信号与系统-卷积积分
信号与系统试题五(1)

期末考试试题五一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=kt 22三、(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dt t df t s =求⎪⎭⎫⎝⎛2ωs 的傅里叶逆变换。
信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________
信号与系统练习题

练习题一、 单项选择题(共35题)1.下列信号中为周期信号的是【 B 】(A) t t t f πsin 2cos )(+= (B) t t t f 3cos 2sin )(+=(C) t t t f πsin 2cos 3)(+=(D))(cos )(t t t f επ=2. 积分dt t t e t ∫∞∞−−+)]()(['2δδ等于【 D 】(A) -1 (B)1 (C) 2 (D) 3 3. 卷积积分)()(t t t εε∗等于【 C 】(A) )(2t t ε (B) )(t t ε (C) )(212t t ε (D) )(2t t ε4. 卷积和)]1()([)(−−∗k k k δδε等于【 A 】(A) )(k δ (B) )1(−k δ (C) )2(−k δ (D) )(k ε5. 信号)()(2t e t f t ε−=的频谱函数)(ωj F 等于【 B 】(A)ωj 1 (B) ωj +21 (C) ωj −21 (D) ωj +−21 6. 系统的幅频特性|H (j ω)|和相频特性如图(a)(b)所示,则下列信号通过该系统时,不产生失真的是【 B 】(A) f (t ) = cos(t ) + cos(8t ) (B) f (t ) = sin(2t ) + sin(4t ) (C) f (t ) = sin(2t ) sin(4t ) (D) f (t ) = cos 2(4t )7. 象函数ses F −+=11)(的原函数)(t f 是t=0接入的有始周期信号,其第一个周期(0<t<T )的时间函数表达式=)(0t f 【 D 】(A) )(t δ (B) )1(−t δ (C) )1()(−+t t δδ (D) )1()(−−t t δδ8.函数)]()[sin()(22t t dt d t f επ=的拉普拉斯变换=)(s F 【 C 】(A) 222π+s s (B) 22ππ+s (C) 222ππ+s s (D) 22ππ+s s 9. 序列)1(2)(2)(−−+=−k k k f k k εε的双边Z 变换=)(z F 【 B 】 (A)221,)2)(12(3<<−−z z z z (B) 221,)2)(12(3<<−−−z z z z(C)21,)2)(12(3>−−−z z z z (D) 2,)2)(12(3<−−−z z z z10. 象函数)2)(1()(2−+=z z z z F 其收敛域为2>z ,则其原序列=)(k f 【 A 】(A) )(])2(32)1(31[k k k ε+− (B) )(])2(3231[k k ε+(C) )(])2(32)1(31[k k k ε−+− (D) )1(])2(32)1(31[−−+−k k k ε11. 积分dt t t )(4sin(91δπ∫−−等于【 B 】(A)22(B) 22− (C) 2 (D) 2− 12. 卷积积分)()(t t εε∗等于【 C 】(A) )(2t ε (B) )(t ε (C) )(t t ε (D) 1 13. 卷积和)1()1(−∗−k k δε等于【 A 】(A) )2(−k ε (B) )(k ε (C) )1(−k δ (D) )2(−k δ 14. 信号t t f 2cos )(=的频谱函数)(ωj F 等于【 D 】(A) )1()1(++−ωδωδ (B) )]1()1([++−ωδωδπ (C))2()2(++−ωδωδ (D) )]2()2([++−ωδωδπ15. 