高考数学(文科)二轮专题:第二篇专题六第3讲 导数的简单应用

高考数学(文科)二轮专题:第二篇专题六第3讲 导数的简单应用
高考数学(文科)二轮专题:第二篇专题六第3讲 导数的简单应用

第3讲 导数的简单应用

(限时60分钟,满分96分)

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.(2019·湖北八市联考)已知直线y =ax 是曲线y =ln x 的切线,则实数a = A.1

2

B.1

2e

C.1

e

D.1e

2 解析 设切点为(x 0,ln x 0).∵(ln x )′=1

x

∴曲线y =ln x 在点(x 0,ln x 0)处的切线的斜率为1

x 0,

∴切线方程为y -ln x 0=1x 0(x -x 0),即y =x

x 0+ln x 0-1.

∵切线方程为y =ax ,∴?????a =1x 0,ln x 0-1=0,解得?????x 0

=e ,a =1e . 故选C. 答案 C

2.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是

解析 观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增.

观察选项可知,排除A ,C.

如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2

是极大值点,且x 2>0,故选项D 正确.故选D.

答案 D

3.(2019·江西萍乡模拟)若曲线f (x )=4ln x -x 2在点(1,-1)处的切线与曲线y =x 2-3x +m 相切,则m 的值是

A.13

4

B .3

C .2

D .1

解析 因为f (x )=4ln x -x 2,所以f ′(x )=4

x

-2x .

所以f ′(1)=2,所以曲线y =f (x )在点(1,-1)处的切线方程为y +1=2(x -1),

即y =2x -3.由?

????y =2x -3,

y =x 2-3x +m ,得x 2-5x +m +3=0.因为直线y =2x -3与曲线y =x 2-3x +m 相切,

所以Δ=25-4(m +3)=0,解得m =134.

答案 A

4.(2019·日照二模)设定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )=x ln x ,f ????1e =1

e ,则

f (x )

A .有极大值,无极小值

B .有极小值,无极大值

C .既有极大值,又有极小值

D .既无极大值,又无极小值 解析 因为xf ′(x )-f (x )=x ln x , 所以xf ′(x )-f (x )x 2=ln x x ,

所以??

?

?f (x )x ′=ln x

x ,所以f (x )x =12ln 2x +c ,

所以f (x )=1

2

x ln 2x +cx .

因为f ????1e =12e ln 21e +c ×1e =1e ,所以c =12, 所以f ′(x )=12ln 2x +ln x +12=1

2(ln x +1)2≥0,

所以f (x )在(0,+∞)上单调递增,

所以f (x )在(0,+∞)上既无极大值,也无极小值. 答案 D

5.(2019·武汉二模)已知函数f (x )=x ln x +1

2x 2-3x 在区间????n -12,n 内有极值,则整数n 的值为

A .1

B .2

C .3

D .4

解析 由题意知,f ′(x )=ln x +1+x -3=ln x +x -2,令g (x )=ln x +x -2, 因为g ????32=ln 32+32-2=ln 32-12<ln e -1

2=0,g (2)=ln 2>0, 所以函数g (x )=ln x +x -2在????32,2内有零点. 又g ′(x )=1

x

+1>0在(0,+∞)上恒成立,

所以函数g (x )=ln x +x -2在(0,+∞)上单调递增,

所以函数g (x )=ln x +x -2在(0,+∞)上有唯一的零点x 0,且x 0∈????

32,2, 所以当x ∈????3

2,x 0时,f ′(x )<0, 当x ∈(x 0,2)时,f ′(x )>0,

所以x 0是函数f (x )唯一的极值点,且x 0∈????

32,2, 所以n =2. 答案 B

6.(2019·海南省八校联考)已知函数f (x )=3ln x -x 2+????a -1

2x 在区间(1,3)上有最大值,则实数a 的取值范围是

A.????-1

2,5 B.????-12,11

2 C.????12,112

D.????12,5

解析 因为f ′(x )=3x -2x +a -1

2

所以由题设f ′(x )=3x -2x +a -1

2

在(1,3)上只有一个零点且单调递减,

则问题转化为?

????f ′(1)>0,

f ′(3)<0,

即???a +1

2>0,a -11

2<0

?-12<a <11

2.故选B.

