20-附表六常用分布函数.doc

合集下载

分布函数

分布函数
(2) 利用 分布函数可以更方便求研究随机变 量在某一区间内取值的概率. 量在某一区间内取值的概率
如 P { X ∈ ( a, b]} = P { X ∈ ( −∞ , b]} − P { X ∈ ( −∞ , a]}
= P { X ≤ b} − P { X ≤ a} = F (b) − F (a)
xk ≤ x
∑p ,
k
1 , − 1 ≤ x < 2, 4 即 F ( x) = 3 , 2 ≤ x < 3, 4 1, x ≥ 3.
x < −1, 0, P { X = −1}, − 1 ≤ x < 2, 得 F ( x) = P { X = −1} + P{ X = 2}, 2 ≤ x < 3, 1, x ≥ 3. 0, x < −1, F ( x)
a b
3. 例题Байду номын сангаас解
例1
设随机变量 X 的分布律为
X −1 2 3
pk
1 4
1 2
1 4
1 3 5 求 X 的分布函数 , 并求 P{ X ≤ }, P{ < X ≤ }, 2 2 2 P{ 2 ≤ X ≤ 3}. 解 由于 X 仅在 x = −1, 2, 3 处概率不为 0, 且
F ( x ) = P { X ≤ x } =
4. 小结
1.离散型随机变量分布律与分布函数的关系 离散型随机变量分布律与分布函数的关系 pk = P{ X = xk } 分布律 分布函数
F( x) = P{X ≤ x} =
∑ pk x ≤x
k
2. 连续型随机变量
F ( x ) = P{ X ≤ x } = ∫
x

常用分布函数

常用分布函数

1常用分布函数11常用分布函数1.1均匀分布X∼U(a,b)U(x|a,b)=xa1b−adt(a≤x≤b),其中,期望E(X)和方差Var(X)分别为:E(X)=a+b 2Var(X)=(b−a)2121.2正态分布X∼N(µ,σ2)标准正态分布X∼N(0,1):Φ(x)=x−∞φ(t)dt=1√2πx−∞e−t22dt其中,期望E(X)和方差Var(X)分别为:E(X)=0Var(X)=1正态分布X∼N(µ,σ2):F(x)=x−∞f(t)dt=1√2πσ2x−∞e−(t−µ)22σ2dt其中,期望E(X)和方差Var(X)分别为:E(X)=µVar(X)=σ21常用分布函数2 1.3指数分布X∼e(µ,λ)E(x|µ,λ)=xµλe−λ(t−µ)dt(x≥µ)其中,期望E(X)和方差Var(X)分别为:E(X)=µ+1λVar(X)=1λ21.4Gamma分布X∼Γ(a,b)G(x|a,b)=b aΓ(a)xt a−1e−bt dt(a>0,b>0;x≥0)其中,Γ(a)为Gamma函数:Γ(a)= ∞t a−1e−t dt,且期望E(X)和方差Var(X)分别为:E(X)=a bVar(X)=a b21.5Beta分布X∼β(a,b)I x(a,b)=1B(a,b)xt a−1(1−t)b−1dt其中,B(a,b)为Beta函数:B(a,b)=1t a−1(1−t)b−1dt=B(b,a)=Γ(a)Γ(b)Γ(a+b)1.6χ2分布X∼χ2(n)H(x|n)=12n2Γn2(n为正整数;x>0)其中,期望E(X)和方差Var(X)分别为:E(X)=nVar(X)=2n1常用分布函数3 1.7t分布X∼t(n)T(x|n)=1√nB12,n2X−∞1+t2n−n+12dt(n为正整数;−∞<x<∞),其中,期望E(X)和方差Var(X)分别为:E(X)=0(n>1时),Var(X)=nn−2(n>2时).1.8F分布X∼F(m,n)F(x|m,n)=mnm2Bm2,n2xt m2−11+mtn−m+n2dt (n,n为正整数;x>0),其中,期望E(X)和方差Var(X)分别为:E(X)=nn−2(n>2),Var(X)=2n2(m+n−2)m(n−2)2(n−4)(n>4).。