已知)()(ωj F t f ↔,则函数)()2(t f t −的频谱函数为【 C 】(A))(2)(ωωωj F d j dF − (B) )(2)(ωωωj F d j dF +(C) )(2)(ωωωj F d j dF j− (D) )(2)(ωωωj F d j dF j + 16. 信号)1()()(−−=t t t f εε的拉普拉斯变换等于【 D 】(A))1(se − (B))1(1s e s − (C) )1(se −− (D) )1(1s e s−− 17. 象函数)1(1)(2s e s s F −+=的原函数)(t f 是t=0接入的有始周期信号,其第一个周期(0<t<T )的时间函数表达式=)(0t f 【 D 】(A) )(t ε (B) )2(−t ε (C))2()(−+t t εε (D))2()(−−t t εε18. 序列)()1()(k k k f ε+=的双边Z 变换=)(z F 【 A 】(A) 1,)1(22>−z z z (B) 1,)1(22>+z z z(C) 1,)1(22<−z z z (D) 1,)1(22<+z z z 19. 象函数)2)(1()(2−+=z z z z F 其收敛域为1<z ,则其原序列=)(k f 【 D 】(A) )(])2(32)1(31[k k k ε+− (B) )(])2(32)1(31[k k k ε−−−(C))1(])2(32)1(31[−−+−k k k ε (D) )1(])2(32)1(31[−−−−−k k k ε20.)]([)1(t e dtdt t δ−−等于【 A 】 (A) )()('t t δδ+ (B) )()('t t δδ−(C) )(2)('t t δδ+ (D) )(2)('t t δδ−21.积分dt t t )1()4sin(03−−∫−δπ等于【 B 】(A) 1 (B) 0 (C)2 (D)322.)]([2t e dtdt ε−等于【 C 】(A) )()(2t et tεδ−− (B) )()(2t et tεδ−+ (C) )(2)(2t et tεδ−− (D) )(2)(2t et tεδ−+23. 积分dt t t ∫∞∞−−)('2)2(δ等于【 D 】 (A) 1 (B)2 (C) 3 (D) 424. 积分dt t t t ∫∞∞−)()2sin(δ等于【 B 】 (A) 1 (B)2 (C) 3 (D) 425. 卷积积分)]2()([)(−−∗t t t εεε等于【 D 】(A) )2()(−−t t t t εε (B) )2()(−+t t t t εε (C) )2()2()(−−+t t t t εε (D) )2()2()(−−−t t t t εε 26. 卷积积分)(')(t t δε∗等于【 C 】(A) )(2t δ (B) )(2t δ− (C) )(t δ (D) )(t δ− 27. 卷积积分)1()1(+∗−t t εε等于【 A 】(A) )(t t ε (B) )()1(t t ε− (C) )()2(t t ε− (D) )()1(t t ε+ 28. 卷积和)2()1(−∗−k k δδ等于【 D 】(A) )2(−k δ (B) )(k δ (C) )1(−k δ (D) )3(−k δ29. 已知卷积和)()1()()(k k k k εεε+=∗,则)4()3(−∗−k k εε等于【 B】(A) )6()6(−−k k ε (B) )7()6(−−k k ε (C) )6()7(−−k k ε (D) )7()7(−−k k ε 30.)]()2[cos(t t dtdε 的拉普拉斯变换等于【 C 】 (A)442+s (B) 442+−s(C)422+ss (D) 422+−ss31. 信号)()(t t t f ε=的拉普拉斯变换等于【 D 】(A)22s− (B)22s (C)21s− (D)21s32. 