答案 B

7.(2019·昆明二模)已知函数f (x )=e x

x 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,

则实数k 的取值范围是

A.?

???-∞,e

2

4 B.?

???-∞,e

2 C .(0,2]

D .[2,+∞)

解析 由题意得f ′(x )=e x (x -2)x 3+2k x -k =(x -2)(e x -kx 2)

x 3,f ′(2)=0.

令g (x )=e x -kx 2,g (x )在区间(0,+∞)恒大于等于0,或恒小于等于零, k =e x x 2,h (x )=e x

x 2,h ′(x )=e 2(x -2)x 3

, 所以h (x )的最小值为h (2)=e 24,所以k ≤e 2

4,选A.

答案 A

8.(2019·天津)已知a ∈R ,设函数f (x )=?

????x 2-2ax +2a ,x ≤1,

x -a ln x ,x >1.若关于x 的不等式f (x )≥0

在R 上恒成立,则a 的取值范围为

A .[0,1]

B .[0,2]

C .[0,e]

D .[1,e]

解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立, 而二次函数f (x )图象的对称轴为直线x =a , 所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.

当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤

x

ln x

恒成立. 设g (x )=x

ln x ,则g ′(x )=ln x -1(ln x )2

.

令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0, 当x >e 时,g ′(x )>0,∴g (x )min =g (e)=e ,∴a ≤e. 综上,a 的取值范围是0≤a ≤e ,即[0,e].故选C. 答案 C

二、填空题(本大题共4小题,每小题5分,共20分)

9.(2019·广东五校协作体二模)若函数f (x )=x (x -a )2在x =2处取得极小值,则a =

________.

解析 求导函数可得f ′(x )=3x 2-4ax +a 2, 所以f ′(2)=12-8a +a 2=0,解得a =2或a =6,

当a =2时,f ′(x )=3x 2-8x +4=(x -2)(3x -2),函数在x =2处取得极小值,符合题意; 当a =6时,f ′(x )=3x 2-24x +36=3(x -2)(x -6),函数在x =2处取得极大值,不符合题意,所以a =2.

答案 2

10.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为________.

解析 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,

令f ′(t )=0,得t =22

, 当0

22时,f ′(t )<0,当t >2

2时,f ′(t )>0, ∴当t =2

2

时,f (t )取得最小值. 答案

22

11.已知函数f (x )=x 3-2x +e x -1

e x ,其中e 是自然对数的底数.若

f (a -1)+f (2a 2)≤0,

则实数a 的取值范围是________.

解析 易知函数f (x )的定义域关于原点对称. ∵f (x )=x 3-2x +e x -1

e

x ,

∴f (-x )=(-x )3-2(-x )+e -

x -1e -x

=-x 3+2x +1

e x -e x =-

f (x ),

∴f (x )为奇函数,

又f ′(x )=3x 2-2+e x +1

e x ≥3x 2-2+2=3x 2≥0(当且仅当x =0时,取“=”),从而

f (x )

在R 上单调递增,

所以f (a -1)+f (2a 2)≤0?f (a -1)≤f (-2a 2)?-2a 2≥a -1.解得-1≤a ≤1

2

.

答案 ?

???-1,12 12.设函数f (x )=?

????x 3-3x , x ≤a ,

-2x , x >a .

(1)若a =0,则f (x )的最大值为________;

(2)若f (x )无最大值,则实数a 的取值范围是________.

解析 (1)若a =0,则f (x )=?

????x 3-3x ,x ≤0,

-2x ,x >0.

当x >0时,f (x )=-2x <0;

当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1), 当x <-1时,f ′(x )>0,f (x )是增函数, 当-1<x <0时,f ′(x )<0,f (x )是减函数, ∴f (x )≤f (-1)=2. ∴f (x )的最大值为2.

(2)在同一平面直角坐标系中画出y =-2x 和y =x 3-3x 的图象,如图所示,

当a <-1时,f (x )无最大值; 当-1≤a ≤2时,f (x )max =2; 当a >2时,f (x )max =a 3-3a .

综上,当a ∈(-∞,-1)时,f (x )无最大值. 答案 (1)2 (2)(-∞,-1)

三、解答题(本大题共3小题,每小题12分,共36分) 13.(2019·兰州模拟)已知常数a ≠0,f (x )=a ln x +2x . (1)当a =-4时,求f (x )的极值;

(2)当f (x )的最小值不小于-a 时,求实数a 的取值范围.

