不等式的参数解法

合集下载

含参数不等式的解法PPT课件

含参数不等式的解法PPT课件
(x a)( x a2 ) 0
当a 0时,则a a2,原不等式的解集为 {x | x a或x a2}
当a 0时,则a a2 0,原不等式的解集为 {x | x 0}
当0 a 1时,则a2 a,原不等式的解集为 {x | x a2或x a}
当a 1时,则a2 a 1,原不等式的解集为 {x | x 1}
a
1 1
原a 不等式的解集为:x
x
1或x
1 a
当 a 0 时,则不等式可转化为:(1)(x 1) 0
原不等式的解集为 x x 1
当 a 0 时,则原不等式可化为: (x 1)(x 1 ) 0 a
若0 a 1,则不等式的解集为:{x |1 x 1} a
若a 1,则不等式的解集为 :
sentence.
What’s the difference between “which” and “as” when they refer to a whole sentence?
Structure:
As was expected, we won the game. We won the game, which/as we expected. The number of the visitors, as/which we had
▪ Beijing,which is the capital of China, is a very beautiful city.
▪ This is the dictionary which helps me a lot.
2 意义不同
一般情况下,限制性定语从句是用来限制先 行词的意思,与先行词关系紧密,如果去掉的 话会使句子意思不明确;而非限制性定语从句 与先行词关系松散,常对先行词起附加说明的 作用,即使去掉也不影响句子的主要意思。

含参数的不等式的解法

含参数的不等式的解法

含参数的不等式的解法解含参数的不等式的一般步骤如下:步骤1:确定参数的取值范围对于含参数的不等式,首先要确定参数可以取哪些值。

常见的含参数的不等式有以下几种类型:1.参数出现在不等式的左右两侧:例如,a,x,<b,x,其中a和b是参数。

如果参数a和b都是非负数,则取值范围为[0,+∞),如果参数a为负数而b为非负数,则取值范围为(-∞,+∞)。

2. 参数出现在不等式的系数中:例如,ax + b > 0,其中a和b是参数。

对于一次不等式,如果参数a为正数,则取值范围为(-∞, -b/a);如果参数a为负数,则取值范围为(-b/a, +∞)。

对于二次不等式,需要讨论a的正负和零的情况,进而确定取值范围。

3.参数出现在不等式的指数中:例如,x^a>b,其中a和b是参数。

对于参数b,需要讨论它的正负和零的情况,进而确定取值范围。

对于参数a,如果它为正数,则不等式的解集为(0,+∞);如果它为负数,则不等式的解集为(-∞,0)。

步骤2:解参数的不等式在确定参数的取值范围之后,可以根据具体的参数取值情况来解不等式。

根据参数的不同取值情况,采用不同的解法。

1.解参数出现在不等式的左右两侧的不等式:-如果参数都是非负数,则可以直接从不等式中消去绝对值符号,并分析绝对值的取值范围,最后得到一个简单的数学不等式。

-如果参数一个是负数一个是非负数,则需要分情况讨论,考虑不等式两侧的符号。

2.解参数出现在不等式的系数中的不等式:-如果参数是一个正数或负数,则根据参数的正负讨论不等式两侧的符号,并得到一个简单的数学不等式。

-如果参数是一个未知数,可以根据参数的取值范围来讨论参数与未知数的关系,然后解不等式。

3.解参数出现在不等式的指数中的不等式:-如果参数b是负数,则需要讨论不等式两侧的符号并得到一个简单的数学不等式。

步骤3:解不等式在解决了参数的不等式之后,可以根据参数的取值范围来解不等式,得到不等式的解集。

含参数的不等式的解法

含参数的不等式的解法

初高中数学衔接知识选讲含参数的不等式的解法一、复习引入:1.函数、方程、不等式的关系2.一元一次、一元二次、高次、分式不等式得解法及注意事项二、讲解新课:例1解关于x 的不等式022≤-+k kx x说明 一元二次方程、一元二次不等式、一元二次函数有着密切的联系,要注意数形结合研究问题.小结:讨论∆,即讨论方程根的情况例2.解关于x 的不等式:(x-2x +12)(x+a)<0.小结:讨论方程根之间的大小情况 若不等式13642222<++++x x k kx x 对于x 取任何实数均成立,求k 的取值范围.例4若不等式ax 2+bx+1>0的解集为{x ︱-3<x<5},求a 、b 的值.小结:逆向思维题目,告诉解集反求参数范围,即确定原不等式,待定系数法的一部分 例5 已知关于x 的二次不等式:a 2x +(a-1)x+a-1<0的解集为R ,求a 的取值范围.说明:本题若无“二次不等式”的条件,还应考虑a=0的情况,但对本题讲a=0时式子不恒成立.(想想为什么?)练习:已知(2a -1) 2x -(a-1)x-1<0的解集为R ,求实数a 的取值范围.三、布置作业1.如果不等式x 2-2ax +1≥21(x -1)2对一切实数x 都成立,a 的取值范围是2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是3.对于任意实数x ,代数式 (5-4a -2a )2x -2(a -1)x -3的值恒为负值,求a 的取值范围 4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2β关于k 的解析式,并求y 的取值范围。

