线代第三章
线性代数第三章总结

第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。
线性代数讲义(第三章)

1 0 2 ( 1 , 2 , 3 ) 1 2 4 1 5 7
r2 r1
r3 r1
~
1 1 0 0 1 0
2 2 2 2 5 7 5 5 0 0 2 2
第三章 n维向量空间
• • • • • • n维向量的定义 n维向量的线性运算 向量组的线性相关性 向量组的极大线性无关组 向量空间 习题课
第一节 n维向量的定义
一、 n维向量的概念 二、 n维向量的表示方法 三、 向量空间
一、n 维向量的概念
定义1 n 个有次序的数 a1 , a2 , , an 所组成的数 组称为n维向量,这n个数称为该向量的n个分量,
(2)设
a1 j a1 j a2 j a2 j j , b j , ( j 1,2, , m ), arj a rj a r 1, j
即 j 添上一个分量后得向量b j .若向量组 A: 1 , 2 , , m 线性无关, 则向量组B:1 , b2 , , bm 也线性无 b 关 .反言之,若向量组B线性相关, 则向量组A也线 性相关 .
a T ( a 1 , a 2 , , a n )
n 维向量写成一列,称为列向量,也就是列 矩阵,通常用 a ,b, , 等表示,如: a1 a2 a a n
注意
1.行向量和列向量总被看作是两个不同的 向量;
2.行向量和列向量都按照矩阵的运算法则 进行运算; 3.当没有明确说明是行向量还是列向量时, 都当作列向量;
线代第三章

n 阶行列式. 阶行列式.
定义
对(3-1) 的 n 阶矩阵 A,把删去第 i (3-
行及第 j 列后所得的 ( n – 1 ) 阶子矩阵称为对应 于元 aij 的余子矩阵, 并以 Sij 记之. 记之.
定义
一阶矩阵 [aij ]的行列式之值定义为数a11 的行列式之值定义为数a det [ a11 ] def a11
定理 数α乘行列式 detA,等于用α乘它的某 detA 等于用α
一列(或行)的所有元: 一列(或行)的所有元:
α det[a1 Lai Lan ] = det[a1 Lαai Lan ]
上式同时指出行列式某列(行 元的公因子可提出 上式同时指出行列式某列 行)元的公因子可提出
定理
对换两列 ( 或行 )的位置,行列式值反号: 的位置,行列式值反号:
(3 - 5 )
阶行列式值的计算公式. 并可以下表的形式记 3 阶行列式值的计算公式
a11 a12 a13 a21 a22 a23 a31 a32 a33
— —
—
+
+
+
其中每一条实线上的三个元素的乘积带正号, 其中每一条实线上的三个元素的乘积带正号 每一 条虚线上的三个元素的乘积带负号, 条虚线上的三个元素的乘积带负号 所得六项的代 数和就是三阶行列式的展开式. 数和就是三阶行列式的展开式.
值为零. 值为零.
推论 定理
对 n 阶 矩阵 A 有 detαA = (α )n det A 若将 detA的某一列 (或行) ai 写成两个向 detA 或行)
detA等于两个行列式之和, 量之和,ai = ci + di , 则 detA等于两个行列式之和, 量之和, 这两个行列式分别是在detA 这两个行列式分别是在detA中用 ci 及 di 代替ai的 代替a 结果, 结果,
线代第三章

