高等数学基础模拟题

合集下载

高数基础考试题库及答案

高数基础考试题库及答案

高数基础考试题库及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. x+2答案:A2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x+1答案:B4. 函数y=e^x的不定积分为:A. e^x + CB. e^(-x) + CC. ln(x) + CD. x^e + C答案:A5. 曲线y=x^3在点(1,1)处的切线斜率为:A. 1B. 3C. 9D. -3答案:B二、填空题(每题3分,共15分)1. 函数f(x)=x^3-3x的极值点为______。

答案:x=-1或x=22. 函数y=ln(x)的定义域为______。

答案:(0, +∞)3. 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上一定有______。

答案:最大值和最小值4. 曲线y=x^2+2x+1与x轴的交点个数为______。

答案:05. 微分方程dy/dx=2x的通解为______。

答案:y=x^2+C三、解答题(每题10分,共20分)1. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=3。

计算f(1)=0,f(3)=0,f(2)=-2,因此最大值为0,最小值为-2。

2. 求极限lim(x→∞) (x^2-3x+2)/(x^3+2x^2-5x)。

解:将分子分母同时除以x^3,得到lim(x→∞) [(1-3/x+2/x^2)/(1+2/x-5/x^2)],当x趋向于无穷大时,极限值为1/1=1。

四、证明题(每题15分,共30分)1. 证明函数f(x)=x^2在区间(-∞,0)上是减函数。

高等数学模拟试题15套

高等数学模拟试题15套

= a-b
C. lim xn = a n yn b
( ) D. lim n
xn × yn
= ab
3.当 x 0 时,下列量中,无穷小的为
A. e x sin x
B. e xcosx
1
C. e x sin x
()
1
D. e x cos x
4.下列描述中错误的是 A.无穷间断点属于第一类间断点 B.初等函数在定义域是连续的 C.闭区间上的连续函数一定有最大值与最小值
次方程 y¢+ p( x) y = q( x)的通解为
()
A. y = yc + yd
B. y = yc + Cyd
C. y = Cyc - yd
二.计算题(本大题共 5 小题,每小题 10 分,共 50 分)
21.求极限
lim
p x(
- arctan
x)
2 x®+¥
D. y = Cyc + yd
3
C. -F (sin x) + C
D. F (sin x) + C
ò 13.
(
1 sin 2
x
+1)d
sin
x
=
A. - cot x + x + C B. - cot x + sin x + C
C. - 1 + sin x + C sin x
()
D. - 1 + x + C sin x
1
14.根据定积分的性质,下列各式中成立的是
5.设
f
(x)
=
(x2
-1)(x x3 - x

高等数学基础样题(试题及答案)

高等数学基础样题(试题及答案)