分布函数及其基本性质ppt课件

分布函数及其基本性质ppt课件

0, x 1
F
(x)
0.2,1
0.7,2
x2 x4

1, x 4
(1)
求 P(X
3)
,
P(
1 2
X
3) 及 P(X
2)
;
(2) 求 X 的分布律.
解 (1) P (X3 )F (3 )0 .7
P(1 X 3) F(3)F(1)0.70.20.5
2
2
.
P (X 2 ) 1 P (X 2 ) 1 P (X 2 ) P (X 2 )
1 F ( 2 ) F ( 2 0 ) F ( 2 0 )
1 0 .7 0 .5 0 .8
(2) 由于 P(X X 0 ) F(x0 0) F(x0 0) ,可得
P (X 1 ) 0 .2 0 0 .2 ,
P (X 2 ) 0 .7 0 .2 0 .5 ,
P (X 4 ) 1 0 .7 0 .3
或者
F()limF(x)0 x
不满足性质(2), 可见F(x)也不能是随机变量的 分布函数.
.
例 在区间 [0,a] 上任意投掷一个质点,以 X 表示这个质点的坐标. 设这个质点落在 [0, a]中任意小区间内的概率与这个小区间的 长度成正比,试求 X 的分布函数.
解:设 F(x) 为 X 的分布函数, 0
F(x)
1
1 2
12
16
O
13
O
16
O
0
1
2
x
.
已知 X 的分布律为
X 1 0 1 2 求X的分布函数,
1 1 1 1 并画出它的图形。
P 2 3 12 12
0
(x 1)

分布函数

分布函数

5 2 5 F P X 2 3 2
5 1 5 1 21 1 P X F F 2 2 2 2 3 6 2
12
X为离散型随机变量分布函数 F x 与概率函数
pk 的关系。
设离散型X 的分布列是
X pk
x1 p1
x 2 xk xn p2 pk pn
k 1, 2, 3,
xk x k
F x
P X xk pk
xk x k
p P X x
由于 F x 是X 取 x 的诸值 k x 的概率之和,故又称
F x 为累积概率函数.
F x 的定义域:
,
10
X pk
1 1 6
2 1 2
3 1 3
x 1 0 1 / 6 1 x 2 F ( x) 2/3 2 x 3 1 x3
13
O
分布函数图形
F (x )
1
1 2
O
16
1
O
12 13 16
0
1

2
3
x
F 不难看出, x 的图形是阶梯状的图形,在 x 1, 2, 3
且右连续。 处有跳跃,
11
分布函数
x 1 0 1 / 6 1 x 2 F x P X x 2/3 2 x 3 1 x3
对应规律: 函数值 F(x) 取落在 , x 上的概率值。
由此例可见:
1 1 1 F P X 2 6 2
13
F x 为累积概率函数.
F x 1
pk p3

分布函数

分布函数

分布函数分布函数(Cumulative Distribution Function, CDF)是概率统计中重要的函数,正是通过它,可用的方法来研究随机变量。

1.伯努利分布伯努利分布(Bernoulli distribution)又叫做两点分布或者0-1分布,是一个离散型概率分布,若伯努利实验成功,则伯努利随机变量取值为1,如果失败,则伯努利随机变量取值为0。

并记成功的概率为p,那么失败的概率就是1p-,概率p p-,则数学期望为p,方差为(1)密度函数为2.二项分布二项分布即重复n次独立的。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互,与其它各次试验结果无关,事件发生与否的概率在每一次中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

假设每次试验的成功概率为p,则二项分布的密度函数为:二项分布函数的数学期望为np,方差为(1)X B n p。

概率密度分布图如下所np p-,记为~(,)示。

3.正态分布正态分布(Normal distribution)又名高斯分布(Gaussian distribution),若X服从一个为μ、为σ2的高斯分布,记为:X~N(μ,σ2),则其为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

通常所说的标准正态分布是μ = 0,σ = 1的正态分布。

分布曲线特征:图形特征集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。

即频率的总和为100%。

关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。

常用统计分布(ppt文档可编辑修改)

常用统计分布(ppt文档可编辑修改)

x2
e 2 dx
3

D(Xi2 ) 3 1 2, i 1, 2, , n.
故 E( 2 ) E n Xi2 n E( Xi2 ) n,
i1
i1
D( 2 ) D n Xi2 n D( Xi2 ) 2n.
t 分布具有下列性质:
性质5.6 设 T ~ t(n) , 则当n 2 时有
E(T ) 0 D(T ) n
n2
性质5.7 设 T ~ t(n) ,p(t) 是T的分布密度,

lim p(t)
1
t2
e2
n
2
此性质说明,当 n 时,T分布的极限
分布是标准正态分布。
例2
2
近似
~
N
(n,2n).
2n
例1
设X
1
,
X
2
,,
X

6





体N
(0,1)的



本,
求C1
,
C
使
2

Y C1( X1 X 2 )2 C2( X 3 X4 X5 X6 )2
服 从 2分 布.