方程组向量形式 x11+x22+…+xnn =0 令 Amn =(1,2,…,n) ,x=(x1,x2,…,xn)T
方程组矩阵形式 Amn x = 0
首页 上页 返回
… amn
a1n a2n
=0
(2)
(3)
下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
一. 齐次线性方程组有非零解的条件
首页
上页
返回
下页
结束
铃
第三章 线性方程组
§3.2 齐次线性方程组
小练习 设A为sn矩阵,则齐次线性方程组Ax = 0有非
零解的充分必要条件是
(
D
)
(A) A的行向量组线性无关;(B) A的列向量组线性无关; (C) A的行向量组线性相关;(D) A的列向量组线性相关; 齐次线性方程组Amn x = 0有非零解的判定过程 行 初等 阶 A 行变换 梯 形
首页 上页 返回 下页 结束 铃
第三章 线性方程组
§3.2 齐次线性方程组
思考本节开始时提出的第二个问题
若齐次方程组有解, 则解是否唯一? 分析:若Ax = 0有非零解, 则对任意数k, k 都是 Ax = 0的解, 即此时方程组的解是不唯一的. 若Ax = 0的解是唯一的, 则此时方程组只有零解.
非齐次线性方程组(nonhomogeneous ~) 解(to solve, solution) 解集(solution set),
首页 上页 返回
解向量(solution vector), 相容(consistent)
下页 结束 铃
a11 a12 … a1n a21 a22 … a2n 设A = … … … … , x = am1 am2 … amn
线性代数 第三章

( b1 , b2 ,, bm 为不全为零的常数) (3-1-1)
在上一章知道,它的矩阵表达式为 常数项与未知阵。
a11 a 21 A , B 将系数矩阵与常数项矩阵放在一起构成的矩阵 ~ 称为方程组(3-1-1)的增广矩阵(也可记作 A )。 a m1
第三章 向量组与线性方程组
• 3.1 线性方程组及其矩阵表示
设非齐次线性方程组的一般形式为
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a m1 x1 a m 2 x 2 a mn x n bm
Ax B与 Sx T 同解。(证)
证明 由于对矩阵作一次初等行变换等价于矩阵左乘一个初等矩阵,因此存在初等矩 阵 P 记 Pk Pk 1 P1 P 显然 P 可逆。 1, P 2 ,, P k 使得 P kP k 1 P 1 ( A, B) ( S , T )
x x1 为 Ax B 的解,即 Ax1 B Sx1 T 于是 x x1 为 Sx T 的解。
21 1
22
2
2n
n
x1 2 x 2 2 x3 x 4 1 【例1】把线性方程组 2 x1 x 2 2 x 2 5 x 4 2 表示为矩阵方程的形式。 x 3 x 7 x 4 x 0 2 3 4 1 x1 1 2 2 1 1 解 设 A x2 B 2 1 2 5 2 则原方程组可表示为 Ax B x 1 3 7 4 0 x3 x 4
Ax B 其中 A, B, x 分别是系数阵、
线性代数_第三章

这与1,2, . . .,s与线性无关矛盾.
推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。
推论2 等价的向量组有相同的秩。
推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1
显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.
证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。
线性代数 第3章 主要学习内容

求解线性方程组 首先要判断线性 方程组是否有解
若无解则结束
若有解则利用高斯消 元法化简方程组并求 得全体未知数的取值
实际上,高斯消元法通过对线性方程 组进行行变换,将其转化为三角形方 程组,然后再通过回代法求解出未知 数的值,由以下例题加以说明。
3.1 高斯消元法求解线性方程组
例1.《九章算术》第八章中介绍“方程术”的案例为:
方程组(3-11)的解为:
3.3 高斯消元法求逆矩阵
思考:可逆矩阵的乘积矩阵是否可逆?
3.3 高斯消元法求逆矩阵
解:由题意 根据例8的结果知
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
回顾与小结
1.逆矩阵的定义; 2.用逆矩阵的定义求方阵的逆矩阵; 3.用高斯消元法求方阵的逆矩阵。
“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉, 实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾实一秉各几何?”
将其翻译过来就是:现有上等谷子3捆,中等谷子2捆,下等谷子1捆,果实共计39斗; 上等谷子2捆,中等谷子3捆,下等谷子1捆,果实共计34斗;上等谷子1捆,中等谷子2捆, 下等谷子3捆,果实共计26斗,问上等、中等、下等谷子1捆分别是几斗?
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:
求解线性方程组首先要 判断线性方程组是否有 解,若无解则结束;若 有解,则利用高斯消元 法化简方程组并求得全 体未知数的取值
3.1 高斯消元法求解线性方程组
例3 求解线性方程组
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:
线性代数第三章