含参数一元二次不等式解法(精华)

含参数一元二次不等式解法(精华)

含参数二次不等式的“分类讨论”解含参数的一元二次不等式ax 2+bx +c >0,通常要分类讨论.其步骤是考虑三个方面:①a ,它影响到解集的最后形式;②△,影响到不等式所对应的方程是否有解;③两根x 1,x 2的大小,影响到解集最后的次序.下面举例说明.一、按方程02=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;方程一定有根例1解不等式06522>+-a ax x ,0≠a 分析此不等式()0245222>=--=∆a a a ,又不等式可分解为()0)3(2>--a x a x ,故只需比较两根a 2与a 3的大小.解原不等式可化为:()0)3(2>--a x a x ,对应方程()0)3(2=--a x a x 的两根为a x a x 3,221==,(1)当0a >时,即23a a <,解集为{}a x a x x 23|<>或;(2)当0<a 时,即23a a >,解集为{}|23x x a x a ><或例2解关于x 的不等式x 2-2x+1-a 2≥0.解:(x-1)2-a 2≥0,(x-1-a)(x-1+a)≥0.其对应的根为1+a 与1﹣a.由(1+a)-(1﹣a)=2a,得①当a >0时,1+a >1-a,∴原不等式的解集为{x|x≥1+a 或x≤1-a}.②当a=0时,1+a =1-a,∴原不等式的解集为全体实数R.③当a <0时,1-a >1+a,∴原不等式的解集为{x|x≥1-a 或x≤1+a}.例3解不等式x 2-(a +1a )x +1<0(a ≠0).分析:此不等式可化为(x -a )(x -1a)<0,故对应的方程必有两解,所以只要讨论两根的大小即可.解:原不等式可化为(x -a )(x -1a )<0,令a =1a ,可得a =±1.⑴当a <1a ,即a <-1或0<a <1时,故原不等式的解集为{x |a <x <1a }.⑵当a =1a ,即a =-1或a =1时,故原不等式的解集为∅.⑶当a >1a ,即-1<a <0或a >1时,故原不等式的解集为{x |1a<x <a }.二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;方程根的情况不确定例3解不等式042>++ax x 分析本题中由于2x 的系数大于0,故只需考虑∆与根的情况。

含参数的一元二次不等式的解法 讲

含参数的一元二次不等式的解法 讲

分析:开口向下,且与x轴无交点 。 解:由题目条件知:
(1) a < 0,且△ < 0.
因此a < -1/3。
(2)a = 0时,不等式为-x-1 <0
不符合题意。 综上所述:a的取值范围是
a
|
a
1 3
二次不等式ax²+bx+c>0的解集是全体实数的 条件是__a_>_0_时_.,⊿=b²-4ac<0
由题意知该直线当-2≤m≤2时线段在x轴下方,
ff( (2 )2 ) 0 0 ,即 2 x 2 2 x 22 x 2 x1 30 0② ①
9 分
解①,得x 1 7 或x 1 7 ,
2
2
解②,得1 3 x 1 3 .
2
2
由①②得 -1 7 x 1 3 .
所b所b所b所b>>>>以以11以以11且且且且xxxx111=a1=a=a=a>>>>11001010...与与与.与xxx22x2===2=bbbb是是是是方方方方程程程程aaaxxx22a2---x233-3xxx+++3x222+===2000=的的的0两两两的个个个两实实实个数数数实根根根数,,,根
记 g (x) 2 x2 9 x ,x [2 ,3 ],
则问题转化为 m≤g(x)min
Q gm in(x)g(3)9,m≤9.
(1)变量分离法(分离参数)
【评注】对于一些含参数的不等式恒成立问题,如果能够将 不等式中的变量和参数进行剥离,即使变量和参数分别位于不 等式的左、右两边,然后通过求函数的值域的方法将问题化归 为解关于参数的不等式的问题.
o
. 2
3x
.
(3)数形结合思想

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法

含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。

例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。

解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。

当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。

当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。

所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。

例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。

解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。

含参数不等式的解法

含参数不等式的解法

含参数不等式的解法
在数学中,一个不等式可以被定义为一个形式化的声明,表示两个数
值或变量之间的关系。

由于不等式表示的关系比等式要复杂,因此求解不
等式需要更多的数学技巧。

不等式解有多种不同的方法,每种解法的有效
性取决于给定不等式的形式和需要解决的问题。

本文将介绍几种常用的解
决不等式的方法。

一、分类法
该方法根据不等式的类型来求解。

许多不等式可以归类为线性不等式、二次不等式、无穷多项式不等式或层次不等式。

确定不等式的类型是求解
该不等式的首要步骤,因为不同类型的不等式需要用不同的方法来解决。

例如,二次不等式可以用二次求根公式求出解集,而线性不等式可以使用
图形法来求解。

二、所有积分数的测试法
在求解不等式时,可以使用此法来检查所有可能的积分数,以确定它
们是否符合不等式的要求。

例如,要解决不等式n>3,可以通过设置
n=1,2,3,4来检查n是否大于3、如果n大于3,那么意味着解集是n>3;
如果n不大于3,那么意味着解集是n≤3、因此,可以使用这种方法来求
解大多数不等式。