X1

X2
~
N (0,2), 则
X1
X2 2
~
N (0,1)
同理
X3 X4
性质2 ( 2分布的数学期望和方差) 若 2 ~ 2(n), 则 E( 2 ) n, D( 2 ) 2n.
证明 因为 Xi ~ N (0, 1), 所以 E( Xi2 ) D( Xi ) 1,

分布函数值

分布函数值

函数说明 Beta分布 二项分布 卡方分布 指数分布 F分布 GAMMA分布 几何分布 正态分布 泊松分布 T分布 均匀分布
2
例如二项分布:设一次试验,事件A发生的概率 为p,那么,在n次独立重复试验中,事件A恰好发 生K次的概率P_K为:
P_K=P{X=K}=pdf('bino',K,n,p) 例 计算正态分布N(0,1)的随机变量X在点 0.6578的密度函数值。 pdf('norm',0.6578,0,1) ans = 0.3213 例 自由度为8的卡方分布,在点2.18处的密度 函数值。
pdf('chi2',2.18,8) ans = 0.0363
3
6.1.2 专用函数计算概率密度函数值
(1)二项分布的概率值 binopdf (k, n, p) p — 每次试验事件A发生的概率;K—事件
A发生K次;n—试验总次数 (2)泊松分布的概率值 poisspdf(k, Lambda) (3)正态分布的概率值 normpdf(K,mu,sigma) %计算参数为μ=mu,σ=sigma的正态分布密
参数为mu,sigma的正态分布累积分布函数值 F(x)=P{X≤x}
自由度为n的卡方分布累积分布函数值 F(x)=P{X≤x}
自由度为n的t分布累积分布函数值 F(x)=P{X≤x}
第一自由度为n1,第二自由度为n2的F分布累积 分布函数值
分布累积分布函数值 F(x)=P{X≤x}
分布累积分布函数值 F(x)=P{X≤x}
tcdf(x, n)
fcdf(x, n1, n2) gamcdf(x, a, b) betacdf(x, a, b)


[a,b]上均匀分布(连续)累积分布函数值 F(x)=P{X≤x}

概率统计分布表格(常用)

概率统计分布表格(常用)