例4 向量组 α1 , α 2 ,⋯ , α s 中的 任意一个向量 α j ( j = 1, 2,⋯ , s ) 都可 由该向量线性表示, 由该向量线性表示,因为 α j = 0α1 + ⋯+ 1α j + ⋯+ 0αs
例题4 例题 详见教材85页 详见教材 页
(例5 + 例6) )
定义3.3.2给定向量组 给定向量组 定义
例6
设有线性方程组
x1 + x2 − 2 x3 + 3x4 = 0 2 x + x − 6 x + 4 x = −1 1 2 3 4 3x1 + 2 x2 + ax3 + 7 x4 = −1 x1 − x2 − 6 x3 − x4 = b
讨论当 a , b 为何值时, 为何值时, 方程组有解?( ?(2 无解? (1) 方程组有解?(2)无解? (3)当有解时,试求出其解。 当有解时,试求出其解。
0 = (0, 0,⋯ , 0)
n维向量 α = (a1 , a2 ,⋯ , an ) 的各分量都取相反数组成的向 维向量 量称为的负向量, 量称为的负向量,记作
−α = (−a1 , −a2 ,⋯ , −an )
α 定义3.2.3 如果 维向量 = (a1 , a2 ,⋯ , an ) 如果n维向量 定义
3、仅含有两个向量的向量组线性相关的充分必要条件是这两个向量的 、 对应分量成比
定理3.3.1 向量组 A : α 1 , α 2 , ⋯ , α m 线性相关当且仅当以 A = (α1 , α 2 ,⋯ , α m ) 定理 为系数矩阵的齐次线性方程组 AX
=0
有非零解。 有非零解。
推论3.3.1向量组 A : α 1 , α 2 , ⋯ , α n 线性相关当且仅当矩阵 A = (α1 , α 2 ,⋯ , α n ) 向量组 推论 的行列式值为零。 的行列式值为零。 定理3.3.2向量组 A : α1 , α2 ,⋯, αm (m ≥ 2) 线性相关的充要条件是向量组A: α1,α2 ,⋯,αm 向量组 定理 中至少有一个向量可由其余向量线性表示。 中至少有一个向量可由其余向量线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只讨论与起点无关的向量.
当建立了平面坐标系以后,该平面内的 向量的起点可以认为均在平面坐标原点, 于是可以用该向量的终点坐标表示该向 量,见图3.1. 在空间坐标系中有类似处 理,见图3.2.
a (x, y)
a (x, y, z)
在空间向量(x, y, z)中,它是x, y, z按一定 顺序的一个排列,分别表示该向量终点 的横坐标、纵坐标和竖坐标. 实际上, 对于含n个未知量x1, x2, …, xn的n元线性 方程组, 其一个解可以按x1, x2, …, xn的 顺序依次表示出来.
,
α3
1
11
计算3α1 2α2 5α3. Solution
2 10 4
3α1
2α2
5α3
3
5 13
21150
5
1 11
6 20 20 6
15
3 9
2 1200
5 55
12
8 24
.
由于 + = + 及 + (- ) = 0,所以
(3) + 0 = . (加法单位元)
(4) + (- ) = 0 .(加法逆元)
为了方便,将 + (-) 记为 - ,称为 向量和的差(subtraction of and ),
它是向量的减法运算. 两个向量相减就 是对应的分量分别相减.
a1 b1
a1 b1
α
a2
,
β
b2
α
β
a2
b2
am
bm
am bm
2、向量的数乘运算
向量和数的数乘是一个向量,其大小 为| |与向量的大小乘积,其方向当 > 0 时与相同,当 < 0 时与相反,当 = 0 时是零向量,这时其方向可以是
任意的.
在空间直角坐标系下:
a1
a1
α a2 α a2
两个维数不同的向量一定不等.