高等数学基础样题(试题及答案)一、单项选择题1下列各函数对中,( C )中的两个函数相等.A.2)()(x x f =,x x g =)(B.2)(x x f =,xx g =)(C.3ln )(x x f =,xx g ln 3)(= D.1)(+=x x f ,11)(2−−=x x x g ⒉设函数)(x f 的定义域为),(+∞−∞,则函数)()(x f x f −+的图形关于( C )对称.A.坐标原点B.x 轴C.y 轴D.x y =3.设函数)(x f 的定义域为),(+∞−∞,则函数)()(x f x f −−的图形关于( A )对称.A.坐标原点 B.x 轴 C.y 轴 D.x y =4.下列函数中为奇函数是( B )A.)1ln(2x y += B.xx y cos = C.2xx a a y −+=D.)1ln(x y +=5.下列函数中为偶函数是( D )A.xx y sin 1)(+= B.xx y 2= C.xx y cos = D.)1ln(2x y +=6.下列极限存计算不正确的是( D ).A.12lim 22=+∞→x x xB.0)1ln(lim 0=+→x x C.0sin lim =∞→xxx D.01sinlim =∞→xx x 7.当0→x 时,变量( C )是无穷小量.A. x x sinB. x 1C. xx 1sinD.2)ln(+x 8.当0→x 时,变量( D )是无穷小量.(A) x 1(B) xx sin (C)x2(D)1)ln(+x 9.当0→x 时,变量( C )是无穷小量.(A) x 1(B) xx sin (C)1e −x (D)2x x 10.当0→x 时,下列变量中( D )是无穷小量.(A) x 1sin (B) xxsin (C) 21e (D)1)ln(2+x 11.当0→x 时,下列变量中( A )是无穷大量.(A) x x 21+ (B) x (C)0.001x (D)x−212.设)(x f 在0x 可导,则=−−→hx f h x f h 2)()2(lim 000( D ).A.)(20x f ′−B.)(0x f ′C. )(20x f ′ D.)(0x f ′−13.设)(x f 在0x 可导,则=−−→hx f h x f h )()2(lim000( A ).A.)(20x f ′− B.)(0x f ′ C. )(20x f ′ D.)(0x f ′−14.设)(x f 在0x 可导,则=−−→hx f h x f h 2)()(lim000( C ).A.)(210x f ′B.)(20x f ′C.)(210x f ′− D.)(20x f ′−15.设x x f e )(=,则=∆−∆+→∆xf x f x )1()1(lim 0(B ).(A)e 2(B)e (C)e41(D)e 2116.若)(x f 的一个原函数是x1,则=′)(x f ( D ).A.xln B. 21x− C. x 1 D.32x 17.若x x f cos )(=,则=′∫x x f d )(( B ).A.c x +sinB.cx +cos C.c x +−sin D.c x +−cos 18.若x x f sin )(=,则=′∫x x f d )(( A ).A.c x +sinB.cx +cos C.cx +−sin D.cx +−cos 19.若∫+=c x F x x f )(d )(,则∫=x x f xd )(ln 1( B ). (A))(ln x F (B)cx F +)(ln (C)c x F x+)(ln 1(D)cxF +)1(20.若∫+=c x F x x f )(d )(,则∫=x x f xd )(1(B ). (A))(x F (B)cx F +)(2(C)c x F x+)(1(D)c x F +)(2121.下列无穷限积分收敛的是( B ).A.∫+∞1d 1x x B.∫+∞−0d e x xC.∫+∞1d 1xxD.∫+∞12d 1x x 22.下列无穷限积分收敛的是( C ).(A)xx d 11∫∞+(B)x xd 11∫∞+(C)xx d 1134∫∞+(D)xx d sin 1∫+∞23.下列无穷限积分收敛的是( D ).(A)∫+∞1d 1x x(B)∫+∞0d e xx(C)∫+∞1d 1xx(D)∫+∞12d 1x x 24.下列无穷限积分收敛的是( A ).(A)∫+∞13d 1xx (B)∫+∞cos xdx(C)dxe x ∫+∞13(D)∫+∞1d 1x x 25.下列无穷限积分收敛的是( B ).(A)∫+∞0xd e x(B)dx x ∫+∞021(C)dx x∫+∞11(D)∫+∞1d 1xx26.下列等式中正确的是( B ).(A)d d ()arctan 112+=x x x (B)d d ()12x xx =−(C)x x x d 2)2ln 2(d =(D)d d (tan )cot x x x=27.下列等式中正确的是( C ).(A)dx xx 1)1(d 2−=(B)dxx x2)1(d =(C)xx xd 2)2ln 2(d =(D)d d (tan )cot x x x =28.下列等式成立的是( A ).(A))(d )(d dx f x x f x =∫(B) )(d )(x f x x f =′∫(C))(d )(d x f x x f =∫(D))()(d x f x f =∫29.函数2e e xx y −=−的图形关于( A)对称.(A)坐标原点(B)x 轴(C)y 轴(D)xy =30.函数222xx y +=−的图形关于( A)对称.(A)坐标原点(B)y 轴(C)x 轴(D)x y =31.在下列指定的变化过程中,( C )是无穷小量.(A))(1sin∞→x xx (B))0(1sin→x x(C))0()1ln(→+x x (D))(e 1∞→x x32.在下列指定的变化过程中,( A )是无穷小量.(A))0(1sin→x xx (B))(1sin∞→x xx (C))0(ln →x x (D))(e ∞→x x 33.设)(x f 在0x 可导,则=−−→hx f h x f h 2)()2(lim 000( C ). (A))(0x f ′(B))(20x f ′(C))(0x f ′−(D))(20x f ′−35.下列积分计算正确的是( D ).(A)0d sin 11=∫−x x x (B)1d e 0=∫∞−−x x (C)πd 2sin 0=∫∞−x x (D)d cos 11=∫−x x x 36.下列积分计算正确的是( D ).(A)0d sin 11=∫−x x x (B)1d e 0=∫∞−−x x (C)πd 2sin 0=∫∞−x x (D)d cos 112=∫−x x x 37.下列积分计算正确的是( B ).(A)0d )(11=+∫−−x e e x x (B)0d )(e 11=−∫−−x e x x (C)0d 112=∫−x x (D)0d 11=∫−x x38.=∫x x xf xd )(d d 2( A ). (A))(2x xf (B)xx f d )(21(C))(21x f (D)xx xf d )(239.函数622+−=x x y 在区间)5,2(内满足( D ).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升40.函数62−−=x x y 在区间)55(,−内满足( A ).A.先单调下降再单调上升 B.单调下降C.先单调上升再单调下降 D.单调上升41.函数362−−=x x y 在区间)4,2(内满足( A ).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升42.函数322−+=x x y 在区间)4,2(内满足( D ).A.先单调下降再单调上升B.单调下降C.先单调上升再单调下降D.单调上升43.当k=( C )时,<+≥+=0,0,1)(2x k x x x x f在点0=x 处连续 (A)-1(B)0(C)1(D)244.函数 =≠=0,0,5sin )(x k x xxx f 在0=x 处连续,则k=( C )(A)1(B)5(C) 51(D)045.下列函数中,在),(∞+−∞ 内是单调减少的函数是( A )A.x21)(=y B.3x y = C.x y sin = D.2x y =(二)填空题1.函数24)(2−−=x x x f 的定义域是 ),2(]2,(∞+−−∞U .2.函数x x x f −+−=4)2ln(1)(的定义域是 ]4,3()3,2(U − .3.函数x x x f −−=5)3ln()(的定义域是)5,3( .4.函数xx x f −−=6)2ln()(的定义域是)6,2( .5.函数)1ln(92−−=x x y 的定义域是 ]3,2()2,1(U.6.函数24)1ln(x x y −+=的定义域是)2,1(− .7.函数x x y ++−=1)3ln(1的定义域是 )3,2()2,1[U − .8.函数xx y −−+=21)5ln(的定义域是)2,5(− .9.函数12++=x x y 的间断点是1−=x .10.函数3322−−−=x x x y 的间断点是 3=x .11.函数≤>−=0sin 01x x x x y 的间断点是 0=x .12.函数≥+<=0,10,1sin )(2x x x xx x f 的间断点是 0=x .13.若函数 ≥+<+=00)1()(21x k x x x x f x ,在0=x 处连续,则=k e .14.若函数 ≥+<+=00)1()(31x k x x x x f x ,在0=x 处连续,则=k e .15.函数 =≠−−=1111)(2x a x x x x f ,若)(x f 在),0(+∞内连续,则=a 2 .16.函数 =≠=0,,2sin )(x k x xxx f ,在0=x 处连续,则=k 2 .17.已知函数x x x f +=+2)1(,则=)(x f .18.已知函数72)1(2+−=−x x x f ,则=)(x f 62+x .19.若函数>≤+=0201)(2x x x x f x ,则=)0(f 1.20.若函数 >+≤−=0103)(2x e x x x f x,则=)0(f -3 .21.曲线xx f 1)(=在)1,1(处的切线斜率是 21−.22.曲线1)(3+=x x f 在)2,1(处的切线斜率是 3 .23.曲线2)(2+=x x f 在)3,1(处的切线斜率是 2 .24.曲线1)(+=x x f 在)2,1(处的切线斜率是21 .25.曲线2)(+=x x f 在)2,2(处的切线斜率是41 .26.曲线2)(+=x x f 在2=x 处的切线斜率是41 .27.曲线x x f sin )(=在)1,2(π处的切线斜率是 0 .28.曲线x x f sin )(=在)0,(π处的切线斜率是-1 .29.曲线1)(+=x e x f 在)2,0(处的切线斜率是1.30.函数)1ln(2x y +=的单调增加区间是),0(∞+ .31.函数x y arctan =的单调增加区间是),(∞+−∞.32.函数)1ln(2x y +=的单调增加区间是),0(∞+ .33.函数1)1(2++=x y 的单调增加区间是),1(∞+− .34.函数12−=x y 的单调增加区间是 ),0(∞+ .35.函数1)1(2++=x y 的单调减少区间是 )1,(−−∞ .36.函数2e )(x xf −=的单调减少区间是 ),0(∞+ .37.函数12−=x y 的单调减少区间是)0,(−∞ .38.函数2)2(2+−=x y 的单调减少区间是 )2,(−∞ .39.若∫+=c x x x f sin d )(,则=′)(x f x sin −.40.=∫−x x d e d 2xx d e 2−.41.若∫+=c x x x f sin d )(,则=′)(x f x sin −.42.若∫+=c x x x f 2cos d )(,则=)(x f x 2sin 2−.43.若∫+=c x x x f cos d )(,则=)('x f x cos −.44.若∫+=c x x x f cos d )(,则=)(x f x sin −.45.若∫+=c x x x f tan d )(,则=)(x f x2cos 1.46.若42)1(2++=+x x x f ,则=)(x f 32+x.47.已知x x f 2ln )(=,则=)]'2([f 0 .48.=′∫x x d )(sin c x +sin .49.=∫x x dx d d sin 22sin x .50.=∫x dx d x d 3223x .51若x 1是)(x f 的一个原函数,则=)('x f 32x .52.函数2)1(−=x y 的驻点是 1=x .三、计算题(一)计算极限1.1.计算极限4586lim 224+−+−→x x x x x .解:32)1)(4()2)(4(lim 4586lim4224=−−−−=+−+−→→x x x x x x x x x x1.2.