2.2.2《对数函数及其性质》课件

合集下载

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

练习:(1)y log a (9 x 2 ) (2)y log (2 x1) (3 x 2)
3y
log
7
1 1 3x
4y loga 4 x
小结: 1.对数函数的概念. 2.对数函数的定义域. 3.对数函数的图象及其性质,通过对a分类讨 论掌握其性质与图象.
练习:已知函数 f(x)=log2 (2x-1)
即已知y求x的问题。
yx=log2xy
对数函数:
一般地,我们把函数 y log a xa 叫0做且对a数函1
数,其中x是自变量,函数的定义域是(0,+∞).
注意:①对数函数的定义与指数函数类似,都是情势定义,
注意辨别.如:y 2 log 2 x,
能称其为对数型函数.
y l都og不2 是52 对x 数函数,而只
a>1
0<a<1

y
y

o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
(4) 0<x<1时, y>0;

x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
0 1 23 4
连 -1 线 -2
2 4… 1 2…
x
x … 1/4 1/2
列 表
y
y
log 2
log 1
x…
x…
2
-2 2

对数函数及其性质PPT课件(1)

对数函数及其性质PPT课件(1)

a = log3π>1 , b = log2
1 3=2
故有 a>b>c.故选 A. 【答案】 A
1 (1)已知 loga3>1,求 a 的取值范围; 1 1 (2)已知 log32a<log3(a-1), 求 a 的取值范围.
【思路点拨】 由题目可获取以下主要信息: ①(1)中底数含有参数; ②(2)中底数相同. 解答本题可根据对数函数的单调性转化为一般不等式(组)求解.
2a>a-1 即 ,解得 a>1.即实数 a 的取值范围是 a-1>0
a>1.
1 求函数 y=log (3+2x-x2)的单调区间和值域. 2 【思路点拨】 由题目可以获取以下主要信息: 1 ①函数由 y=log2u 与 u=3+2x-x2 复合. ②要注意在函数定义域内讨论单调性.
1 【解析】 由 3+2x-x2>0 解得函数 y=log2 (3+2x-x2)的定义域是{x|-1<x<3}. 设 u = 3 + 2x - x2( - 1<x<3) , 又 设 - 1<x1<x2≤1, 1 1 则 u1<u2.从而 log2u1>log2u2,即 y1>y2. 故函数 y 1 =log2(3+2x-x2)在区间(-1,1]上单调递减. 同理可得函数在区间(1,3)上单调递增. 函数 u=3+2x-x2(-1<x<3]的值域是(0,4], 1 1 2 故函数 y=log (3+2x-x )的值域是 y≥log 4. 2 2 即{y|y≥-2}.
Байду номын сангаас
(1)解对数不等式问题通常转化为一般不等式(组)求解,其依据是对 数函数的单调性. (2)解决与对数函数相关的问题时要遵循“定义域优先”原则. (3)若含有字母,应考虑分类讨论.

2.2.2 对数函数及其性质 第1课时 对数函数的图象及性质

2.2.2 对数函数及其性质 第1课时  对数函数的图象及性质

探究1:对数函数的定义 一般地,我们把函数_y_=_l_o_g_a_x_(_a_>_0_,_且__a_≠_1_)_叫
做对数函数,其中x是自变量,函数的定义域是 _〔__0_,__+_∞__〕__.__ 注意:〔1〕对数函数定义的严格形式;
〔2〕对数函数对底数的限制条件:
a 0且a 1.
思考1.对数函数的解析式具有什么样的结构特征呢? 提示:对数函数的解析式具有以下三个特征: (1)底数a为大于0且不等于1的常数; (2)真数位置是自变量x,且x的系数是1; (3)logax的系数是1.
1
2
4
……
y=2x
反过来,1个细胞经过多少次分裂,大约可以 等于1万个、10万个细胞?细胞个数y,如何求细 胞分裂次数x?得到怎样一个新的函数?
1
2
4 ……
y=2x
x=? x log2 y y 2x
现在就让我们一起进入本节的学习来解决这些 问题吧!
1.理解对数函数的概念,掌握对数函数的图像与 性质.〔重点〕 2.知道对数函数是一类重要的函数模型; 3.了解指数函数y=ax与对数函数y=logax互为反函 数〔a>0,且a≠1).〔难点〕
4,
1 2
.
①求f(x)的解析式; ②解方程f(x)=2. 分析:(1)根据对数函数的形式定义确定参数m所满足的条件求解 即可;(2)根据设出函数解析式,代入点的坐标求出对数函数的底数; 然后利用指对互化解方程.
变式训练1(1)假设函数f(x)=log(a+1)x+(a2-2a-8)是对数函数,那么 a= .
所以函数 y 1 的定义域为{x|x>0,且x≠1}. log2 x
〔3〕因为