标准正态表0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.81330.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.83891.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.97061.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.97672.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.98572.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.99812.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.99863.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.99993.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00009 1.7349 2.0879 2.7004 3.3251 4.1682 5.8988 11.3888 14.6837 16.9190 19.0228 21.6660 23.589410 2.1559 2.5582 3.2470 3.9403 4.8652 6.7372 12.5489 15.9872 18.3070 20.4832 23.2093 25.188211 2.6032 3.0535 3.8157 4.5748 5.5778 7.5841 13.7007 17.2750 19.6751 21.9200 24.7250 26.756812 3.0738 3.5706 4.4038 5.2260 6.3038 8.4384 14.8454 18.5493 21.0261 23.3367 26.2170 28.299513 3.5650 4.1069 5.0088 5.8919 7.0415 9.2991 15.9839 19.8119 22.3620 24.7356 27.6882 29.819514 4.0747 4.6604 5.6287 6.5706 7.7895 10.1653 17.1169 21.0641 23.6848 26.1189 29.1412 31.319315 4.6009 5.2293 6.2621 7.2609 8.5468 11.0365 18.2451 22.3071 24.9958 27.4884 30.5779 32.801316 5.1422 5.8122 6.9077 7.9616 9.3122 11.9122 19.3689 23.5418 26.2962 28.8454 31.9999 34.267217 5.6972 6.4078 7.5642 8.6718 10.0852 12.7919 20.4887 24.7690 27.5871 30.1910 33.4087 35.718518 6.2648 7.0149 8.2307 9.3905 10.8649 13.6753 21.6049 25.9894 28.8693 31.5264 34.8053 37.156519 6.8440 7.6327 8.9065 10.1170 11.6509 14.5620 22.7178 27.2036 30.1435 32.8523 36.1909 38.582320 7.4338 8.2604 9.5908 10.8508 12.4426 15.4518 23.8277 28.4120 31.4104 34.1696 37.5662 39.996821 8.0337 8.8972 10.2829 11.5913 13.2396 16.3444 24.9348 29.6151 32.6706 35.4789 38.9322 41.401122 8.6427 9.5425 10.9823 12.3380 14.0415 17.2396 26.0393 30.8133 33.9244 36.7807 40.2894 42.795723 9.2604 10.1957 11.6886 13.0905 14.8480 18.1373 27.1413 32.0069 35.1725 38.0756 41.6384 44.181324 9.8862 10.8564 12.4012 13.8484 15.6587 19.0373 28.2412 33.1962 36.4150 39.3641 42.9798 45.558525 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 29.3389 34.3816 37.6525 40.6465 44.3141 46.927926 11.1602 12.1981 13.8439 15.3792 17.2919 20.8434 30.4346 35.5632 38.8851 41.9232 45.6417 48.289927 11.8076 12.8785 14.5734 16.1514 18.1139 21.7494 31.5284 36.7412 40.1133 43.1945 46.9629 49.644928 12.4613 13.5647 15.3079 16.9279 18.9392 22.6572 32.6205 37.9159 41.3371 44.4608 48.2782 50.993429 13.1211 14.2565 16.0471 17.7084 19.7677 23.5666 33.7109 39.0875 42.5570 45.7223 49.5879 52.335630 13.7867 14.9535 16.7908 18.4927 20.5992 24.4776 34.7997 40.2560 43.7730 46.9792 50.8922 53.672031 14.4578 15.6555 17.5387 19.2806 21.4336 25.3901 35.8871 41.4217 44.9853 48.2319 52.1914 55.002732 15.1340 16.3622 18.2908 20.0719 22.2706 26.3041 36.9730 42.5847 46.1943 49.4804 53.4858 56.328133 15.8153 17.0735 19.0467 20.8665 23.1102 27.2194 38.0575 43.7452 47.3999 50.7251 54.7755 57.648434 16.5013 17.7891 19.8063 21.6643 23.9523 28.1361 39.1408 44.9032 48.6024 51.9660 56.0609 58.963935 17.1918 18.5089 20.5694 22.4650 24.7967 29.0540 40.2228 46.0588 49.8018 53.2033 57.3421 60.274836 17.8867 19.2327 21.3359 23.2686 25.6433 29.9730 41.3036 47.2122 50.9985 54.4373 58.6192 61.581237 18.5858 19.9602 22.1056 24.0749 26.4921 30.8933 42.3833 48.3634 52.1923 55.6680 59.8925 62.883338 19.2889 20.6914 22.8785 24.8839 27.3430 31.8146 43.4619 49.5126 53.3835 56.8955 61.1621 64.181439 19.9959 21.4262 23.6543 25.6954 28.1958 32.7369 44.5395 50.6598 54.5722 58.1201 62.4281 65.475640 20.7065 22.1643 24.4330 26.5093 29.0505 33.6603 45.6160 51.8051 55.7585 59.3417 63.6907 66.766041 21.4208 22.9056 25.2145 27.3256 29.9071 34.5846 46.6916 52.9485 56.9424 60.5606 64.9501 68.052742 22.1385 23.6501 25.9987 28.1440 30.7654 35.5099 47.7663 54.0902 58.1240 61.7768 66.2062 69.336043 22.8595 24.3976 26.7854 28.9647 31.6255 36.4361 48.8400 55.2302 59.3035 62.9904 67.4593 70.615944 23.5837 25.1480 27.5746 29.7875 32.4871 37.3631 49.9129 56.3685 60.4809 64.2015 68.7095 71.892645 24.3110 25.9013 28.3662 30.6123 33.3504 38.2910 50.9849 57.5053 61.6562 65.4102 69.9568 73.1661T分布1 1.0000 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567 127.3213 318.3088 636.61922 0.8165 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248 14.0890 22.3271 31.59913 0.7649 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409 7.4533 10.2145 12.92404 0.7407 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041 5.5976 7.1732 8.61035 0.7267 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321 4.7733 5.8934 6.86886 0.7176 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074 4.3168 5.2076 5.95887 0.7111 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995 4.0293 4.7853 5.40798 0.7064 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554 3.8325 4.5008 5.04139 0.7027 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498 3.6897 4.2968 4.780910 0.6998 0.8791 