计算极限4532lim221+−−+→x x x x x .解:34)1)(4()1)(3(lim 4532lim 1221−=−−−+=+−−+→→x x x x x x x x x x 1.3.计算极限)1sin(3221lim +−−−→x x x x .解:4)1sin()3)(1()1sin(32lim lim 121−=+−+=+−−−→−→x x x x x x x x 1.4.计算极限1)1sin(lim 21−+−→x x x .解:21)1)(1()1sin(lim 1)1sin(lim 121−=−++=−+−→−→x x x x x x x 1.5.计算极限xxx 5sin 6sin lim 0→.解:5655sin lim 66sin lim5655sin 66sin 56lim 5sin 6sin lim 0000=•=•=→→→→x x x xxx x x x x x x x x 1.6.计算极限xxx 2sin 3sin lim0→.解:2322sin lim 33sin lim2322sin 33sin 23lim 2sin 3sin lim0000=•=•=→→→→xx x xx x x x x x x x x x 1.7.计算极限32)3sin(lim 23−++−→x x x x .解:41)1)(3()3sin(lim 32)3sin(lim323−=−++=−++−→−→x x x x x x x x 1.8.计算极限32)3sin(lim 23−−−−→x x x x .解:41)1)(3()3sin(lim 32)3sin(lim 323=+−−=−−−−→−→x x x x x x x x 1.9.计算极限)3sin(9lim 23−−−→x x x .解:6)3sin()3)(3(lim )3sin(9lim323=−+−=−−−→−→x x x x x x x 1.10.计算极限)3sin(9lim 23−−−→x x x .解:6)3sin()3)(3(lim )3sin(9lim323=−+−=−−−→−→x x x x x x x 1.11.计算极限x xx 2sin lim 0→.解:2121sin lim 2sin lim 00=•=→→x x x x x x1.12.计算极限65)2sin(lim22+−−→x x x x .解:1)3)(2()2sin(lim 65)2sin(lim 222−=−−−=+−−→→x x x x x x x x (二)设定求值2.1.设22sin x x y x+=,求y ′.解:由导数四则运算法则得4224222sin 22ln 2cos )2(sin 2)2(sin x x x x x x x x x x x x y xx x x −−+=+−′+=′312sin 22ln 2cos x x x x x x x +−−+=2.2.设x y e sin 2=,求′y .解:由导数四则运算法则得)e 2sin(e e cos e sin e 2x x x x x y ==′2.3.设2x xe y =,求′y .解:由导数四则运算法则得2222xx e x e y +=′2.4.设x x y 33ln +=,求′y .解:由导数四则运算法则和复合函数求导法则得)'(ln )'()'ln (3333x x x x y +=+=′xx x x x x 22ln 323)'(ln ln 323+=+=2.5.设2sin x x y −=,求′y .解:由导数四则运算法则和导数基本公式得)'(sin )'()'sin (22x x x x y −=−=′222cos 221)'(cos 21x x xx x x−=−=2.6.设x e x y 5ln −+=,求′y .解:由导数四则运算法则和复合函数求导法则得)'()'(ln )'(ln 55x x e x e x y −−+−+=′x x e xx e x 5551)'5(1−−−=−+=2.7.设x e x y cos ln +=,求′y .解:由导数四则运算法则和复合函数求导法则得x x e e xy sin 1−=′2.8.设2sin x e y x −=,求′y .解:由导数四则运算法则和导数基本公式得x xe x e y x x 2cos sin 2sin −=−=′ 2.9.设x x y 35ln +=,求′y .解:由导数四则运算法则和复合函数求导法则得)'(ln )'()'ln (3535x x x x y +=+=′xxx x x x 2424ln 35)'(ln ln 35+=+=2.10.设2cos 3x y x −=,求′y .解:由导数四则运算法则和复合函数求导法则得)'(cos )'3()'cos 3(22x x y x x −=−=′222sin 23ln 3)'(sin 3ln 3x x x x x x +=+=2.11.设x x e y x ln tan −=,求′y .解:由导数四则运算法则得xx e x e y x x1cos tan 2−+=′2.12.设x y 2cos ln =,求′y .解:由导数四则运算法则得xxx x x y 22cos 2sin cos sin cos 2−=−=′2.13.设x x x y ln tan 2+=,求′y .解:由导数四则运算法则得x x x x x x x x xy ++=•++=′ln 2cos 11ln 2cos 12222.14.设x x x y ln cos ln 2+=,求d y .解:由微分运算法则得)ln (d )cos (ln d )ln cos (ln d d 22x x x x x x y +=+=)(ln d )(d ln )(cos d cos 122x x x x x x ++= xx x x x x x x x d 1d ln 2d cos sin 2⋅++−=xx x x x d )ln 2tan (++−=2.15.设52x cos x y −=,求y d .解:由微分运算法则和微分基本公式得)(d )(cos d )(cos d d 5252x x x x y −=−=dx x x xd 45)(cos cos 2−=dxx x x )5sin cos 2(4+−=2.16.设x x y 3e cos +=,求y d .解:由微分运算法则和微分基本公式得)3(d )e (cos d )3e (cos d d x x x x y +=+=x x x x ln3d 3)e (d e sin +−=x x x x x ln3d 3d e sin e +−=xx x x ln3)d 3e sin e (+−=2.17.设53x cos x y −=,求y d .解:由微分运算法则和微分基本公式得dxx x x d x y 4253d 5)(cos xd cos 3)((cos d d −=−=)dxx x x )5cos sin 3(42+−=2.18.设x x e y 3sin +=,求y d .解:由微分运算法则和微分基本公式得)3(d )(d )3(d d sin sin x x x x e e y +=+=dx x d e x x 3ln 3)(sin sin +=dxx e x x )3ln 3cos (sin +=2.19.设x e y x ln cos +=,求y d .解:由微分运算法则和微分基本公式得)(ln d )(d )ln (d d cos cos x e x e y x x +=+=dx x x d e x 1)(cos cos += dxx x e x )1sin (cos +−=2.20.设y y x =()是由方程yy x 2xsin 2=确定的函数,求'y .解:等式两端求微分得左端)(sin )(sin )sin (d 222y d x x yd y x +==ydy x ydx x cos sin 22+=右端2222x (d y xdyydx y −==由此得2222cos sin 2y xdyydx ydy x ydx x −=+整理后得xxy y yxy y y d 2cos x sin 22d 222+−=即xy y yxy y y 2cos x sin 22'222+−=2.21.设y y x =()是由方程y x y e cos =确定的函数,求d y .解:等式两端求微分得左端yx x y x y d cos )(cos d )cos (d +==yx x x y d cos d sin +−= 右端y y y d e )e (d ==由此得yy x x x y y d e d cos d sin =+−整理后得xx xy y yd e cos sin d −=2.22.设y y x =()是由方程3y e e x y +=确定的函数,求d y .解:等式两端求微分得 左端y e e y y d )(d ==右端dy y dx e y d y x x x 2333)d()e ()e (d +=+=+=由此得dy y dx e dy e x y 23+=整理后得x ye y y xd 3e d 2−=(三)计算不定积分3.1.计算不定积分x x x d cos ∫.解:由换元积分法得cx x x x xx +==∫∫sin 2)d(cos 2d cos 3.2.计算不定积分∫x xxd e21.解:由换元积分法得c u x x x uu x x+−=−=−=∫∫∫e d e )1(d e d e 121cx +−=1e 3.3.计算不定积分∫x xd ex.解:由换元积分法得ce u x x xu u x x+===∫∫∫2d e 2)(d e 2d e3.4.计算不定积分∫x xx d ln 1.解:由换元积分法得cx c u du u x d x x x x +=+===∫∫∫ln ln ln 1)(ln ln 1d ln 13.5.计算不定积分∫x x d x 1sin 2.解:由换元积分法得c x c u udu xd x x x +=+=−=−=∫∫∫1cos cos sin 1(1sin d x 1sin23.6.计算不定积分∫x x d x 1cos 2.解:由换元积分法得cx c u x d x x x +−=+−=−=∫∫1sin sin )1(1cos d x 1cos23.7.计算不定积分∫x x x d 3cos .解:由分部积分法得∫∫−=x x x x x x x d 3sin 313sin 31d 3cos c x x x ++=3cos 913sin 31(四)计算定积分4.1.计算定积分∫e1d ln x x x .解:由分部积分法得∫∫−=e 12e12e1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=−=∫x x 4.2..计算定积分∫e12d ln x x x . 解:由分部积分法得∫∫−=e 13e13e12)d(ln 31ln 3d ln x x x x x x x 9192e d 313e 3e 123+=−=∫x x 4.3.计算定积分∫e1d ln x x . 解:由分部积分法得∫∫−=e 1e1e1)d(ln ln d ln x x x x x x 1d e e1∫=−=x4.4.计算定积分∫10d x xe x .解:由分部积分法得dx e xex xe x x x∫∫−=10101d 1e 10=−=xe4.5.计算定积分∫e12d ln x x x. 解:由换元积分法得e x e x x e x d x x x x x x 2111d 11)(ln 1ln d ln e1e 12e 1e1e12−=−=+−=+−=∫∫∫4.6.计算定积分∫+e1d ln 2x xx. 解:由换元积分法得∫∫∫=++=+32e1e1d )ln 2()d ln 2(d ln 2u u x x x x x 252322==u4.7.计算定积分∫e1d ln x xx .解:由分部积分法得ex e x xe x d x x x x xx 2442d 122)(ln 2ln 2d ln e1e1e1e1e1−=−=−=−=∫∫∫四、应用题4.1求曲线上的点,使其到点的距离最短.解:曲线上的点到点的距离公式为22)3(y x d +−=d 与2d 在同一点取到最大值,为计算方便求2d 的最大值点,将代入得x x d +−=22)3(令 x x x D +−=2)3()(求导得1)3(2)(+−=′x x D 令0)(2=′d 得25=x .并由此解出210±=y ,即曲线上的点)210,25(和点)210,25(−到点的距离最短.y x 2=A (,)30y x 2=A (,)30y x 2=y x 2=A (,)304.2在抛物线x y 42=上求一点,使其与x 轴上的点的距最短.解:设所求点 ),(y x P =,则y x ,满足 x y 42= 点P 到点A 的距离之平方为x x y x L 4)3()3(222+−=+−=令04)3(2'=+−=x L 解得1=x 是唯一驻点,易知1=x 函数的极小点, 当1=x 时,2=y 或2−=y ,所以满足条件的有两个点)2,1( 和)2,1(− 。