2.2.2 对数函数及其性质

2.2.2   对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。

高中数学人教A版必修1课件:2、2、2对数函数及其性质

高中数学人教A版必修1课件:2、2、2对数函数及其性质
则f,对于集合A中的任何一个元素,在集合B中都有唯一的一
个元素和它对应,那么这样的对应(包括集合A,B以及A到B
的对应法则f)叫做集合A到集合B的映射,记作: f : A B
其中,如果 a A,b B ,且元素a和元素b对应,那么我们
把元素b叫做元素a的象,元素a叫做元素b的原象
说明:1 映射 f : A B有方向性,即它只表示从集合A
a 1
0 a 1
y
y

y loga x
(1,0)

o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
⑧ y log 1 x
概念辨析
例2 下列函数是对数函数的是(D) A. y=log2(3x-2) B. y=log(x-1)x C. y=log0.3x2 D. y=lnx
2.对数函数的图像和性质
用描点法作y=log2x与y=log0.5x的图象.
x
1 4

2.2.2 第一课时对数函数及其性质

2.2.2  第一课时对数函数及其性质

(
)
x-1>0, 解析:由题意得 解得 2-x>0.
1<x<2.
答案:B
3.求下列函数的定义域: (1)y=log5(1+x); (2)y=log(1-x)5; (3)y= log2x; (4)y= log0.5(4x+3). 3
3.求下列函数的定义域: (1)y=log5(1+x);
大,图象向右越靠近x轴;0<a<1时,a越小,图象向
右越靠近x 轴. (2)左右比较:比较图象与y=1的交点,交点的 横坐标越大,对应的对数函数的底数越大.
答案:[1,2]
[例3] 求函数y=log2(x2-4x+6)的值域.
[思路点拨] 先确定真数的取值范围,再运用对数函数的单调
性求解.
解: ∵x2-4x+6=(x-2)2+2≥2, 又f(x)=log2u在(0,+∞)上是增函数, ∴log2(x2-4x+6)≥log22=1. ∴函数的值域是[1,+∞).
[一点通] 解决与对数函数有关的定义域问题时,经常 需要考虑的问题 1 (1) 中 f(x)≠0; f(x) (2) 2n f(x)(n∈N*)中 f(x)≥0;
(3)logaf(x)(a>0,且 a≠1)中 f(x)>0; (4)logf(x)a 中 f(x)>0 且 f(x)≠1; (5)[f(x)]0 中 f(x)≠0; (6)实际应用问题中自变量的取值要有实际意义.
8.求下列函数的值域: (1)y=log2(x +4); (2)y=log1(3+2x-x ).
2
2
2
(2)设 u=3+2x-x2,则 u=-(x-1)2+4≤4.
2+4)的定义域为R. 解:(1) y = log ( x ∵u >0 , ∴ 0 < u≤4. 2 2+4)≥log 又 y= log1u 在 (0 ,+ ∞)上是减函数, ∵ x 2+ 4≥4 ,∴ log ( x 2 24=2.