序列)(3)(2)(k k k f εδ+=的双边Z 变换=)(z F 【 A 】(A) 1,132>−+z z z (B) 1,132>−−z z z(C) 1,132>−+−z z z (D) 1,132>−−−z z z33. 序列)()(k k k f ε=的双边Z 变换=)(z F 【 A 】(A)1,)1(2>−z z z (B) 1,)1(2>+z z z(C) 1,)1(22>−z z z (D) 1,)1(22>+z z z 34. 象函数)3)(2(1)(−−=z z z F 其收敛域为3>z ,则其原序列=)(k f 【 C 】(A) )()32()(61k k k k εδ−− (B) )()32()(61k k k k εδ−+(C) )()32()(6111k k k k εδ−−−− (D) )()32()(6111k k k k εδ−−−+35. 序列)(])1(1[21)(k k f k ε−+=的双边Z 变换=)(z F 【 C 】(A)1,12>−z z z (B)1,12>+z z z(C) 1,122>−z z z (D) 1,122>+z z z二.填空题(共23题):1. 已知信号)(t f 的波形如图所示,画出信号)2(t f −的波形为 )2(t f −O t2. 周期信号623sin(41)324cos(211)(ππππ−+−−=t t t f 的基波角频率=Ω s rad /.12π3. 信号11)(+=jt t f 的傅里叶变换等于 . 4. 频谱函数)3cos(2)(ωω=j F 的傅里叶逆变换=)(t f .)3()3(−++t t δδ5.信号)1()]1(sin[)()sin()(−−−=t t t t t f επεπ的拉普拉斯变换=)(s F . 22)1(ππ+−−s e s 6. 已知信号)(t f 的波形如图所示,画出信号)42(−t f的波形为 )42(−t fO t7. 序列)5.0cos()43sin()(k k k f ππ+=的周期为 . 88. 信号t tt f sin )(=的傅里叶变换等于 . )(2ωπg9.信号)1()()1(−=−−t et f t ε的拉普拉斯变换=)(s F .1+−s e s10.已知信号)(t f 的波形如图所示,则)(t f 的傅里叶变换等于 . )(2)(2ωωπδSa −11.若信号)(t f 的频谱函数为)(ωj F ,则)(b at f −的频谱函数为 , 其中a 为非零常数。
信号与系统卷积和及几类常见题目

⏹卷积☐卷积的定义☐卷积的物理意义☐卷积的性质☐卷积的计算⏹信号的分解☐信号分解为基本信号之和☐…δ(t )是卷积的单位元δ(t-t 0)是卷积的延迟器u (t )是卷积的积分器δ’(t )是卷积的微分器温故知新,上讲回顾第二章信号的时域分析§2.1常用信号及其基本特性§2.2信号的时域运算Array§2.3信号的时域分解§2.4卷积积分§2.5卷积和信号分类;基本信号特性;信号分解与运算;卷积/卷积和周期/非周期判断;奇异函数运算;信号展缩平移;卷积/卷积和1. 掌握卷积和的定义/性质并进行计算(解析法、图解法、竖式法、性质求解)2. 习题课(信号时域分析几类常见题目)§2.5卷积和一、卷积和的定义及物理意义二、卷积和的性质三、卷积和的计算设x 1(n ) 和x 2(n )是两个序列,则1212()()()()k k k x n x n x x n ∞=−∞∗=−∑如果x 1(n ) 和x 2(n )都是因果序列,则11202()()()()nk x n x n x k x n k =∗=−∑1212()()()()d f t f t f f t τττ∞−∞∗=−⎰卷积和:卷积积分:1. 定义任意序列x (n ) 可以表示为单位样值信号δ(n ) 的移位加权和。
{}()=+(1)(1)+(0)()+(1)(1)+(2)(2)+()()()()k x n x n x n x n x n x k n k x k n k δδδδδδ∞=−∞−+−−+−+=− LTI 系统δ(n )h (n )x (n )?2. 物理意义输入δ(n-k )h (n-k )输出时不变x (k )δ(n-k )x (k )h (n-k )齐次性()=()()k x n x k n k δ∞=−∞−∑zs =()()()*(())k y n x k h n k h x n n ∞=−∞−∑ 可加性系统特性LTI 系统δ(n )h (n )卷积和卷积和的物理意义:揭示了LTI离散系统零状态响应与输入信号和系统单位样值响应之间的关系。
