z
F 1 f (z) z | z |
z
zΔ z
| f ( ) f ( z ) | ds,
f (z) dz
f (z) dz
C2
f (z) dz .
可见,解析函数在单连域内的积分只与起点和终点有关,

柯西中值定理的逆问题与渐进性初探

柯西中值定理的逆问题与渐进性初探

柯西中值定理的逆问题与渐进性初探摘要】本文主要研究了柯西中值定理逆问题,首先对柯西中值定理与高阶柯西中值定理进行了简要介绍,在其根底上,将其与“中间点〞渐进性联系到一起,对高阶柯西中值定理进行了推广,并获取了一些结论,针对逆问题的研究,提出命题,并对命题进行证明,验证逆命题是否成立.对于渐进性问题,采用两个引理,分别设定了两个条件,通过泰勒公式运算得到多个公式,经过推理分析,判断命题是否成立.【关鍵词】柯西中值定理;逆问题;渐进性在微积分理论当中,占据比重比较大的内容是微分中值定理,并广泛应用到各个领域.近几年,很多学者将目光转移向了“中间点〞渐进性研究方向,除此之外,还包括一些逆问题的研究.为了对这些问题进行深入研究,对本文在已有研究的根底上,将两者结合起来,对柯西中值定理逆问题进行分析,提出逆命题,并对该命题做出了证明.另外,本文还对该定理的渐进性进行了初探.以上为柯西中值定理的逆命题探究内容,基于柯西中值定理,提出两种命题方式,其中一种命题方式为:首先,假设函数在某闭区间上连续,在此开区间上可导,判断是否存在两个数值,使得命题成立.经过推理验证分析,该命题不成立,并列举了实例.接下来通过添加一些附加条件,判断逆命题是否成立.另外一种命题方式为:假设函数满足3个条件,验证逆命题是否成立,依据条件,提出了三种假设,对这三种假设方法相同,基于定理,提出两个假设条件,用泰勒公式进行运算,对运算结果进行处理与分析,从而验证命题是否成立.以上为本文对柯西中值定理的逆问题与渐进性做出的论述.通过查找文献资料,在已有定理的根底上,提出逆命题并做出了相应论证.其中,针对逆问题的研究,提出了相应的命题并对命题进行了证明,从而验证逆命题是否成立.对于渐进性问题,采用两个引理,分别设定了两个条件,如果满足条件,那么通过泰勒公式运算得到4个公式,再次对其进行推理分析,经过验证,确定命题成立.这些研究内容可以为今后柯西中值定理研究奠定根底,从而为定理研究拓宽思路,到达加深对命题理解的目的.四、总结近年来,柯西中值定理逐渐成为人们关注的重点,并加大了在考试中的比重.虽然很多人对此定理有一定认识,其中局部人能利用这个定理求解一些实际问题,但是对定理逆问题的研究不是很多,而柯西中值定理的逆问题与定理的渐进性占据了数学研究领域的重要局部,必须对其给予一定重视.本文在该定理的根底上,将其与渐进性联系到一起进行初探.【参考文献】【1】李文娟.柯西中值定理的逆问题及渐进性[J].数学的实践与认识,2021〔22〕:293-298.【2】刘丽娜.高阶柯西中值定理中间点的渐近性及误差估计[J].高等数学研究,2021〔1〕:22-28.【3】姚元金.柯西中值定理在证明中值问题中的教学体会[J].考试周刊,2021〔97〕:49-50.【4】陈新一,王学海.Cauchy中值定理的逆问题[J].甘肃教育学院学报,2021方法分析[J].神州旬刊,2021〔16〕:197-198.【6】王良成,马秀芬,杨明硕.再论Cauchy微分中值定理的逆问题[J].大学数学,2021〔5〕:101-104.【7】李昆,董泉发,艾小伟,等.积分型Cauchy中值定理的逆问题[J].南昌航空大学学报〔自然科学版〕,2021〔3〕:61-64.[8]刘丽娜.广义积分型Cauchy 中值定理及其逆定理[J].淮阴工学院学报,2021〔5〕:16-20.。