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693 3.5814 4.1437 4.586911 0.6974 0.8755 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058 3.4966 4.0247 4.437012 0.6955 0.8726 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545 3.4284 3.9296 4.317813 0.6938 0.8702 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123 3.3725 3.8520 4.220814 0.6924 0.8681 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768 3.3257 3.7874 4.140515 0.6912 0.8662 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467 3.2860 3.7328 4.072816 0.6901 0.8647 1.0711 1.3368 1.7459 2.1199 2.5835 2.9208 3.2520 3.6862 4.015017 0.6892 0.8633 1.0690 1.3334 1.7396 2.1098 2.5669 2.8982 3.2224 3.6458 3.965118 0.6884 0.8620 1.0672 1.3304 1.7341 2.1009 2.5524 2.8784 3.1966 3.6105 3.921619 0.6876 0.8610 1.0655 1.3277 1.7291 2.0930 2.5395 2.8609 3.1737 3.5794 3.883420 0.6870 0.8600 1.0640 1.3253 1.7247 2.0860 2.5280 2.8453 3.1534 3.5518 3.849521 0.6864 0.8591 1.0627 1.3232 1.7207 2.0796 2.5176 2.8314 3.1352 3.5272 3.819322 0.6858 0.8583 1.0614 1.3212 1.7171 2.0739 2.5083 2.8188 3.1188 3.5050 3.792123 0.6853 0.8575 1.0603 1.3195 1.7139 2.0687 2.4999 2.8073 3.1040 3.4850 3.767624 0.6848 0.8569 1.0593 1.3178 1.7109 2.0639 2.4922 2.7969 3.0905 3.4668 3.745425 0.6844 0.8562 1.0584 1.3163 1.7081 2.0595 2.4851 2.7874 3.0782 3.4502 3.725126 0.6840 0.8557 1.0575 1.3150 1.7056 2.0555 2.4786 2.7787 3.0669 3.4350 3.706627 0.6837 0.8551 1.0567 1.3137 1.7033 2.0518 2.4727 2.7707 3.0565 3.4210 3.689628 0.6834 0.8546 1.0560 1.3125 1.7011 2.0484 2.4671 2.7633 3.0469 3.4082 3.673929 0.6830 0.8542 1.0553 1.3114 1.6991 2.0452 2.4620 2.7564 3.0380 3.3962 3.659430 0.6828 0.8538 1.0547 1.3104 1.6973 2.0423 2.4573 2.7500 3.0298 3.3852 3.646031 0.6825 0.8534 1.0541 1.3095 1.6955 2.0395 2.4528 2.7440 3.0221 3.3749 3.633532 0.6822 0.8530 1.0535 1.3086 1.6939 2.0369 2.4487 2.7385 3.0149 3.3653 3.621833 0.6820 0.8526 1.0530 1.3077 1.6924 2.0345 2.4448 2.7333 3.0082 3.3563 3.610934 0.6818 0.8523 1.0525 1.3070 1.6909 2.0322 2.4411 2.7284 3.0020 3.3479 3.600735 0.6816 0.8520 1.0520 1.3062 1.6896 2.0301 2.4377 2.7238 2.9960 3.3400 3.591136 0.6814 0.8517 1.0516 1.3055 1.6883 2.0281 2.4345 2.7195 2.9905 3.3326 3.582137 0.6812 0.8514 1.0512 1.3049 1.6871 2.0262 2.4314 2.7154 2.9852 3.3256 3.573738 0.6810 0.8512 1.0508 1.3042 1.6860 2.0244 2.4286 2.7116 2.9803 3.3190 3.565739 0.6808 0.8509 1.0504 1.3036 1.6849 2.0227 2.4258 2.7079 2.9756 3.3128 3.558140 0.6807 0.8507 1.0500 1.3031 1.6839 2.0211 2.4233 2.7045 2.9712 3.3069 3.551041 0.6805 0.8505 1.0497 1.3025 1.6829 2.0195 2.4208 2.7012 2.9670 3.3013 3.544242 0.6804 0.8503 1.0494 1.3020 1.6820 2.0181 2.4185 2.6981 2.9630 3.2960 3.537743 0.6802 0.8501 1.0491 1.3016 1.6811 2.0167 2.4163 2.6951 2.9592 3.2909 3.531644 0.6801 0.8499 1.0488 1.3011 1.6802 2.0154 2.4141 2.6923 2.9555 3.2861 3.525845 0.6800 0.8497 1.0485 1.3006 1.6794 2.0141 2.4121 2.6896 2.9521 3.2815 3.520346 0.6799 0.8495 1.0483 1.3002 1.6787 2.0129 2.4102 2.6870 2.9488 3.2771 3.515047 0.6797 0.8493 1.0480 1.2998 1.6779 2.0117 2.4083 2.6846 2.9456 3.2729 3.509948 0.6796 0.8492 1.0478 1.2994 1.6772 2.0106 2.4066 2.6822 2.9426 3.2689 3.505149 0.6795 0.8490 1.0475 1.2991 1.6766 2.0096 2.4049 2.6800 2.9397 3.2651 3.500450 0.6794 0.8489 1.0473 1.2987 1.6759 2.0086 2.4033 2.6778 2.9370 3.2614 3.496051 0.6793 0.8487 1.0471 1.2984 1.6753 2.0076 2.4017 2.6757 2.9343 3.2579 3.491852 0.6792 0.8486 1.0469 1.2980 1.6747 2.0066 2.4002 2.6737 2.9318 3.2545 3.487753 0.6791 0.8485 1.0467 1.2977 1.6741 2.0057 2.3988 2.6718 2.9293 3.2513 3.483854 0.6791 0.8483 1.0465 1.2974 1.6736 2.0049 2.3974 2.6700 2.9270 3.2481 3.480055 0.6790 0.8482 1.0463 1.2971 1.6730 2.0040 2.3961 2.6682 2.9247 3.2451 3.476456 0.6789 0.8481 1.0461 1.2969 1.6725 2.0032 2.3948 2.6665 2.9225 3.2423 3.472957 0.6788 0.8480 1.0459 1.2966 1.6720 2.0025 2.3936 2.6649 2.9204 3.2395 3.469658 0.6787 0.8479 1.0458 1.2963 1.6716 2.0017 2.3924 2.6633 2.9184 3.2368 3.466359 0.6787 0.8478 1.0456 1.2961 1.6711 2.0010 2.3912 2.6618 2.9164 3.2342 3.463260 0.6786 0.8477 1.0455 1.2958 1.6706 2.0003 2.3901 2.6603 2.9146 3.2317 3.460261 0.6785 0.8476 1.0453 1.2956 1.6702 1.9996 2.3890 2.6589 2.9127 3.2293 3.457362 0.6785 0.8475 1.0452 1.2954 1.6698 1.9990 2.3880 2.6575 2.9110 3.2270 3.454563 0.6784 0.8474 1.0450 1.2951 1.6694 1.9983 2.3870 2.6561 2.9093 3.2247 3.451864 0.6783 0.8473 1.0449 1.2949 1.6690 1.9977 2.3860 2.6549 2.9076 3.2225 3.449165 0.6783 0.8472 1.0448 1.2947 1.6686 1.9971 2.3851 2.6536 2.9060 3.2204 3.446666 0.6782 0.8471 1.0446 1.2945 1.6683 1.9966 2.3842 2.6524 2.9045 3.2184 3.444167 0.6782 0.8470 1.0445 1.2943 1.6679 1.9960 2.3833 2.6512 2.9030 3.2164 3.441768 0.6781 0.8469 1.0444 1.2941 1.6676 1.9955 2.3824 2.6501 2.9015 3.2145 3.439469 0.6781 0.8469 1.0443 1.2939 1.6672 1.9949 2.3816 2.6490 2.9001 3.2126 3.437270 0.6780 0.8468 1.0442 1.2938 1.6669 1.9944 2.3808 2.6479 2.8987 3.2108 3.435071 0.6780 0.8467 1.0441 1.2936 1.6666 1.9939 2.3800 2.6469 2.8974 