高等数学模拟试题1.doc

高等数学模拟试题1.doc

3
3
3
B. i j k
1
1
1
C.
i
j
k
3
3
3
D. i j k
i jk 解析: a b c 3 1 4 i j k
101
a0 a a
1
1
1
i
j
k ,应选 C。
3
3
3
4. 幂级数
ln n
1
n
x
的收敛区间是(

n1 n 1
A. [ 1,1]
B. ( 1, 1)
C. [ 1, 1)
D. ( 1, 1]
*5. 按照微分方程通解的定义, y" sin x 的通解是(
f (u )
1
uu
由 <1>、 <2>得:
a
f ( x2
1
a 2 dx x2 ) x
1a
a 2 dt
f (t )
21
tt
a
ft
1
a 2 dt tt
a
f (t
1
a 2 dt )
tt
a
a 2 dx
f (x )
1
xx
26.
设 f ( x) 为连续函数,且
f ( x)
x3
1
3x f ( x)dx ,求 f ( x) 。
dz .
dt
3. 求微分方程 xy y x cosx 的通解 .
4. 求幂级数
(
n1
1) n n2
1
xn
的收敛域
.
答案
一、填空题:
1. 分析 初等函数的定义域,就是使函数表达式有意义的那些点的全体

高等数学模拟试题

高等数学模拟试题

高等数学模拟试题一、选择题(每题4分,共40分)1. 函数f(x)=\( e^x - 1 \)的导数是:A. \( e^x \)B. \( e^x - 1 \)C. \( 1 \)D. \( x \)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 2x}{x} \)的值是:A. 1B. 2C. 4D. 83. 曲线y=\( x^2 \)在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. 44. 已知\( \int_0^1 x^2 dx \)的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)5. 级数\( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)的和是:A. 1B. 2C. 3D. 46. 函数f(x)=\( \ln(x+1) \)的定义域是:A. \( (-\infty, -1) \)B. \( (-1, +\infty) \)C. \( [0, +\infty) \)D. \( (0, 1) \)7. 函数f(x)=\( x^3 - 3x^2 + 2 \)的极值点是:A. x=0B. x=1C. x=2D. x=38. 若\( \lim_{x \to 1} [f(x) - f(1)] = 0 \),则f(x)在x=1处:A. 可导B. 连续C. 不连续D. 无定义9. 函数f(x)=\( \frac{x^2 - 1}{x - 1} \)的间断点是:A. x=1B. x=-1C. x=0D. x=210. 函数f(x)=\( \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( 4\pi \)D. \( \frac{\pi}{2} \)二、填空题(每题3分,共15分)11. 若\( y = \ln(x^2 + 1) \),则\( \frac{dy}{dx} \)等于______。

成人高考数学基础模拟试题

成人高考数学基础模拟试题

成人高考数学基础模拟试题1. 已知函数 f(x) = a(x-2)^2 + b 在 x = 3 处有极值点 (3, -2),求该函数的解析式。

解析:由题意,极值点 (3, -2) 满足 f'(3) = 0,即 f'(x) = 2a(x-2)(1) = 0,解得 x = 3。

代入函数 f(x) 得 f(3) = -2,由此可得下面方程组:f(3) = -2 => a(3-2)^2 + b = -2f'(3) = 0 => 2a(3-2) = 0解方程可得 a = 2,代入第一个方程可求得 b = -6。

因此,函数 f(x)的解析式为 f(x) = 2(x-2)^2 - 6。

2. 已知等差数列 a1, a2, a3,前三项和为 6,若 a1, a3, a5 的和为 12,则求 a1 和公差 d。

解析:设等差数列的公差为 d,则有 a2 = a1 + d,a3 = a1 + 2d,a4 = a1 + 3d,a5 = a1 + 4d。

根据题意,前三项和为 6,即 a1 + a2 + a3 = 6,代入 a2 和 a3 的表达式可得:a1 + (a1 + d) + (a1 + 2d) = 63a1 + 3d = 6a1 + d = 2 --(1)同时,a1, a3, a5 的和为 12,即 a1 + a3 + a5 = 12,代入 a3 和 a5 的表达式可得:a1 + (a1 + 2d) + (a1 + 4d) = 123a1 + 6d = 12a1 + 2d = 4 --(2)将方程 (1) 和方程 (2) 组成方程组,解方程可得 a1 = 2,d = 1。

因此,等差数列的首项和公差分别为 a1 = 2,d = 1。

3. 解方程组:2x + 3y = 104x - 5y = 8解析:可使用消元法解方程组。

首先将两个方程相加,消去x 变量:(2x + 3y) + (4x - 5y) = 10 + 86x - 2y = 183x - y = 9 --(1)然后将两个方程相乘,消去 y 变量:(2x + 3y) * (4x - 5y) = (10) * (8)8x^2 + xy - 15y^2 = 808x^2 - (9x - 9)^2 = 80 --(2)将方程 (2) 展开并化简得:8x^2 - 81x^2 + 162x - 81 = 80-73x^2 + 162x - 161 = 0解方程可得 x = -1,x = 2/73。