信号与系统 卷积积分的性质

信号与系统
d x t dt
h d
t
2
1
1 0
2
c
1
t
0
4
t
d
dxt t h d 15 dt 8
t
9 8
2
dxt t h d dt
3
1 0
2
2
6
1 0
2 3
6
t
f
e
信号与系统
t t t
[ 1 d ]u (t 1) [ 1 d ]u (t 2)
1 2
t
t
(t 1)u (t 1) (t 2)u (t 2)
(t 1)[u (t 1) u (t 2)] 3u (t 2) 0 t 1 3
0 t a 1 e d 1 e at 0 a
f t
1
1 d ]u(t ) 1 e at u t a
t 0
f d
t 0
t
e at
1 a
0
a
t
0
b
t
信号与系统
作业 13-4-16
t
y( )d f (t ) h( )d h(t ) f ( )d
t
y(t)的一重积分
y ( 1) (t ) f (t ) h( 1) (t ) f ( 1) (t ) h(t )
推广:
y ( m) (t ) f (t ) h( m) (t ) f ( m) (t ) h(t )
信号系统 卷积积分

∞ f (τ )H[δ(t −τ )]dτ = ∫ −∞
( = ∫ f (τ )h t −τ ) dτ
∞ −∞
这就是系统的零状态响应。 这就是系统的零状态响应。
( ( yzs (t) = f (t) ⊗h t) = f (t) ∗h t)
三.卷积的计算
卷积的一般步骤
f (t) = ∫ f1(τ ) f2(t −τ ) dτ
0
f 1 (τ )
t
f1 (τ )
2
f 2 ( −τ )
2
f 2 (t − τ )
f1 (τ )
2
1
f 2 (t − τ )
1
1
0
1
t
τ
0
0 t
1
τ
0
1 t
τ
0 < t ≤ 1, f (t ) = ∫ 2 × e − (t −τ ) dτ = 2(1 − e − t )ε (t ) t > 1, f (t ) = ∫ 2 × e − (t −τ ) dτ = 2(e − (t −1) − e −t )ε (t − 1)
二.利用卷积求系统的零状态响应
任意信号f(t)可表示为冲激序列之和 任意信号 可表示为冲激序列之和
f (t) = ∫ f (τ )δ(t −τ ) dτ
∞ −∞
把 作 于 激 应h L IS, 响 为 若 它 用 冲 响 为 (t)的 T 则 应
∞ f (τ )δ(t −τ ) dτ y(t) = H[ f (t)] = H ∫ −∞
§2.3卷积积分 2.3卷积积分
•卷积 卷积 •利用卷积积分求系统的零状态响应 利用卷积积分求系统的零状态响应 •卷积图解说明 卷积图解说明 •卷积积分的几点认识 卷积积分的几点认识 卷积积分的
《信号与系统教学课件》§2.6 卷积及其性质和计算

将卷积的微分性质和积分性质加以推广,可以得到
s
t
nm
f (n) 1
t
f (m) 2
t
f (m) 1
t
f (n) 2
t
X
二、卷积的性质
注意函数的积分和微分并不是一个严格的可逆关系, 因为函数加上任意常数后的微分与原函数的微分是相 同的。因此,对于等式
f1 t
f2 t
f1' t
k
d
k
f
3
t
d
令w k
f1
k
f2
w f3
t
k
w d w d k
令st f2t f3t
f1 k s t k d k
f1 t st
f1 t
f2 t
f3 t
f 1
t f2 t
f3 t
X
二、卷积的性质
一、代数性质 • 结合律
对于函数f1 t , f2 t , f3 t ,存在
h2 t
r(t)
h1 t
图2.6.2 卷积交换律的系统意义
X
二、卷积的性质
一、代数性质
• 结合律