解析 (1)由已知得f (x )的定义域为(0,+∞), f ′(x )=a

x +2=a +2x x .

当a =-4时,f ′(x )=2x -4

x

.

所以当02时,f ′(x )>0,即f (x )单调递增. 所以f (x )只有极小值,且在x =2时, f (x )取得极小值f (2)=4-4ln 2.

所以当a =-4时,f (x )只有极小值4-4ln 2. (2)因为f ′(x )=

a +2x

x

, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0, 即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a

2,

所以f (x )在????-a

2,+∞上单调递增; 由f ′(x )<0得,x <-a

2

所以f (x )在????0,-a

2上单调递减. 所以当a <0时,f (x )的最小值为 f ????-a 2=a ln ???

?-a

2-a . 根据题意得f ????-a 2=a ln ????-a

2-a ≥-a , 即a [ln(-a )-ln 2]≥0.

因为a <0,所以ln(-a )-ln 2≤0,解得a ≥-2, 所以实数a 的取值范围是[-2,0).

14.(2019·巴蜀质检)已知函数f (x )=e x (-x 2+ax -2)(a ∈R ). (1)若x ∈(0,+∞)时,f (x )不单调,求a 的取值范围;

(2)设g (x )=x 2e x +b (x +2)2,F (x )=f (x )+g (x ),若a =1,b ∈????0,1

4,x ∈(0,+∞)时,F (x )有最小值,求F (x )最小值的取值范围.

解析 (1)∵f (x )=e x (-x 2+ax -2),

∴f ′(x )=e x (-x 2+ax -2)+e x (-2x +a ) =e x [-x 2+(a -2)x +a -2], ∵x ∈(0,+∞)时,f (x )不单调,

∴方程-x 2+(a -2)x +a -2=0在(0,+∞)上有解; ∴a -2=x 2x +1=x +1+1

x +1

-2在(0,+∞)上有解.

又(x +1)+1

x +1-2>0,(当且仅当x =0时等号才成立,故此处无等号)

∴a >2.

∴实数a 的取值范围为(2,+∞). (2)由题意得F (x )=e x (x -2)+b (x +2)2, ∴F ′(x )=e x (x -1)+2b (x +2).

设φ(x )=e x (x -1)+2b (x +2),则φ′(x )=x e x +2b , 又x ∈(0,+∞),b ∈????0,1

4,∴φ′(x )>0, ∴F ′(x )单调递增,

又F ′(0)=4b -1<0,F ′(1)=6b >0,

∴存在t ∈(0,1)使得F ′(t )=e t (t -1)+2b (t +2)=0,且当x ∈(0,t )时,F ′(x )<0,F (x )单调递减,

当x ∈(t ,+∞)时,F ′(x )>0,F (x )单调递增, ∴F (x )min =F (t )=e t

(t -2)+b (t +2)2=e t (t -2)+e t (t -1)-2(t +2)

(t +2)2=e t ????-12t 2+t

2-1. 设h (t )=e t ????-12t 2+t

2-1,t ∈(0,1), 则h ′(t )=e t ????-12t 2-t 2-1

2<0, ∴h (t )在t ∈(0,1)上单调递减, 又h (0)=-1,h (1)=-e , ∴F (x )min ∈(-e ,-1),

故F (x )最小值的取值范围为(-e ,-1). 15.(2019·济南二模)已知函数f (x )=(x -1)e x -ax 2. (1)讨论f (x )的单调性;

(2)当a =-1时,函数g (x )=f (x )-x e x +x 的最大值为m ,求不超过m 的最大整数.