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A必修1

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A必修1

[答案] A [解析] ∵函数y=logax的图象一直上升, ∴函数y=logax为单调增函数,∴a>1,故选A.
3.下列函数中是对数函数的是 ( A.y=log1 x
4 4
)
B.y=log1 (x+1) D.y=log1 x+1
4
C.y=2· log1 x
4
[答案] A
[解析] 形如y=logax(a>0,且a≠1)的函数才是对数函数,
[规律总结] 对于对数概念要注意以下两点:
(1)在函数的定义中,a>0且a≠1. (2)在解析式y=logax中,logax的系数必须为1,真数必须为x, 底数a必须是大于0且不等于1的常数.
跟踪练习
指出下列函数中,哪些是对数函数? ①y=5x;②y=-log3x;③y=log0.5 x;④y=log3 x;⑤y
预习自测
1.下列函数是对数函数的是 ( A.y=2+log3x B.y=loga(2a)(a>0,且 a≠1) C.y=logax2(a>0,且 a≠1) D.y=lnx )
[答案] D
[解析] 判断一个函数是否为对数函数,其关键是看其是
否具有“y=logax”的形式,A,B,C全错,D正确.
2. 函数 y=logax 的图象如图所示, 则实数 a 的可能取值为 ( ) A.5 1 B.5 1 C.e 1 D.2
2.对数函数的图象和性质 一般地,对数函数y=logax(a>0,且a≠1)的图象和性质如下表 所示:
a>1
0<a<1
图象
a> 1
0<a<1
,+∞) 定义域:(0 ______ R 值域:______
性质
(1,0) ,即当 x=1 时,y=0 图象过定点______ 增函数 在(0,+∞)上是______ 减函数 在(0,+∞)上是______

2.2.2对数函数及其性质的应用第2课时课件(人教A必修一)

2.2.2对数函数及其性质的应用第2课时课件(人教A必修一)

数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
3 解析: 当 a>1 时,loga <0<1,成立. 4 当 0<a<1 时,y=logax 为减函数. 3 3 由 loga <1=logaa,得 0<a< . 4 4 3 综上所述,0<a< 或 a>1. 4 答案: B
当x∈(2,4)时,u=4x-x2是减函数.
又∵y=log3u是增函数, ∴函数y=log3(4x-x2)的增区间为(0,2]. 答案: (0,2]
数学 必修1
第二章ห้องสมุดไป่ตู้基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
4.已知函数f(x)=loga(3+2x),g(x)=loga(3-2x)(a>0,且
3 解得x的取值范围是0,2 .
解得x的取值范围是
3 3 - , 0 0 , . 综上所述:当 a >1 时 x 的取值范围是 2 , 2 3 当0<a<1时x的取值范围是-2,0 .
答案: A
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
3 2.若loga <1(a>0,且a≠1),则实数a的取值范围是( 4
3 A.0,4 3 B.0,4 ∪(1,+∞)
)
C.(1,+∞)
D.(0,1)
数学 必修1
第二章 基本初等函数(Ⅰ)
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为自变量,可以得到哪两个函数?这两个函数相同吗?
思考2:设 2 y ,x、y分别为自变量可以得到哪两个函数?这两个函
数相同吗?
s 和s=3t 得到 t 3 x
y 2 x 和x log2 y
y log 2 x
x 这时:我们就说 y 2 和y log2 x互为反函数。
下面我们从图像的角度来观察一下反函数之间的关系:
变式
求下列函数的定义域:y=log2x-1 3x-2.
2 x>3, 即 1 x>2, x ≠1 ,
3x-2>0, 解:函数中的 x 需满足2x-1>0, 2x-1≠1, 2 ∴x>3且 x≠1.
2 故原函数的定义域为xx>3且x≠1
课后练习
课后习题
2
作图步骤: ① 列表 ② 描点
③ 连线
作y=log2x的图象
列 表 描 点 连 线 x 1/4 1/2 1 2 4 …
y=log2x
y 2 1
0
11 42
-2
-1
0
1
2

1
2 3
4
x
-1 -2
y
认真观察函数 y=log2x 的图象填Biblioteka 下表2 1 0 -1 -2
1 1 4 2
1 2 3
4
x
图象位于y轴右方 图象向上、向下无限延伸
自左向右看图象逐渐上升
定义域 : 值 域 :
( 0,+∞) R
在(0,+∞)上是: 增函数
列 表 y log2 x …
2
x