高等数学基础模拟题答案

高等数学基础模拟题答案

高等数学基础模拟题一、单项选择题(每小题3分,本题共 15分)1.设函数f(x)的定义域为(, ),则函数f(x)f( x)的图形关于( D )对称.(A) y x (B) x 轴 (C) y 轴(D)坐标原点2.当x0 时,变量( C )是无穷小量.(A) 1(B) sinx x x x (C) e x1 (D)x 23.设f(x) e x,则lim f(1 x) f(1) (B ). x 0 x(A) 2e (B) e (C) 1e (D) 1e 424. dxf(x 2)dx (A ).dx(A) xf(x 2) (B) 1f(x)dx1f(x) 2(C) (D) xf(x 2)dx25.下列无穷限积分收敛的是(B ). (A) e xdx(B) 0 e xdx(C) 1 (D)1dx dx1x1 x二、填空题(每小题 3分,共15分)1.函数2.函数9 x 2] .y 的定义域是(1,2)U(2,3 ln(x 1)x 1 x 0yx 的间断点是X=0 .sinx 03.曲线f(x) x 在(1,2)处的切线斜率是1/2. 1 4.函数y(x1)21的单调减少区间是 (-∞,-1). 5.(sinx)dxsinx+c.三、计算题(每小题 9分,共54分)11.计算极限lim sin6x.x0sin5xsinx 2x2.设y,求y.x 23.设y sin2e x,求.4.设是由方程ycosx e y确定的函数,求.5.计算不定积分xcos3xdx.e2lnx6.计算定积分dx.1x四、应用题(本题12分)圆柱体上底的中心到下底的边沿的距离为l,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)当x 0时,证明不等式x arctanx.2高等数学基础模拟题答案一、单项选择题(每小题3分,本题共15 分)1.D2.C3.B4.A5.B二、填空题(每小题 3 分,本题共15分)1.(1,2)(2,3]2. x 03. 14. (,1)5.sinxc2三、计算题(每小题 6 分,共54分)1.解:lim sin6x lim6sin6x6limsin6x6 6x6xx0x0sin5x x05 sin5x 5 lim sin5x 55x x05x2.解:由导数四则运算法则得( sixn2x)x22x(sixn2x)x2coxsx22x ln22xsixn2x2x yx4x4 xcosxx2x ln22sinx 2x1x33.解:y2e x sine x cose x e x sin(2e x)4.解:等式两端求微分得左端d(ycosx) yd(cosx) cosxdyysixndxcoxsdy右端y yyd(e) ed由此得ysixndx coxdsy e y dy 整理后得dy ysixn dxcoxs e y5.解:由分部积分法得xco3sxdx 1xsi3nx 1si3nxdx3 31xsin3x1cos3x c3 96.解:由换元积分法得e2lnx e(2lnx)d(23udu 1 xdx lnx)1 23u2 52 2 23四、应用题(本题12分)解:如图所示,圆柱体高h与底半径r满足h2r2l2圆柱体的体积公式为Vπ2hrl 将r2l2h2代入得Vπ(l2h2)h求导得Vπ(2h2(l2h2))π(l23h2)令V 0得h 3l,并由此解出r 6l.即当底半径r 6l,高h 3l时,圆柱3 3 3 3体的体积最大.五、证明题(本题4分)证明:设F(x) x arctanx,则有F(x)11 x2x21x21当x 0时,F(x) 0 ,故F(x)单调增加,所以当x 0时有F(x)F(0) 0,即不等式x arctanx成立,证毕.4高等数学基础练习题一、单项选择题:(每小题3分,共15 分)1.设函数f(x)的定义域为( , ),则函数f(x) f(x)的图形关于()对称。