解析 (1)f ′(x )=x e x -2ax =x (e x -2a ), ①当a ≤0时,

x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减; x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增; ②当0<a <1

2

时,

x ∈(-∞,ln 2a )时,f ′(x )>0,f (x )单调递增; x ∈(ln 2a ,0)时,f ′(x )<0,f (x )单调递减; x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增; ③当a =1

2

时,

x ∈(-∞,+∞)时,f ′(x )≥0,f (x )单调递增; ④当a >1

2

时,

x ∈(-∞,0)时,f ′(x )>0,f (x )单调递增; x ∈(0,ln 2a )时,f ′(x )<0,f (x )单调递减; x ∈(ln 2a ,+∞)时,f ′(x )>0,f (x )单调递增. 综上,当a ≤0时,f (x )在(-∞,0)上单调递减, 在(0,+∞)上单调递增;

当0<a <1

2时,f (x )在(-∞,ln 2a )上单调递增,

在(ln 2a ,0)上单调递减,在(0,+∞)上单调递增; 当a =1

2

时,f (x )在R 上单调递增;

当a >1

2时,f (x )在(-∞,0)上单调递增,在(0,ln 2a )上单调递减,在(ln 2a ,+∞)上单

调递增.

(2)g (x )=-e x +x 2+x ,

g ′(x )=-e x +2x +1,g ″(x )=-e x +2, 当x ∈(0,ln 2)时,g ″(x )>0,g ′(x )单调递增; x ∈(ln 2,+∞)时,g ″(x )<0,g ′(x )单调递减; g ′(0)=0,g ′(1)=3-e >0,

g ′????32=4-e 3

2=16-e 3<0,

所以,存在唯一的x 0∈????1,3

2,使g ′(x 0)=0, 即e x 0=2x 0+1,

所以,当x 0∈(0,x 0)时,g ′(x )>0,g (x )单调递增; x ∈(x 0,+∞)时,g ′(x )<0,g (x )单调递减; 所以m =g (x 0)=-e x 0+x 20+x 0 =-(2x 0+1)+x 20+x 0

=x 20-x 0

-1=?

???x 0-122

-54, 又x 0∈????1,3

2, 所以,m ∈?

???-1,-1

4. 所以,不超过m 的最大整数为-1.

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

浙江导数大题专练

导数大题专练 (2015年浙江省理15分)已知函数()2=++∈( ),f x x ax b a b R ,记M (a ,b )是|f (x )|在区间[-1,1]上的最大值. (1)证明:当|a |2时,M (a ,b )2; (2)当a ,b 满足M (a ,b )2,求|a |+|b |的最大值. ≥≥≤

(2015年浙江省文15分)设函数. (1)当时,求函数在上的最小值的表达式; (2)已知函数在上存在零点,,求b 的取值范围. 2 (),(,)f x x ax b a b R =++∈2 14 a b =+()f x [1,1]-()g a ()f x [1,1]-021b a ≤-≤

(2016理)已知,函数F(x)=min{2|x?1|,x2?2ax+4a?2},其中min{p,q}= (I)求使得等式F(x)=x2?2ax+4a?2成立的x的取值范围;(II)(i)求F(x)的最小值m(a); (ii)求F(x)在区间[0,6]上的最大值M(a).

(2016文)设函数=,.证明:(I); (II).

(2017真)已知函数f(x)=(x e x-( 1 2 x≥). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间 1 [+) 2 ∞ ,上的取值范围.

(2017押)已知函数()()||()f x x t x t R =-∈. (Ⅰ)求函数()y f x =的单调区间; (Ⅱ)当t>0时,若f(x))在区间1-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考数学解题技巧大揭秘专题函数导数不等式的综合问题

专题五 函数、导数、不等式的综合问题 1.已知函数f (x )=ln x +k e x (k 为常数,e = 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; (3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2 . 解 (1)由f (x )= ln x +k e x , 得f ′(x )=1-k x -xln x xe x ,x ∈(0,+∞), 由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )= 1 xe x (1-x -xln x ),x ∈(0,+∞), 令h(x )=1-x -xln x ,x ∈(0,+∞), 当x ∈(0,1)时,h(x )>0;当x ∈(1,+∞)时,h(x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0. 因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)因为g(x )=xf ′(x ), 所以g(x )=1 e x (1-x -xln x ),x ∈(0,+∞), 由(2)得,h(x )=1-x -xln x , 求导得h′(x )=-ln x -2=-(ln x -ln e -2 ). 所以当x ∈(0,e -2 )时,h′(x )>0,函数h(x )单调递增; 当x ∈(e -2 ,+∞)时,h′(x )<0,函数h(x )单调递减. 所以当x ∈(0,+∞)时,h(x )≤h(e -2 )=1+e -2 . 又当x ∈(0,+∞)时,0<1 e x <1, 所以当x ∈(0,+∞)时,1e x h(x )<1+e -2,即g(x )<1+e -2 . 综上所述结论成立.