对于函数f1 t , f2 t , f3 t ,存在
f1 t f2 t f3 t f1 t f2 t f3 t
根据卷积的定义
f1 t
f2
t
f3
t
f1
k
f2
X
三、卷积的计算
根据卷积的定义,卷积计算是由若干基本的信号运算组成的, 对于
s
t
f1
f2
t
d
第一步 反褶:将 f1 t 反褶运算,得到 f1
理工类专业课复习资料-信号与系统-复习知识总结

重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。
其周期为各个周期的最小公倍数。
①连续正弦信号一定是周期信号。
②两连续周期信号之和不一定是周期信号。
周期信号是功率信号。
除了具有无限能量及无限功率的信号外,时限的或或 T3,仏)=°的非周期信号就是能量信号,当t *,丰0的非周期信号是功率信号。
1.典型信号①指数信号: f (t) = Ke at,a e R②正弦信号:f (t) = K sin(破 + O')③复指数信号:f (t) = Ke st,s = a + j①④抽样信号:Sa(t)=乎奇异信号(1)单位阶跃信号/八(0 (t v0)u(t) = {1 t = 0 是u(t)的跳变点。
(2)单位冲激信号1「5(t)dt=1I 5(t)= 0 (当t丰0时)单位冲激信号的性质:(1)取样性j f(t)5(t)dt = f(0) j 5(tf f(t)dt = f仏)J—8 J—8相乘性质:f(岡)=f(0R(t)f(t')3(t-10)= f (t0)S(t- t)(2)是偶函数d(t )= 5 -1(3)比例性5(at) =15(t)l a l(4)微积分性质5(t)=迎);d tf 5(丁) d 丁 = u (t)J—8(5)冲激偶 f (t )5(t) = f (0)5(t) - f r(0)5(t)d —8d —85'(—t ) = —5'()f 5'(t )d t = 0J —8带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应 着正冲激;负跳变对应着负冲激。
重难点2.信号的时域运算 ① 移位:f (t +10), t 0为常数当t 0>0时,f (t +10)相当于f (t)波形在t 轴上左移t 0 ;当t 0 <0时,f (t +10)相当于f (t ) 波形在t 轴上右移t 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.4.1 卷积
信号与系统
卷积定义
1.定义与物理意义
①历史:19世纪,欧拉,泊松,杜阿美尔
②卷积与反卷积互逆
i)卷积
e(t)√ h(t)√ r(t)?
ii)反卷积1:系统辨识
e(t)√ h(t)? r(t)√
iii)反卷积2:信号检测
e(t)? h(t)√ r(t)√
信号与系统
卷积定义
t 1
2
1 (t
2
) d
t2 4
t 4
1 16
当 t 3 时 rzs (t) 0
当 1t 3/2 时
rzs (t)
1 1
2
1 2
(t
) d
3t 4
3 16
信号与系统 卷积图解过程
0
t 1 2
t2 4
t 4
1 16
1 t 1 2
rzs
(t )
3t
4
3 16
1t 3 2
t2 4
t 2
f 2 (t )
[C,D]
+ f2(t) 0 3
rzs (t ) 1 4
r (t ) f1(t)* f2 (t) [A+C,B+D]
一般规律:
卷积结果所占的时宽=两卷积函数所占的时宽之和
信号与系统 卷积图解过程
例: e(t) u(t 1) u(t 1)
2
求:rzs (t )
e(t )
1
1 O t 3 1
t
t 3 1
t
3
1
即 2 t <4
f (t) 1 1(t )d t 2 t 2
t3 2
42
)
f2 (t )
1 O 1 t 3
t
即: t 3 1
两波形没有公共处,二者乘积为0,即积分为0
f 1( ) f2 (t ) 0 f (t ) f 1(t ) f2 (t ) 0
积分结果为t 的函数
1. f1(t ) f1( ) 积分变量改为
2.