三、交换法
交换法是一种求解不等式的有效方法,可以用来求解不等式以及等式。

含参数不等式的解法

含参数不等式的解法

含参数不等式的解法含参数的不等式是指在不等式中存在一个或多个参数,通过改变参数的取值,使不等式成立或不成立。

解这类不等式通常需要用到代数方法。

一、一元不等式的参数解法对于只含有一个未知数的一元不等式,可以使用参数解法。

首先,我们假设未知数为一个参数,然后求解这个参数的取值范围,使得不等式成立。

举例说明:解不等式,x+2,<1,其中x是实数。

我们将未知数x设为参数t,即x=t。

则原不等式可以改写为,t+2,<1、要使不等式成立,必须有-1<t+2<1,即-3<t<-1所以,参数t的取值范围为-3<t<-1二、含有二元或多元不等式的参数解法对于含有二元或多元的不等式,也可以采用参数解法来求解。

举例说明:解不等式(ax+b)/(cx+d)>0,其中a,b,c,d为实数,且ac≠0。

可以将未知数x设为参数t,即x=t。

则原不等式可以改写为(at+b)/(ct+d)>0。

我们设函数f(t)=(at+b)/(ct+d),其中t为参数。

要使不等式(at+b)/(ct+d)>0成立,需要满足两个条件:1.f(t)不等于0;2.f(t)为正数。

将f(t)=(at+b)/(ct+d)令为0,得到(at+b)/(ct+d)=0,解得t=-b/a。

由于ac≠0,所以c≠0。

将f(t)=(at+b)/(ct+d)分成两种情况讨论:情况1:若c>0,则当t<-d/c或t>-b/a时,f(t)同号,即f(t)>0或f(t)<0。

情况2:若c<0,则当t>-d/c且t<-b/a时,f(t)同号,即f(t)>0或f(t)<0。

综合情况1和情况2,可以得到解不等式(ax+b)/(cx+d)>0的参数t的取值范围。

三、举一反三除了以上例子,还有许多不等式可以采用参数解法来求解。

例如解不等式(sin x-1)/(sin x+1)<0,其中x为实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的参数解法
1. 引言
不等式是数学中重要且广泛应用的概念之一。

解不等式是数学分析
和应用题中常见的问题之一。

本文将介绍一种常用的解不等式的方法,即参数解法。

2. 参数解法的基本思想
参数解法是通过引入一个或多个参数,将原来的不等式转化为与参
数相关的等式或简单的不等式。

通过解参数相关的等式或不等式获取
参数的取值范围,从而求得原不等式的解集。

3. 参数解法的步骤
(1)设法引入一个或多个参数,将不等式转化为参数相关的等式
或不等式。

(2)求解参数相关的等式或不等式,得到参数的取值范围。

(3)结合参数的取值范围,确定原不等式的解集。

4. 参数解法的示例
示例1:解不等式 $2x+5 > 3$
(1)引入参数:设 $t=2x+5$,则原不等式可以转化为 $t > 3$。

(2)解参数相关的不等式:由 $t > 3$ 可得解集为 $(-∞, +∞)$,即
参数 $t$ 的取值范围为实数集。

(3)结合参数的取值范围:由 $t=2x+5$ 可知,$2x+5$ 可取任意实数。

因此,原不等式的解集为 $(-∞, +∞)$。

示例2:解不等式 $\frac{x}{2} + \frac{1}{x} \geq 1$
(1)引入参数:设 $t=\frac{x}{2}$,则原不等式可以转化为 $t + \frac{2}{x} \geq 1$。

(2)解参数相关的不等式:由 $t + \frac{2}{x} \geq 1$ 可得解集为$(-∞, -2) \cup (0, +∞)$,即参数 $t$ 的取值范围为实数集中除了 $(-
2,0)$ 之外的部分。

(3)结合参数的取值范围:由 $t=\frac{x}{2}$ 可知,
$\frac{x}{2}$ 可取任意实数,即 $x$ 可取任意实数。

但由于不等式中存在 $\frac{1}{x}$,要注意排除 $x=0$ 的情况。

因此,原不等式的解集为 $(-∞, -2) \cup (0, +∞)$。

5. 结论
参数解法是一种常用的解不等式的方法,通过引入参数将原不等式转化为参数相关的等式或简单的不等式,然后通过解参数相关的等式或不等式获取参数的取值范围,最后结合参数的取值范围确定原不等式的解集。

掌握参数解法对于解决不等式问题具有重要的意义,并在数学分析和应用题中有广泛的应用。

相关文档
最新文档