3.2090 3.432972 0.6779 0.8466 1.0440 1.2934 1.6663 1.9935 2.3793 2.6459 2.8961 3.2073 3.430873 0.6779 0.8466 1.0438 1.2933 1.6660 1.9930 2.3785 2.6449 2.8949 3.2057 3.428974 0.6778 0.8465 1.0437 1.2931 1.6657 1.9925 2.3778 2.6439 2.8936 3.2041 3.426975 0.6778 0.8464 1.0436 1.2929 1.6654 1.9921 2.3771 2.6430 2.8924 3.2025 3.425076 0.6777 0.8464 1.0436 1.2928 1.6652 1.9917 2.3764 2.6421 2.8913 3.2010 3.423277 0.6777 0.8463 1.0435 1.2926 1.6649 1.9913 2.3758 2.6412 2.8902 3.1995 3.421478 0.6776 0.8463 1.0434 1.2925 1.6646 1.9908 2.3751 2.6403 2.8891 3.1980 3.419779 0.6776 0.8462 1.0433 1.2924 1.6644 1.9905 2.3745 2.6395 2.8880 3.1966 3.418080 0.6776 0.8461 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387 2.8870 3.1953 3.416381 0.6775 0.8461 1.0431 1.2921 1.6639 1.9897 2.3733 2.6379 2.8860 3.1939 3.414782 0.6775 0.8460 1.0430 1.2920 1.6636 1.9893 2.3727 2.6371 2.8850 3.1926 3.413283 0.6775 0.8460 1.0429 1.2918 1.6634 1.9890 2.3721 2.6364 2.8840 3.1913 3.411684 0.6774 0.8459 1.0429 1.2917 1.6632 1.9886 2.3716 2.6356 2.8831 3.1901 3.410285 0.6774 0.8459 1.0428 1.2916 1.6630 1.9883 2.3710 2.6349 2.8822 3.1889 3.408786 0.6774 0.8458 1.0427 1.2915 1.6628 1.9879 2.3705 2.6342 2.8813 3.1877 3.407387 0.6773 0.8458 1.0426 1.2914 1.6626 1.9876 2.3700 2.6335 2.8804 3.1866 3.405988 0.6773 0.8457 1.0426 1.2912 1.6624 1.9873 2.3695 2.6329 2.8795 3.1854 3.404589 0.6773 0.8457 1.0425 1.2911 1.6622 1.9870 2.3690 2.6322 2.8787 3.1843 3.403290 0.6772 0.8456 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316 2.8779 3.1833 3.4019 100 0.6770 0.8452 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259 2.8707 3.1737 3.3905 120 0.6765 0.8446 1.0409 1.2886 1.6577 1.9799 2.3578 2.6174 2.8599 3.1595 3.3735F分布P= 0.9011 3.23 2.86 2.66 2.54 2.45 2.34 2.30 2.27 2.17 2.12 2.0812 3.18 2.81 2.61 2.48 2.39 2.28 2.24 2.21 2.10 2.06 2.0113 3.14 2.76 2.56 2.43 2.35 2.23 2.20 2.16 2.05 2.01 1.9614 3.10 2.73 2.52 2.39 2.31 2.19 2.15 2.12 2.01 1.96 1.9115 3.07 2.70 2.49 2.36 2.27 2.16 2.12 2.09 1.97 1.92 1.8716 3.05 2.67 2.46 2.33 2.24 2.13 2.09 2.06 1.94 1.89 1.8417 3.03 2.64 2.44 2.31 2.22 2.10 2.06 2.03 1.91 1.86 1.8118 3.01 2.62 2.42 2.29 2.20 2.08 2.04 2.00 1.89 1.84 1.7819 2.99 2.61 2.40 2.27 2.18 2.06 2.02 1.98 1.86 1.81 1.7620 2.97 2.59 2.38 2.25 2.16 2.04 2.00 1.96 1.84 1.79 1.7421 2.96 2.57 2.36 2.23 2.14 2.02 1.98 1.95 1.83 1.78 1.7222 2.95 2.56 2.35 2.22 2.13 2.01 1.97 1.93 1.81 1.76 1.70 24 2.93 2.54 2.33 2.19 2.10 1.98 1.94 1.91 1.78 1.73 1.67 26 2.91 2.52 2.31 2.17 2.08 1.96 1.92 1.88 1.76 1.71 1.65 28 2.89 2.50 2.29 2.16 2.06 1.94 1.90 1.87 1.74 1.69 1.63 30 2.88 2.49 2.28 2.14 2.05 1.93 1.88 1.85 1.72 1.67 1.61P= 0.9911 9.65 7.21 6.22 5.67 5.32 4.89 4.74 4.63 4.40 4.29 4.21 4.15 4.1012 9.33 6.93 5.95 5.41 5.06 4.64 4.50 4.39 4.16 4.05 3.97 3.91 3.8613 9.07 6.70 5.74 5.21 4.86 4.44 4.30 4.19 3.96 3.86 3.78 3.72 3.6614 8.86 6.51 5.56 5.04 4.69 4.28 4.14 4.03 3.80 3.70 3.62 3.56 3.5115 8.68 6.36 5.42 4.89 4.56 4.14 4.00 3.89 3.67 3.56 3.49 3.42 3.3716 8.53 6.23 5.29 4.77 4.44 4.03 3.89 3.78 3.55 3.45 3.37 3.31 3.2617 8.40 6.11 5.18 4.67 4.34 3.93 3.79 3.68 3.46 3.35 3.27 3.21 3.1618 8.29 6.01 5.09 4.58 4.25 3.84 3.71 3.60 3.37 3.27 3.19 3.13 3.0819 8.18 5.93 5.01 4.50 4.17 3.77 3.63 3.52 3.30 3.19 3.12 3.05 3.0020 8.10 5.85 4.94 4.43 4.10 3.70 3.56 3.46 3.23 3.13 3.05 2.99 2.9421 8.02 5.78 4.87 4.37 4.04 3.64 3.51 3.40 3.17 3.07 2.99 2.93 2.8822 7.95 5.72 4.82 4.31 3.99 3.59 3.45 3.35 3.12 3.02 2.94 2.88 2.8323 7.88 5.66 4.76 4.26 3.94 3.54 3.41 3.30 3.07 2.97 2.89 2.83 2.7824 7.82 5.61 4.72 4.22 3.90 3.50 3.36 3.26 3.03 2.93 2.85 2.79 2.7425 7.77 5.57 4.68 4.18 3.85 3.46 3.32 3.22 2.99 2.89 2.81 2.75 2.7026 7.72 5.53 4.64 4.14 3.82 3.42 3.29 3.18 2.96 2.86 2.78 2.72 2.6627 7.68 5.49 4.60 4.11 3.78 3.39 3.26 3.15 2.93 2.82 2.75 2.68 2.6328 7.64 5.45 4.57 4.07 3.75 3.36 3.23 3.12 2.90 2.79 2.72 2.65 2.6029 7.60 5.42 4.54 4.04 3.73 3.33 3.20 3.09 2.87 2.77 2.69 2.63 2.5730 7.56 5.39 4.51 4.02 3.70 3.30 3.17 3.07 2.84 2.74 2.66 2.60 2.55Excel公式1.正态分布函数Excel计算正态分布时,使用NORMDIST函数,其格式如下:NORMDIST(a,μ,σ,累积)其中,“累积”:若为TRUE,则输出分布函数值,即P{X≤a};若为FALSE,则为概率密度函数值.示例:已知X服从正态分布,μ=600,σ=100,求P{X≤500}.输入公式NORMDIST(500, 600, 100, TRUE)得到的结果为0.158655,即P{X≤500}=0.158655.2、正态分布函数的反函数Excel计算正态分布函数的反函数使用NORMINV函数,格式如下: NORMINV(p,μ,σ),此公式计算a,使P{X ≤a}=p 3标准正态分布反函数=NORMSINV(0.975)3、 t分布Excel计算t分布的值,采用TDIST函数,格式如下: TDIST(a,自由度,侧数)其中,“侧数”:指明分布为单侧或双侧:若为1,为单侧;此命令输出P{ T >a }若为2,为双侧.此命令输出P{ |T| >a}示例:设T服从自由度为24的t分布,求P(T>1.711).已知t=1.711,df=24,采用单侧,则T分布的值:TDIST(1.711,24,1)得到0.05,即P(T > 1.711)=0.05.4. t分布的反函数Excel使用TINV函数得到t分布的反函数,格式如下: TINV(α,自由度)输出 T 分布的α / 2 分位点: t_α/2_(n)若求临界值tα(n),则使用公式=TINV(2*α, n)5.返回F分布的函数是FDISTFDIST(x,degrees_freedom1,degrees_freedom2) 函数 FDIST 的计算公式为 FDIST=P( F>x ),5.F分布的反函数FINV(probability,deg_freedom1,deg_freedom2) 已知 probability=P( F>x ),求x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学期弟-E(X)
方差D(X)
矩母两数M⑴
特征函数0(/)
指数分布
心,2)
f(x) =
J加**"),x>/z [0,x< p
1
1