高等数学模拟考试题及答案1

高等数学模拟考试题及答案1

《高等数学》模拟试题一一、选择题(本大题共5小题,每小题4分,共20分)1.点1=x 是函数112--=x x y 的 ( )A .连续点B .可去间断点C .跳跃间断点D .无穷间断点2.设)(x f 在),(b a 内可导,则在),(b a 内,0)(>'x f 是)(x f 在),(b a 内单调增加的 ( )A .必要条件B .充分条件C .充分必要条件D .无关条件3.设x x x F cos )(2+=是)(x f 的一个原函数,则)(x f 等于 ( )A .x x cos 2B .2cos xxC .x x sin 33+D .x x sin 2-4.级数∑∞=-11)1(n nn( ) A .绝对收敛 B .条件收敛 C .发散 D .敛散性不确定 5.微分方程'''20y y y ++=的通解为 ( )A .x ceB ..x ce -C .12()x c c x e +D .12()x c c x e -+二、 填空题(本大题共5小题,每小题4分,共20分)1. =--+→121lim21x x x . 2. 设),1cos()(+=x x f 则=')(x f .3. 过点(1,1,1)且与平面2x +3y =1垂直的直线方程为4. 设,1xyz =则=dz . 5. 设⎰-+=xx x dx x f 02,1sin )(则=')(x f .三、计算题(本大题共6小题,共48分).1. 计算极限: 302)1ln(limx dttxx ⎰+→ (5分).2.设0sin 2=++z z x e xy ,求xz∂∂ (5分). 3.设x x x f ln 2)(2-=,求)(x f 的单调区间和极值.(8分)4.D 是由曲线x e y =,Ox 轴,Oy 轴及4=x 围成的平面区域,试在(0,4)内找一点0x ,使直线0x x =平分平面区域D 的面积.(8分)5.验证函数2()n yz x f x =满足方程2z z x y nz x y ∂∂+=∂∂(其中f 可微).(8分) 6.改变二次积分21101(,)yy dy f x y dx --⎰⎰的积分次序(7分)7.求解下列微分方程:'2'1.y xy x y -=+(7分)四、证明题(本大题共2小题,共12分).1.证明:当1>x 时,1)1(2ln +->x x x .(6分) 2.函数f (x )在[0,1]上可导,且f (1)=2120()xf x dx ⎰,证明:存在一点ξ∈(0,1)使得ξf '(ξ)+ f (ξ)=0 (6分).《高等数学》模拟试题二一、选择题(本大题共5小题,每小题4分,共20分)1.曲线11+-=x x y 的垂直渐近线为 ( ) A .1-=x B .1=x C .1-=y D .1=y2.当0→x 时,)21ln(xα+与x 是等价无穷小,则α等于( )A .2B . 2-C .21D .21-3.下列式子中正确的是 ( )A .⎰+='c x f dx x f )3()3(B .'[()]()d f x dx f x =⎰C .⎰=bax f dx x f dx d )()( D .⎰⎰=-b a b a du u f dx x f 0)()( 4.下列命题中,正确的是 ( )A .0lim =∞→n n u ,则∑∞=1n n u 必收敛 B .0lim =∞→n n u ,则∑∞=1n n u 必发散C .0lim ≠∞→n n u ,则∑∞=1n n u 必收敛 D .0lim ≠∞→n n u ,则∑∞=1n n u 必发散5.微分方程'''23x y y y xe +-=的特解形式为 ( )A .()x ax b e +B .2x ax eC .x axeD .2()x ax bx e + 二、 填空题(本大题共5小题,每小题4分,共20分)6. 201cos limx xx →-=7. 设x x x f ln )(=,则='')1(f . 8.'(sin 1)cos f x xdx +⎰=9. 过点(2,0,1)且与直线210x y z==垂直的平面方程为 10. 幂级数∑∞=⎪⎭⎫⎝⎛02n nx 的收敛半径为=R .三、计算题(本大题共4小题,共48分).1. 求极限: lim (arctan )2x x x π→+∞- (5分).2.设),(y x z z =是由方程133=-xyz z 确定的隐函数,求全微分dz (5分).3.求函数x x x f ln )(2-=在],1[e 上的最值(8分).4.求由曲线1-=x y ,4=x 与0=y 所围成的平面图形绕Ox 轴旋转所得到的旋转体的体积V (8分).5.f (x )在[0,1]上连续,求证211()()()y x dy f x dx e e f x dx =-⎰⎰ (7分).6.求解下列微分方程: 2()0ydx x y dy ++= (7分).7.已知1(0),2f =-求f (x )使曲线积分[()]()x l e f x ydx f x dy +-⎰与路径无关,并计算(8分).(1,1)(0,0)[()]()x e f x dx f x dy +-⎰四、证明题(本大题共2小题,共12分).1.证明:当x >0时,2x arctan x >ln(1+x 2) (6分).2.设f (x )在(-1,1)内可微,且f (0)=0, |f ' (x )|< M (M >0), 试证在(-1,1)内恒有|f (x )|<M(6分).《高等数学》模拟试题三一、选择题(本大题共5小题,每小题4分,共20分)1.设53)(+=x x f ,则[]2)(-x f f 等于 ( )A .149+xB .33+xC .149-xD .33-x2.设x x f 3)(= ,则ax a f x f a x --→)()(lim 等于( )A .3ln 3aB .a3 C .3ln D .3ln 3a3.设函数f (x )连续,0(),s t I t f tx dx =⎰其中t >0,s >0,则积分I ( )A .依赖于s 和tB .依赖于s ,t,xC .依赖于t 和xD .依赖于s ,不依赖于t4.级数111nn a∞=+∑收敛的条件为( ) A .a ≥1 B .a >1 C . a ≤1 D .a <15.微分方程0cos =+x y dxdy的通解为 ( )A .x c y sin =B .x ce y sin -=C .x ce y cos -=D .x c y cos =二、 填空题(本大题共5小题,每小题4分,共20分)11. 设3lim ln()16,xx x a x a→∞+=-则a =12. 设22sin ,cos ,x t y t ==则dydx=13. ⎰=xdx x sin cos 3 .14.''()xf x dx ⎰=5.设sin y =xy , 则dydx= 三、计算题(本大题共4小题,共48分). 1. 求极限lim x →+∞(5分).2.求函数f (x )=20(1)(2)xt t dt --⎰的极值(7分).3.平面图形由曲线3,4y x y x=+=,求此图形的面积S (7分).4.求微分方程'cot ln y x y y =满足初始条件4x y π==(5分).5.求幂级数112nnn n x ∞=+∑的收敛区间以及和函数 (8分). 6. 计算二重积分:⎰⎰+Ddxdy y x )3(22,其中区域D 是由直线2,1,2,====x x x y x y 围成(8分)7.设函数f (x )满足0()()()x xx f x x f t dt e tf t dt +=+⎰⎰,求f (x ) (8分).四、证明题(本大题共2小题,共12分).1.证明:当0>x 时,2211)1ln(x x x x +>+++(6分).2.证明:双曲线)0(1>=x xy 上任一点处的切线与两坐标轴所围三角形的面积等于2(6分).《高等数学》模拟试题一参考答案一、选择题(本大题共5小题,每小题4分,共20分)1.B 2.B 3.D 4.B 5.D二、 填空题(本大题共5小题,每小题4分,共20分)1.1422.2sin(1)x x +3.111230x z z ---==4.2()ydx xdyxy + 5. sin 2x -+三、计算题(本大题共4小题,共44分).1.解:220322000ln(1)ln(1)21111limlim lim 6310331x x x x t dtx x x x xx →→→++==⨯=⨯=++⎰ 2.解:方程两边对x 求导得:22sin cos 0xy z zye x z x z x x∂∂+++=∂∂22sin 1cos xy z ye x z x x z∂+∴=-∂+3.解:对函数x x x f ln 2)(2-=求导得:'1()4f x x x =-,令11140 ()22x x x -==-得舍去, 列表:x (0,12) 12 (12,+∞) y’ - 0+ y单减极小值1ln 22+单增由表可知, f (x )在(0,12)上单调减少,在(2,+∞)上单调增加,在12x =处取得极小值1ln 22+.4.解:由题意知,4x xx x e dx e dx =⎰⎰,所以0041x x e e e -=-401 ln2e x +∴=5.证:求函数2()nyz x f x =的偏导数: 113223222()()()()2(),n n n n z y y y y y nx f x f nx f x yf x x x x x x---∂-=+•=-∂ 22221()()(),n n z y y x f x f y x x x-∂=•=∂ 所以132222222222[()2()]2[()] ()2()2()n n n n n n z z y y yxy x nx f x yf y x f x y x x xy y ynx f x yf x yf nzx x x -----∂∂+=-+∂∂=-+=6.解:21101(,)yy dy f x y dx --⎰⎰=0110(,)x dx f x y dy +-⎰⎰+110(,)xdx f x y dy -⎰⎰7.解:整理方程为1(1)dy dx y x x =-+,所以 (ln(1))(ln ln(1))d y d x x -=-+ 1ln(1)ln1xy C x -=++ 11x y Cx =++ 四、证明题(本大题共2小题,共12分).1.证明:令2(1)()ln ,(0)21x F x x F x -=-=+,由于2'2(1)()0 (1)(1)x F x x x x -=>>+, 所以,当1>x 时()(0)20F x F >=>,即1)1(2ln +->x x x .2.证明:令()()F x xf x =,函数F (x )在[0,1]上可导. 根据积分中值定理,存在1(0,)2c ∈,使得1122001(1)(1)2()2()2()()2F f xf x dx F x dx F c F c ====••=⎰⎰再根据罗尔定理,存在一点ξ∈(c ,1使得'()0,F ξ=即 ξf '(ξ)+ f (ξ)=0《高等数学》模拟试题二参考答案一、选择题(本大题共5小题,每小题4分,共20分)二、 填空题(本大题共5小题,每小题4分,共20分)(sin 1)f x C ++ 40x y +-=三、计算题(本大题共4小题,共48分).22221arctan12lim (arctan )lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞--+-====+-233()0z dz yzdx xzdy xydz -++=2 yzdx xzdydz z xy+∴=-x x x f ln )(2-=求导得:'()2ln f x x x x =--,令'()0,f x =得12x e-=. 