f2(t)
f2 ( ) 反折
时延
f2 ( )
f2(t
)
3.相乘 f1 ( ) f2 (t )
4.乘积的积分 f1( ). f2 (t )d
信号与系统 卷积图解过程
例 :f1 (t )
f1
(Gt )2
(t
),
f2
t
1 f1 ( ) f2 (t )d
t 1 t
1 2
d
2
t
2
4
t 1
t2
4
t 1 24
信号与系统 卷积图解过程
1 t <2
f2
(t
1
)
f1(
)
t 3 1 O 1t
t 3 1
t 1
即 1 t <2
f
(t )
1
1
1 (t
2
)d
t
信号与系统 卷积图解过程
2t<4
1 f1( )f2 (t )
信号与系统 卷积图解过程
卷积结果
f1(t )
1
1 O 1 t
f2(t )
3 2
O
3t
t2 t 1 4 24
f
(t)
t
t2 4
t 2
2
0
f (t)
1 t 1
2
1t 2
2t4 1 O 其它
1
2
4t
信号与系统 卷积结果区间的确定
卷积结果非零区间的确定
f1 (t )
[A,B]
f1(t ) -1 1
1 0 1 t 2
h(t) 1 t u(t) u(t 2)
2
h(t)
1
0
2t
信号与系统 卷积图解过程
解: 图解法
i)t
e( )
1
1 0 1 2
ii)h( ) h( )
h( )
1
2
0
h( )
1
0
2
iii)h( ) h(t )
h(t )
1
t2 0 t
信号与系统 卷积图解过程
iv)相乘;v)求积分
信号与系统
卷积的计算
可直接利用函数的解析表达式代入卷积积分定义式计算。
其中,积分限的确定是非常关键。 1、借助于阶跃函数 u (t) 确定积分限
2、利用图解说明确定积分限
用图解法直观,用图形分段求出定积分限尤为方便准确对τ延时t,
f (t) f1( ) f2 (t )d
-(τ- t)= t- τ
3
f2(t )
2
1 O 1 t3
t
下限
上限
f2(t )
t-3
t
f1( ) f2 (t ) -1
1
当
t从
到
变化时,3对应的 2
f2(t )
从左向右移动。
1 O 1 t 3
t
信号与系统 卷积图解过程
t -1
f2(t )
1 f1( )
t3
t 1 O
1
t 1 两波形没有公共处,二者乘积为0,即积分为0
e( )
h(t ) h(t h()t ) h(t h)(t )
t2 t2
当t 1/ 2 时
t t 21
2
t t 21 tt 2 t
当 3/2t 3 时
t
rzs (t) 0 当 1/ 2 t 1时
rzs (t)
1 1 (t ) d t2 t 3
t2 2
4 24
rzs (t)
③定义: 设有两个 函数 f1(t) f2 (t) ,积分
f (t) f1( ) f2 (t )d
称为 f1(t) f2 (t) 的卷积积分,简称卷积,记为
f (t) f1(t) f2(t) 或 f (t) f1(t) f2(t)
信号与系统
利用卷积求系统的零状态响应
④物理意义:将信号分解成冲激信号之和,借助系统的 冲激响应h(t),求出系统对任意激励信号的零状态响应,即:
任意信号 f (t) 可表示为冲激信号加权和 f (t) f ( ) (t )d
若把它作用于冲激响应为h(t)的LTI系统,则响应为
r(t) H f (t)
H
f
(
)
(t
)
d
f ( )H (t )d
f ( )h(t )d
这就是系统的零状态响应。
rzs (t ) f (t ) h(t )
(t)
t 2
[u(t )
u(t
3)]
f1( )
1
1 O 1 t
f2(t )
3 2
t
t
1
1 O
f
1(
2
)
3
2
O
3t
f2(t ) 3
O0
3
2
t
t 3
Ot
信号与系统 卷积图解过程
f2 (t ) 的坐标是浮动的。
t :移动的距离
t0 , t0 , t0 ,
f2 ( )未移动 f2 ( ) 右移 f2 (t ) f2 ( ) 左移 f2 (t )
3 4
3 t 3 2
0
t 3
信号与系统
由于系统的因果性或激励信号存在时间的局限性, 卷积的积分限会有所变化,不是一定从-∞到+∞。卷积 积分中积分限的确定是非常关键的。
f 1( ) f2 (t ) 0 f (t ) f 1(t ) f2 (t ) 0
信号与系统 卷积图解过程
-1 t <1
f2 (t )
1 f1( ) f2 (t )向右移
t3
1 tO
1
1 t 1 时两波形有公共部分,积分开始不为0,积
分下限-1,上限t。
( ) f (t)