1/4
1/2
1
2
4
… …
y log1 x …
-2
2
-1
1
0
0
1
-1
2
-2

描 点 连 线
y 2 1
0
11 42
1
2 3
4
x
这两个函数 的图象有什 么关系呢?
-1 -2
对数函数的概念
一般地,函数y = (a>0,且a≠1) 叫做对数函数.其中 x是自变量.函数的定义 域是(0,+∞).
注意:
1.对数函数对底数的限制条件:a>0,且a≠1
2.函数的定义域是(0,+∞).
对数函数的图像与性质
在同一坐标系中用描点法画出对数函数
y lo g 2 x 和 y lo g 1 x 的图象。
a>1
图 象 性 质
y 0 (1,0) x
0<a<1
y
0
(1,0)
x
定义域 : ( 0,+∞) 值 域 : R 过定点(1 ,0), 即当x =1时,y=0 在(0,+∞)上是增函数 在(0,+∞)上是减函数
当x>1时,y>0 当x=1时,y=0 当0<x<1时,y<0
当x>1时,y<0 当x=1时,y=0 当0<x<1时,y>0
2.2 对数函数
2.2.2 对数函数及其性质
问题1:我们研究指数函数时,曾讨论过细胞分裂问题.某种 细胞分裂时,有一个分裂成2个,2个分裂成4个,4个分裂 成8个 ……,1个这样的细胞分裂 x次后,得到的细胞个数 y 和x 的函数关系是什么?
问题2:反过来,1个细胞经过多少次分裂,大约可以等于1 万个、10万个…细胞? 问题3:已知细胞个数y,如何求分裂次数x?
5.1 5.9 loga 5.1 loga 5.9
当0 a 1时,函数 y loga x在( 0, )是减函数。
5.1 5.9 loga 5.1 loga 5.9
3 例 3.比较 log43,log34,log4 的大小. 3 4
反函数
思考1:设某物体以3m/s的速度作匀速直线运动,分别以位移s和时间t
如图示:
y
y 2x
y=x
A(m,n)
y log2 x
1
0 1
B(n,m)
x
(1)同底的指数函数与对数函数互为反函数; (2)反函数的图像关于y=x对称; (3)反函数上对称点的横纵坐标互换;定义域、值域互换。
1. 两个同底数的对数比较大小的一般步骤:
①确定所要考查的对数函数; ②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的增减性判断两 对数值的大小.
1.8与 log
0.3
2.7
解法2:考察函数y=log
解:∵0.3< 1, ∴函数y=log ∵1.8<2.7
0.3
0.3
x
,
x ,在区间(0,+∞)上是减函数;
2.7
∴ log
0.3
1.8> log
0.3
(3) log a 5.1, log a 5.9(a 0, a 1)
解:当a 1时,函数y loga x在( 0, )是增函数。
x
解:∵2 > 1,
∴函数y=log 2 x 在区间(0,+∞) 上是增函数; ∵3.4<8.5 ∴ log23.4< log28.5
∴ log23.4< log28.5
例2 比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2)log (2) 解法1:画图找点比高低
0.3
.
例2 比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2) log (1) 解法1:画图找点比高低 log28.5 log23.4
0
0.3
1.8与 log
0.3
2.7
y
y log2 x
解法2: 分析:利用对数函数的单调性 考察函数y=log 2 x ,
1
3.4
8.5
对数函数的定义域
例1 求下列函数的定义域: 2 (a 0, 且a 1) (1)y loga x 解: ∵x2 ﹥0 即x ≠ 0 ∴函数y= logax2 的定义域是{x| x ≠ 0} (2) y loga (4 x) 解:∵ 4-x﹥0即x﹤4
∴函数y=loga (4-x) 的定义域是{x|x﹤4 }
关于x轴对称
认真观察函数
y 2
1 11
42
y log 1 x
的图象填写下表 图象位于y轴右方
图象向上、向下无限延伸
自左向右看图象逐渐下降
2
0 -1 -2
1 2 3
4
x
定义域 : ( 0,+∞)
值 域 :
R
在(0,+∞)上是: 减函数
对数函数的基本性质
对数函数y=logax (a>0,且a≠1)的图象与性质
相关文档
最新文档