ty1
1--
lQ丿
.(ity1严i-丝
I Q丿
瑞利分布
/?(//)
fM = <
:0』/(2/),x>0
0,x < 0
“〉0
4-712
2“
贝塔分布
0(p,g)
/(兀)n
『(p+q)占(i兀严o<x<i r(p)r(^)
f
X
、7
>0
x>Q
/
0,其它
,0〉0
D(X) = b<
(1 )
(x)= ;7r -+i
\(2 }r fi M U丿L " )\
■丿
>
附表六常用分布函数
1.常用离散型分布
名称记号
概率分布及其定义域、参数条件
数学期望E(X)
方差D(X)
概率母函数p(&)
矩母函数M(f)
特征函数0(/)
单点分布
/(c)
p(X =x) = <
C为正:
*
1,x = c
0,x丰c
整数
C
0
ec
ect
eict
二项分布
B(n, p)
=x) =
x = 0丄…曲,
p>O,q >0,
矩母函数M(t)
特征函数0(。
均匀分布
U(a,b)
一一-—,a<x<b
f(x) = <b-a
0,其它
-oo<a <b <(x)
a + h
2
(b-a)2
12
eht-eart(b-a)
严一严
it(b-a)
标准」|]态分布
N(O,1)
f(x) = ^=e yJ27T
—oo < x < 00
0
1
t2
J
正态分布
N(〃d)
1. (I"
-00 < x < oo
-00 < // < oo , CT > 0
a2
*> a
心2e―
e2
对数正态分布
5“,决)
/(x) = <
|(In x-“)2
—f=——e2a~, x > 0
冷2兀(TX
0,x<0
00 < “<00, (T > 0
e么
严甘_1)
名称记号
分布密度及其定义域、参数条件
o,其它
p >0, q >0
p
p+q
pq
\F、(p;p + q;if)
(库默尔函数)
(p+gFO+g + i)
%2分布
a ]—x,t/2~[e~x/2,x>0
2H/2r(n/2)
0,其它