比较112211(),(1)0,()22f e e f f e e e --====-可知, f (x ) 在],1[e 上的最小值为2e -,最大值为12e.4442211119(1)()22V dx x dx x x ππππ==-=-=⎰⎰222111111000()()()[]()()yyyx x x dy f x dx dx e f x dy f x e dy dx e e f x dx ===-⎰⎰⎰⎰⎰⎰20ydx xdy y dy ++=31()03d xy y +=313xy y C +=曲线积分与路径无关的条件,有()()x df x e f x dx=+' (())x y y e y f x -==微分方程'x y y e -=的通解为x x y ce xe =+,由于1(0),2f =-有12c =-,所以1()2x x f x e xe =-+四、证明题(本大题共2小题,共12分).2()2arctan ln(1),(0)0F x x x x F =-+=,由于'2222()2arctan 2arctan 0 (0)11x xF x x x x x x =+-=>>++, 所以,当x >0时()(0)0F x F >=,即2x arctan x >ln(1+x 2).设x 为(-1,1)内任意点,函数f (x )在[x ,0](x <0)或[0, x ](x >0)上可导. 根据拉格朗日中值定理,存在介于x 与0之间的点c ,使得''|()||()(0)||()||0||()|f x f x f f c c f c M =-=-<<《高等数学》模拟试题三参考答案一、选择题(本大题共5小题,每小题4分,共20分)二、填空题(本大题共5小题,每小题4分,共20分)2-141cos4x C-+'()()x f x C++cosyy x-三、计算题(本大题共4小题,共48分).3 lim lim lim2 x x x→+∞===f(x)=2(1)(2)xt t dt--⎰求导得:'2()(1)(2)f x x x=--,令'()0,f x=得121,2x x==. 列表:由表可知, f112320017(1)(2)[584]12t t dt t t t dt--=-+-=-⎰⎰.3321131(4)(43ln)43ln32S x dx x x xx=--=--=-⎰整理微分方程得tanlndyxdxy y=1ln ln tan ln|cos|y xdx x C==-+⎰ln|cos|xCey e-=对于初始条件4x y π==C =1. 所以所求特解为ln|cos |x e y e-=幂级数112n n n n x ∞=+∑的收敛半径为1112lim lim 222n n n n n n u n R u n +→∞→∞++==⨯=+,且当x =2或-2时幂级数发散,所以幂级数的收敛区间为(-2,2).设其和函数为S (x ),则1'1112221''22122222()(1)() (1)()222(1)2 ()()1(1)(1)444 1.(2)(2)(1)2n nn n n n n n x x S x n t n t t t t t t t t tt t t x x x x xx x ∞∞∞+===∞+==+=+=+-+====+++++===-+++∑∑∑∑⎰⎰+Ddxdy y x)3(22化为二次积分为222222122223311(3)(3) [()]830.xxDx xx y dxdy dx x y dy x y y dx x dx +=+=+==⎰⎰⎰⎰⎰⎰'()()xx f x f t dt e +=⎰两边再求导数,整理得到'''()()x f x f x e +=或'''x y y e +=微分方程'''x y y e +=对应的齐次方程的通解为12x y c c e -=+,特解为12x y e =.所以'''x y y e +=的通解为1212x x y c c e e -=++.又由于(0)1f =(原方程两边代入x =0), '(0)1f =(求一次导数后的方程两边代入x =0),所以11,c =212c =-,所求方程的解为11sh 2x x e e y x --=+=+.四、证明题(本大题共2小题,共12分).()ln(1(0)0F x x x F =+=,由于'()ln(0 (0)F x x x =>>,所以,当x >0时()(0)0F x F >=,即2211)1ln(x x x x +>+++.t 为(0,+∞)内任意点,双曲线1y x =上在x=t 处的切线方程为 211()y x t t t -=-- 该直线与两坐标轴分别相交于2(0,),(2,0)A B t t由A ,B 和坐标原点O 形成三角形面积为12|||2|22S t t=⨯⨯=所以结论成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学基础模拟题一、单项选择题(每小题4分,本题共20分) 1.函数2e exxy -=-的图形关于( )对称.(A) 坐标原点 (B) x 轴 (C) y 轴 (D) x y =2.在下列指定的变化过程中,( )是无穷小量. (A))(1sin∞→x xx(B))0(1sin →x x(C) )0()1ln(→+x x(D))(e 1∞→x x3.设)(x f 在0x 可导,则=--→hx f h x f h 2)()2(lim 000( ).(A) )(0x f ' (B) )(20x f '(C) )(0x f '- (D) )(20x f '-4.若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(ln 1( ).(A) )(ln x F (B) c x F +)(ln (C)c x F x +)(ln 1 (D) c xF +)1( 5.下列积分计算正确的是( ). (A) 0d sin 11=⎰-x x x(B)1d e 0=⎰∞--x x(C) πd 2sin 0=⎰∞-x x(D)0d cos 11=⎰-x x x二、填空题(每小题3分,共15分) 1.函数24)1ln(xx y -+=的定义域是 .2.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(21x kx x x x f x ,在0=x 处连续,则=k.3.曲线1)(3+=x x f 在)2,1(处的切线斜率是.4.函数x y arctan =的单调增加区间是 .5.若⎰+=c x x x f sin d )(,则=')(x f .三、计算题(每小题11分,共44分) 1.计算极限1)1sin(lim 21-+-→x x x .2.设xx y 3e cos +=,求y d .3.计算不定积分⎰x x xd e21.4.计算定积分⎰e1d ln x x .四、应用题(本题16分)某制罐厂要生产一种体积为V 的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省?答案一、单项选择题(每小题4分,本题共20分) 1.A 2.C 3. C 4. B 5. D二、填空题(每小题4分,本题共20分) 1.)2,1(-2.e3.34.),(∞+-∞5.x sin -三、计算题(每小题11分,共44分) 1. 解:21)1)(1()1sin(lim 1)1sin(lim121-=-++=-+-→-→x x x x x x x2. 解:)3(d )e (cos d )3e (cos d d xx x x y +=+=x x x x ln3d 3)e (d e sin +-= x x x x x ln3d 3d e sin e +-=x x x x ln3)d 3e sin e (+-=3. 解:由换元积分法得c u x x x u u xx+-=-=-=⎰⎰⎰e d e )1(d e d e 121 c x+-=1e4. 解:由分部积分法得⎰⎰-=e1e1e1)d(ln ln d ln x x x x x x1d e e1⎰=-=x四、应用题(本题16分)解:设容器的底半径为r ,高为h ,则其表面积为rVr rh r S 2π2π2π222+=+=22π4r V r S -='由0='S ,得唯一驻点3π2Vr=,由实际问题可知,当3π2Vr =时可使用料最省,此时3π4V h=,即当容器的底半径与高分别为3π2V 与3π4V 时,用料最省.二、综合练习(一)单项选择题⑴下列各函数对中,( )中的两个函数相等. (A)2)()(x x f =,x x g =)((B)2)(x x f =,x x g =)((C)3ln )(x x f =,x x g ln 3)(= (D) 4ln )(x x f =,x x g ln 4)(=⑵设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于( )对称.(A) x y = (B)y 轴(C)x 轴 (D) 坐标原点 ⑶当0→x 时,变量( )是无穷小量.(A) x 1 (B) xx sin(C) 1e -x(D) 32xx⑷设)(x f 在点1=x 处可导,则=--→hf h f h )1()21(lim 0( ). (A) )1(f ' (B) )1(f '-(C) )1(2f ' (D) )1(2f '-⑸函数322-+=x x y 在区间)4,2(内满足().(A) 先单调上升再单调下降 (B) 单调上升 (C) 先单调下降再单调上升 (D) 单调下降⑹若x x f cos )(=,则='⎰x x f d )(().(A) c x +sin (B) c x +cos (C)c x +-sin (D) c x +-cos⑺=+-⎰-x x x x d )22cos (2π2π7().(A) 0 (B) π(C) 2π (D) 2π⑻若)(x f 的一个原函数是x1,则=')(x f ().(A) x ln (B) 32x(C) x 1 (D) 21x-⑼下列无穷积分收敛的是( ).(A) ⎰∞+0d cos x x(B)⎰∞+-03d e x x(C)⎰∞+1d 1x x(D)⎰∞+1d 1x x(二)填空题⑴函数x x xy ++-=2)2ln(的定义域是 .⑵函数⎩⎨⎧≤>+=0sin 02x x x x y 的间断点是 .⑶若函数⎪⎩⎪⎨⎧≥+<+=00)1()(31x k x x x x f x ,在0=x 处连续,则=k .⑷曲线2)(+=x x f 在)2,2(处的切线斜率是 . ⑸函数1)2(2--=x y 的单调增加区间是.⑹若⎰+=c x x x f 3sin d )(,则=)(x f . ⑺=⎰x x x d e d d 2.(三)计算题 ⑴已知32)1(2-+=+x x x f ,求)1(,)2(,)(xf f x f .⑵计算极限xxx 5sin 6tan lim 0→.⑶计算极限5456lim 221--++-→x x x x x .⑷计算极限32)1sin(lim 21-+-→x x x x .⑸设2ln sin x xx y -=,求'y .