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

2021高考数学浙江导数解答题200题

第一题:浙江省绍兴市上虞区2019届高三第二次(5月)教学质量调测数学试题 已知函数()x f x ae x -=+与21()(,)2 g x x x b a b R =+-∈(1)若(),()f x g x 在2x =处有相同的切线,求,a b 的值; (2)设()()()F x f x g x =-,若函数()F x 有两个极值点1212,()x x x x >,且1230x x -≥,求实数a 的取值范围 第二题:浙江省2019年诸暨市高考适应性试卷数学 已知函数2()(0) x f x e ax a =->(1)若()f x 在R 上单调递增,求正数a 的取值范围; (2)若()f x 在12,x x x =处的导数相等,证明:122ln 2x x a +<(3)当12a =时,证明:对于任意11k e ≤+,若12 b <,则直线y kx b =+与曲线()y f x =有唯一公共点(注:当1k >时,直线y x k =+与曲线x y e =的交点在y 轴两侧) 第三题:浙江省2019年5月高三高仿真模拟浙江百校联考(金色联盟) 已知函数()ln(1)() f x x ax a a R =--+∈(1)求函数()f x 在区间[2,3]上的最大值; (2)设函数()f x 有两个零点12,x x ,求证:1222 x x e +>+第四题:浙江省台州市2019届高三4月调研数学试卷 已知函数2()x f x x e =(1)若关于x 的方程()f x a =有三个不同的实数解,求实数a 的取值范围; (2)若实数,m n 满足(2)m n f +=-,其中m n >,分别记:关于x 的方程()f x m =在(,0)-∞上两个不同的解为12,x x ;若关于x 的方程()f x n =在(2,)-+∞上两个不同的解为34,x x ,求证:1234x x x x ->-第五题:浙江省嘉兴、平湖市2018学年第二学期高三模拟(2019.05)考试数学已知函数2 ()ln ,()1(,)a f x x g x bx a b R x ==+-∈(1)当1,0a b =-=时,求曲线()()y f x g x =-在1x =处的切线方程;

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

浙江省高考数学一轮复习:13 导数与函数的单调性

浙江省高考数学一轮复习:13 导数与函数的单调性 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分)函数的定义域为开区间,导函数在内的图象如图所示,则函数 在开区间内有极小值点() A . 1个 B . 2个 C . 3个 D . 4个 2. (2分) (2020高二下·九台期中) 函数的单调递减区间为() A . (-∞,0) B . (1,+∞) C . (0,1) D . (0,+∞) 3. (2分) (2020高二下·北京期中) 函数的增区间是() A . B . C . D . 4. (2分) (2016高二下·绵阳期中) 函数f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()

A . B . C . D . 5. (2分)函数在[0,3]上的最大值和最小值分别是() A . 5,-15 B . 5,-4 C . -4,-15 D . 5,-16 6. (2分) (2019高二下·余姚期中) 已知可导函数,则当时, 大小关系为() A . B . C .

D . 7. (2分)若函数恰有三个单调区间,则实数a的取值范围为() A . B . C . D . 8. (2分) (2020高三上·双鸭山开学考) 定义在(1,+∞)上的函数f(x)满足x2 +1>0(为函数f(x)的导函数),f(3)=,则关于x的不等式f(log2x)﹣1>logx2的解集为() A . (1,8) B . (2,+∞) C . (4,+∞) D . (8,+∞) 9. (2分)函数的单调递减区间是() A . B . C . D . 10. (2分) (2019高二上·建瓯月考) 分别是定义在R上的奇函数和偶函数,当时, ,且则不等式的解集为() A . (-∞,-2)∪(2,+∞) B . (-2,0)∪(0,2) C . (-2,0)∪(2,+∞)

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

(完整word)2019年高考数学全国一卷导数

已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 分析:(1)设()()g x f 'x =,则1()cos 1g x x x =-+,()g x 在1,2π??- ??? 存在唯一极大值点的问题就转化为()g'x 在1,2π??- ??? 有唯一零点,而唯一零点问题经常用零点存在性,即确定单调性及两端点处函数值异号。 (2)这是一个零点问题,经常转化为两函数交点问题,即 。 首先来画一下函数图象。 )1ln(sin x x + =