n >1
n
2n
(i-2tyn,2
0<r<l/2
(1-2/7)
『分布
几 +1)
1/2、-5+1)/2
f(x)=A2/i+—,心
数学期望E(X)
方差D(X)
概率母函数〃 (&)
负二项分布
对数分布
L(p)
超几何分布
p(x=兀)
paqx
兀=0丄2,…,G为正实数
Pg)/
x= 1,2,•••
P(X=x) =
(M
N — M、
(N
x =max{0,n-N + M}
0<M <N,0<n<N
aq
P
aq
p~
矩母函数M⑴
特征函数0(/)
P
j 1一
q
pin”

q
In”丿
p2InP
ln(l_g&)
Inp
ln(l g”)
Inp
N —M、
ln(l
Inp
E(X) =哎
N
»、N-nM(N-M)a ) =n
N-\ N2
F(一/?-m;N -M - n +1;Z
W丿
(F为超儿何函数)
2.常用连续型分布
名称记号
分布密度及其定义域、参数条件
数学期望E(X)
方差D(X)
5”严
72为正整数
p+qi
np
npq
(p0 + g)"
(pN+q)”
(pdf
泊松分布
P")
pg)斗
"0,1,2,…,2为正实数
2
A
严j)
严7
严j
几何分布
G(p)
p^X=x) = pqx~l
x= 1,2,…,p>O.q>0. p+q= \
1
P
q
7
p
p0
\-q0
P
pJ
e~f-q
1-0
名称记号
概率分如及其定义域、参数条件
\/mT(7?/2)(n丿
0
n, n>2
n — 2
不存在
名称记号
分布密度及其定义域、参数条件
数学期弟-E(X)
方差D(X)
矩母两数M⑴
特征函数0(/)
柯西分布
/w=
a,
1
/、2
, x-a
1+
l 2丿
2>0
不存在
不存在
不存在
严M
伽马分布
r(c,&,0)
fM = <
俨(XC)Z£"Z,兀〉cr(a)
0,x<c
cr>0, 0>O
a
一+c
p
a
02
z、_a
cti丫
e1
I 0丿
z.、_&
严1_兰
I0丿
F分布
f
Y
B
乜2
訓〃2、
、亍2,
也__]山+也
-x2(n2+HjX)2 ,x>0
0,其它
>l,n2>l
®,山>2
n2-2
2nl (
不存在
威布尔分布
fM= <
77:
相关文档
最新文档