柯西积分定理

柯西积分定理

受此启发 ,柯西(Cauchy) 于1825年给出如下定理 :
二、柯西-古萨特基本定理
1、柯西积分定理——单连通区域
如果函数 f (z) 在单连通域 D 内处处解析,
那么函数 f (z) 沿 D 内的任何一条封闭曲线 C
的积分为零: ?c f (z)dz ? 0.
1851年,黎曼在附加假设“f ?(z) 在D内连续”的条件下,得到一 个如下的简单证明.
C
D
黎曼证明 令 z ? x ? iy, f (z) ? u( x, y) ? iv(x , y),
则 ?C f (z)dz ? ?C udx ? vdy ? i ?C vdx ? udy ,
而 f ?(z)在D内连续, 则 ux , u y , vx , v y在D内连续,
且满足C—R方程: u x ? v y , u y ? ? vx
C
?a
C1
? 故
1 C (z ? a)n
dz ?
? 2? i ,
? ?
0,
n?1 n ? 1.
重要
积分
此结论非常重要 , 用起来很方
公式
便, 因为C不必是圆, a也不必是
圆的圆心, 只要a在简单闭曲线
C 内即可 .
例5
计算积分
?C
2z z2
? ?
1 dz , z
C
为包含圆周
y
z
?1
在内的任何正向简单闭 曲线.
L2 ? AA?F ?B?BFA . 由于f (z)在L1及L2所围闭单通区域上解析,
? ? 故 f (z)dz ? 0,
f (z)dz ? 0, 从而有
L1
L2
? ? ? ? f (z)dz ? f (z)dz ? ︵ f (z)dz ? ︵ f (z)dz

3-2柯西积分定理

3-2柯西积分定理

复 变 函 数 与 积 分 变 换
首先: 若复积分与路径无关,则 C2 对任意围线C,在其上任取两点 C a 按a(起点),b(终点)将曲线C分 C1 成两部分因为积分与路径无关, 所以: f ( z )dz f ( z )dz f ( z )dz 0
C C1 C2
b
反之 : 若对任意围线C, f ( z )沿着C的积分为零 ,
复 变 函 数 与 积 分 变 换
例1 计算积分 z 1
c
1 dz . 2z 3
n
例2 证明 ( z ) d分
哈 尔 滨 工 程 大 学
z 1
1 dz . 2z 3
1 在 z 1 内解析 , 解 函数 2z 3 1 根据柯西定理, 有 z 1 2z 3 dz 0.
哈 尔 滨 工 程 大 学
( z )n 在除点 的整个 z 平面上解析 ,
情况一: 若 C 不包围 点,
( z )n 在 C 围成的区域内解析 ,
复 变 函 数 与 积 分 变 换
由柯西-古萨定理,

c
( z ) dz 0;
n
情况二: 若 C 包围 点,
由上节例1.3可知,
内处处解析 , 由复合闭路定理,
a
C1
复 变 函 数 与 积 分 变 换
2 i , n 1 1 1 ( z a )n dz ( z a )n dz 0, n 1. C C1
哈 尔 滨 工 程 大 学
e 例5 计算积分 dz , 为正向圆周 z 2 z 和负向圆周 z 1 所组成 .
复 变 函 数 与 积 分 变 换
f z dz

7_柯西积分定理及其应用

7_柯西积分定理及其应用

复变函数与积分变换
Complex Analysis and Integral Transform
一、
柯西积分定理
则 f (z ) 沿 D内的任意一条闭曲线( 可以不 内的任意一条闭曲线( 是简单的) 是简单的) C有
内处处解析, 若函数 f (z ) 在单连通域 D内处处解析,

c
f ( z )dz = 0
πi
例1 计算
解:
∫π
sin
2
− i
sin 2 zdz

πi
−πi
zdz
1 − cos 2 z 1 1 πi =∫ dz = z − sin 2 z −π i 2 2 2 −π i 1 = π i − sin 2π i 2
πi
复变函数与积分变换
Complex Analysis and Integral Transform
定理三 如果函数f(z)在单连域 B内处处解析, 单连域 G(z)为 f ( z ) 的一个原函数,那么

z2
z1
f ( z )dz = G ( z2 ) − G ( z1 )
此时实函数积分的换元、分部积分法均可推广使用
复变函数与积分变换
Complex Analysis and Integral Transform
所围成的多连通区域, f ( z ) 在 D内 解 析 .
复变函数与积分变换
Complex Analysis and Integral Transform
在D = D U Γ上连续, 则
D
C


Γ
f ( z ) dz = 0
Ci

C
f (z)dz = ∑ ∫
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西积分逆定理
柯西积分逆定理是复变函数中的重要定理之一,它指出了一个函数在一个区域内解析的充要条件。

具体而言,如果一个函数在一个区域内解析,那么它的柯西积分沿着任意简单闭合曲线均为零。

反之,如果一个函数的柯西积分沿着任意简单闭合曲线均为零,那么它在该区域内解析。

柯西积分逆定理为解析函数的研究提供了非常重要的工具。

通过利用柯西积分逆定理,我们可以非常方便地证明某个函数在一个区域内解析,或者反证其不解析。

这不仅可以帮助我们更好地理解解析函数,还可以在实际问题中应用到很多场合。

- 1 -。

相关文档
最新文档