从图象上可以大致确定零点一个为0一个在区间??? ??ππ ,2上,我们只需证明其他区间无零点就可以了,很显然应该分四段讨论。 解:(1)设()()g x f 'x =,则1()cos 1g x x x =- +, 21sin ())(1x 'x g x =-+ +. 当1,2x π??∈- ???时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π??- ???有唯一零点,设为α. 则当(1,)x α∈-时,()0g'x >;当,2x α?π?∈ ??? 时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ?? ???单调递减,故()g x 在1,2π??- ??? 存在唯一极大值点,即()f 'x 在1,2π??- ??? 存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x ?π?∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而(0)=0f ',02f 'π??< ???,所以存在,2βαπ??∈ ??? ,使得()0f 'β=,

高考导数题的解题技巧绝版

高考导数题的解题技巧 绝版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

导数题的解题技巧 导数命题趋势: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值,证明不等式, 函数单调性,应用题,与三角函数或向量结合. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是31 ()213 f x x x =++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2()2,(1)12 3.f x x f ''=+∴-=-+= 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若 M P,则实数a 的取值范围是 ( )

A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力. [解答过程]由0,,1;, 1. 1 x a x a a x x -<∴<<<<-当a>1时当a<1时 综上可得M P 时, 1.a ∴> 考点2 曲线的切线 (1)关于曲线在某一点的切线 求曲线y=f(x)在某一点P (x,y )的切线,即求出函数y=f(x)在P 点的导数就是曲线在该点的切线的斜率. (2)关于两曲线的公切线 若一直线同时与两曲线相切,则称该直线为两曲线的公切线. 典型例题 例3.(2007年湖南文)已知函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内各 有一个极值点. (I )求24a b -的最大值; (II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点 A 时,从l 的一侧进入另一侧),求函数()f x 的表达式. 思路启迪:用求导来求得切线斜率. 解答过程:(I )因为函数3211 ()32 f x x ax bx =++在区间[11)-,,(13],内分别有一 个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-,且2104x x <-≤.于是 2044a b <-,20416a b <-≤,且当11x =-, 23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

浙江省高考数学试卷(含答案)

2017年浙江省高考数学试卷 一、选择题(共10小题,每小题4分,满分40分) 1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2) 2.(4分)椭圆+=1的离心率是() A.B.C.D. 3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是() — A.+1 B.+3 C.+1 D.+3 4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是() A.[0,6] B.[0,4] C.[6,+∞)D.[4,+∞) 5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m() A.与a有关,且与b有关B.与a有关,但与b无关 C.与a无关,且与b无关D.与a无关,但与b有关 6.(4分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的() 。

A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A.B.C.D. 8.(4分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则() A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)( 9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=?,I2=?,I3=?,则()

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

浙江省2020年高考数学模拟题分项汇编 3 导数(解析版)(28道题)

第三章 导数 1.从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等. 2.浙江省恢复对导数的考查后,已连续三年将导数应用问题设计为压轴题,同时在小题中也加以考查,难度控制在中等以上.特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力. 3.常见题型,选择题、解答题各一道,难度基本稳定在中等以上. 一.选择题 1.(2019·浙江省高三月考)α,,22ππβ?? ∈-???? ,且sin sin 0ααββ->,则下列结论正确的是( ) A .αβ> B .0αβ+> C .αβ< D .2 2 αβ> 【答案】D 【解析】 构造()sin f x x x =形式,则()sin cos f x x x x +'=,0, 2x π?? ∈???? 时导函数()0f x '≥,()f x 单调递增;,02x π?? ∈-???? 时导函数()0f x '<,()f x 单调递减.又Q ()f x 为偶函数,根据单调性和对称性可知选 D.故本小题选D. 2.(2019年9月浙江省嘉兴市高三测试)已知,R a b ∈,关于x 的不等式3 2 11x ax bx +++≤在[0,2]x ∈时恒成立,则当b 取得最大值时,a 的取值范围为( ) A .[2]- B .3 [2,]4 -- C .3[]4 - D .5 [,2]2 - - 【答案】A

相关文档
最新文档