2. 分量全为0的m维向量称为m维零向量 (zero vector),记为黑体0. 当然有不同的 零向量,并注意实数0与向量0的区别.
3. 负向量
a1
a1
α
a2
α
a2
am
am
3.1.2 向量的线性运算
1、向量的加法运算
在中学里,两个向量α和β可以使用三
所谓向量空间,就是在向量之间定义了 向量的线性运算所构成的一种代数,又 称为向量代数.
3.1.1 向量的概念
既有大小又有方向的量称为向量.
通常用一条有向线段表示向量,有向线 段的长度表示向量的大小,有向线段的 方向表示向量的方向. 表示向量时,用 黑体及斜体的英文字母a, b, c,或希腊字
a1n a2n
am1 am2 amn
a1
a2
a1
,
a2
,,
am
T
am
每个分量均为实数的向量称为实向量
(real vector),每个分量均为复数的向量 称为复向量(complex vector). 所有m维实 向量组成的集合用Rm表示,其中R表示 实数集合. 在今后的讨论中,若无特别 说明,所涉及的向量为实向量.
线性方程组Ax = b的一个解,写成
x1 x2 xm
是线性方程组的一个解向量(solution vector).
先介绍三个概念.
1. 两个m维向量相等当且仅当其对应的 分量分别相等, 即
a1 b1
a2
b2
ai
bi , i
1,2,, n.
am bm
角形法则或平行四边形法则相加,这是 早在公元前350年左右Aristotle就知道了.
αβ β
α
β αβ α
当建立空间直角坐标系后,将向量α可 表示为(a1, a2, a3)T,向量β可表示为(b1, b2, b3)T时,很容易知道α+β = (a1+ b1, a2 + b2, a3 + b3) T. 一般地, 两个向量α和β之 和定义如下.
第3章 向量空间
向量也是重要的数学工具之一.(线性代 数的重点从线性方程组转移到向量.)
借助于线性方程组可以讨论向量的有关 内容,而有了向量知识后又可以更深入 地讨论线性方程组的解与解之间的关系. 实际上,向量空间的理论起源于对线性 方程组解的研究. 同时,向量与矩阵之 间有联系也有区别.
3.1 向量及其线性运算
a3
a3
Def 3.3
a1
a1
α
a2
α
a2
am
am
例如:
α 1,2 3 α 3 ,3
2 2
1 3
3
0 63
0 198
,
3 6
2
2 13
4 2 6
对于任意向量 ,有-1 = - , 0 = 0 且对于任意, Rm, R,有
Def 3.2
a1 b1
a1 b1
α
a2
,
β
b2
α
β
a2
b2
am
bm
am bm
2 1 1
3 1 04 31源自7 0 3向量加法运算的性质. , , Rm:
(1) + = + . (加法交换律)
(2) ( +) + = + ( + ).(加法结合律)
(5) 1 = .
(6) () = ().
(7) ( + ) = + .
(8) ( + ) = + .
上面的向量的线性运算性质(1)—(8)是 按线性空间所满足的条件列举的,参见 3.6节定义3.13.
例3.1 设
2 10 4
α1
5 1 3
,
α2
1 150
Def 3.1 将m个数a1, a2, …, am按一定顺 序排列所得到的数列称为m维向量, 表
示为
a1, a2,, am
a1 a2 am
其中ai称为是该向量的第i个分量或坐标.
当m = 1, 2, 3时,m维向量都有较直观的 几何背景,分别表示起点在原点的数轴、 平面和空间上的向量,这是学习向量时 的一个优势. 当m≥4时,m维向量没有直 观的几何解释.
向量可称为矢量. 如果将m个任意元素, 不一定是数,按一定顺序排列所得到的 数组, 就是m元组的概念,它在计算机科 学中更是经常用到
向量与矩阵.
不过看作矩阵它们是不相同的,但作为 向量这两种表示方式是相同的.
行向量和列向量.
m×n 矩阵可以得到m个行向量和n个列
向量.
a11 a21
a12 a22