⑹设x y 3sin ln =,求y d .⑺设y yx =()是由方程x y x y cos e e 3+=确定的函数,求d y .⑻计算不定积分⎰x xxd sin .⑼计算不定积分⎰+x x x d )ln 1(1. ⑽计算不定积分⎰x x xd e21. ⑾计算不定积分⎰x xxd ln 2.⑿计算定积分⎰102d e x x x . ⒀计算定积分⎰e12d ln x x x .⒁计算定积分⎰e1d ln x x x .(四)应用题 ⑴求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.⑵圆柱体上底的中心到下底的边沿的距离为d ,问当底半径与高分别为多少时,圆柱体的体积最大?⑶某厂要生产一种体积为V 的无盖圆柱形铁桶,问怎样才能使用料最省?⑷欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?(五)证明题⑴试证:奇函数与奇函数的和是奇函数;奇函数与奇函数的乘积是偶函数.⑵试证:奇函数与偶函数的乘积是奇函数.⑶当0>x时,证明不等式x x arctan >.⑷当1>x 时,证明不等式e e x x>.⑸证明:若)(x f 在],[a a -上可积并为奇函数,则0d )(=⎰-aax x f .三、综合练习答案 (一)单项选择题⑴ C ⑵ D ⑶ C ⑷ D ⑸ B ⑹ B ⑺ D ⑻ B ⑼ B(二)填空题⑴ )2,1()1,2[ - ⑵0=x ⑶ e ⑷41⑸ ),2(∞+ ⑹ x 3cos 3⑺ 2e x(三)计算题⑴ 42-x ,0,2241x x - ⑵ 56 ⑶ 32-⑷ 41⑸ 3ln 2sin 21cos x x x x x +-- ⑹ x x d cot 3 ⑺x xy xy y x d cos 3e sin e 23-- ⑻ c x +-cos2 ⑼ c x ++ln 1ln ⑽ c x+-1e ⑾c x x x +--1ln ⑿ )1e (412+ ⒀ )12e (913+ ⒁ e 24-(四)应用题⑴ )2,1(和)2,1(- ⑵底半径d r 36=,高d h 33= ⑶底半径3πV r =,高3πV h = ⑷ 底边长5=x ,高5.2=h高等数学基础样题一、单项选择题(每小题3分,本题共15分)1.函数222xx y +=-的图形关于( )对称.(A) 坐标原点 (B) y 轴 (C)x 轴(D)x y =2.在下列指定的变化过程中,( )是无穷小量. (A) )0(1sin →x x x (B) )(1sin ∞→x xx(C) )0(ln →x x (D) )(e∞→x x3.下列等式中正确的是( ). (A) x x xd ln )1(d = (B) x xx d )(ln d =(C) x xx d 3)3(d = (D) xx x d )(d =4.若⎰+=c x F x x f )(d )(,则⎰=x x f xd )(1( ).(A) )(x F (B) c x F +)((C)c x F +)(2(D))(2x F5.下列无穷限积分收敛的是( ). (A) ⎰+∞1d 1x x (B) ⎰+∞0d e x x(C)⎰+∞1d 1x x(D)⎰+∞12d 1x x二、填空题(每小题3分,共15分) 1.函数)1ln(1-+=x x y 的定义域是.2.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(1x kx x x x f x ,在0=x 处连续,则=k.3.曲线x x f =)(在)1,1(处的切线斜率是 .4.函数)1ln(2x y +=的单调增加区间是.5.='⎰x x d )(cos .三、计算题(每小题9分,共54分) 1.计算极限4)2sin(lim22--→x x x . 2.设xxx y e sin 2+=,求y '. 3.设2e sin x y =,求'y .4.设y yx =()是由方程3e ln y x y =+确定的函数,求d y .5.计算不定积分⎰x x x d 1cos2.6.计算定积分⎰e1d ln x x x .四、应用题(本题12分)圆柱体上底的中心到下底的边沿的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)当0>x时,证明不等式)1ln(x x +>.高等数学基础样题答案一、单项选择题1.B2.A3. B4. C5. D 二、填空题 1.),2()2,1(∞+2.e3.21 4.),0(∞+5.c x +cos三、计算题1. 412. x x x x x e sin cos 22+++3.22e cos e 2x x x 4.x y x y d )e 3(12-5. c x +-1sin6.94e 923+ 四、应用题当底半径l r36=,高l h 33=时,圆柱体的体积最大. 山东广播电视大学开放教育高等数学基础课程综合练习题(1)一、 单项选择题1.下列各函数对中,( )中的两个函数相等.(A)2)()(x x f =,x x g =)((B)2)(x x f =,x x g =)((C)3ln )(x x f =,x x g ln 3)(= (D) 4ln )(x x f =,x x g ln 4)(=2.设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于( )对称.(A) x y = (B)y 轴(C) x 轴 (D) 坐标原点 3.当0→x 时,变量( )是无穷小量.(A) x1(B) x xsin(C) 1e -x(D) 32xx4.设)(x f 在点1=x 处可导,则=--→h f h f h )1()21(lim 0( ). (A) )1(f ' (B) )1(f '-(C) )1(2f ' (D) )1(2f '-5.函数322-+=x x y 在区间)4,2(内满足( ).(A) 先单调上升再单调下降 (B) 单调上升 (C) 先单调下降再单调上升 (D) 单调下降6.若x x f cos )(=,则='⎰x x f d )(().(A) c x +sin (B) c x +cos (C) c x +-sin (D) c x +-cos7.=+-⎰-xx x x d )22cos (2π2π7( ).(A) 0 (B) π(C) 2π(D) 2π8.若)(x f 的一个原函数是x1,则=')(x f ( ).(A) x ln (B) 32x(C) x 1 (D) 21x-9.下列无穷积分收敛的是( ).(A) ⎰∞+0d cos x x(B)⎰∞+-03d ex x(C)⎰∞+1d 1x x(D)⎰∞+1d 1x x二、填空题1.函数x x xy ++-=2)2ln(的定义域是.2.函数⎩⎨⎧≤>+=0sin 02x x x x y 的间断点是 .3.若函数⎪⎩⎪⎨⎧≥+<+=00)1()(31x kx x x x f x ,在0=x 处连续,则=k.4.曲线2)(+=x x f 在)2,2(处的切线斜率是 .5.函数1)2(2--=x y 的单调增加区间是.6.若⎰+=c x x x f 3sin d )(,则=)(x f . 7.=⎰x x x d e d d 2.三、计算题1.已知32)1(2-+=+x x x f ,求)1(,)2(,)(xf f x f .2.计算极限xxx 5sin 6tan lim 0→.3.计算极限5456lim 221--++-→x x x x x .4.计算极限32)1sin(lim 21-+-→x x x x .5.设2ln sin x xx y -=,求'y .6.设x y 3sin ln =,求y d .7.设y yx =()是由方程x y x ycos e e 3+=确定的函数,求d y .8.计算不定积分⎰x xxd sin .9.计算不定积分⎰+x x x d )ln 1(1. 10.计算不定积分⎰x x xd e21. 11.计算不定积分⎰x xxd ln 2.12.计算定积分⎰102d e x x x . 13.计算定积分⎰e12d ln x x x .14.计算定积分⎰e1d ln x x x .四、应用题 1.求曲线x y 22=上的点,使其到点)0,2(A 的距离最短.2.圆柱体上底的中心到下底的边沿的距离为d ,问当底半径与高分别为多少时,圆柱体的体积最大?3.某厂要生产一种体积为V 的无盖圆柱形铁桶,问怎样才能使用料最省?4.欲做一个底为正方形,容积为62.5立方米的长方体开口容器,怎样做法用料最省?五、证明题1.试证:奇函数与奇函数的和是奇函数;奇函数与奇函数的乘积是偶函数.2.试证:奇函数与偶函数的乘积是奇函数.3.当0>x时,证明不等式x x arctan >.4.当1>x 时,证明不等式e e x x>.5.证明:若)(x f 在],[a a -上可积并为奇函数,则0d )(=⎰-aax x f .参考答案一、单项选择题C D C D B B D B B 二、填空题1. )2,1()1,2[ -2.0=x3. e4. 41 5. ),2(∞+ 6. x 3cos 37.2e x三、计算题1. 42-x ,0,2241xx - 2. 563. 32-4. 415.3ln 2sin 21cos x x x x x +--6. x x d cot 37.x xy xy y x d cos 3e sin e 23-- 8. c x +-cos29. c x ++ln 1ln10. c x+-1e11. c x x x +--1ln 12.)1e (412+13. )12e (913+14. e 24-四、应用题 1.)2,1(和)2,1(-2.底半径d r36=,高d h 33= 3.底半径3πV r =,高3πVh =4. 底边长5=x ,高5.2=h山东广播电视大学开放教育高等数学基础课程综合练习题(2)(模拟试题一)一、单项选择题(每小题3分,本题共15分) 1.设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于( )对称.(A) x y = (B) x 轴 (C) y 轴 (D) 坐标原点2.当0→x 时,变量( )是无穷小量.(A) x 1 (B) xx sin(C) 1e -x(D) 2xx3.设xx f e )(=,则=∆-∆+→∆xf x f x )1()1(lim 0( ).(A) e 2 (B) e(C) e 41 (D) e 214.=⎰x x xf xd )(d d 2( ). (A) )(2x xf (B) x x f d )(21(C) )(21x f (D) x x xf d )(2 5.下列无穷限积分收敛的是( ). (A) ⎰+∞0d e x x(B) ⎰+∞-0d e x x(C)⎰+∞1d 1x x(D)⎰+∞1d 1x x二、填空题(每小题3分,共15分)1.函数)1ln(92--=x x y 的定义域是 .2.函数⎩⎨⎧≤>-=0sin 01x x x x y 的间断点是.3.曲线1)(+=x x f 在)2,1(处的切线斜率是 . 4.函数1)1(2++=x y 的单调减少区间是.5.='⎰x x d )(sin .三、计算题(每小题9分,共54分) 1.计算极限xxx 5sin 6sin lim0→.2.设22sin x x y x+=,求y '.3.设xy e sin 2=,求'y .4.设y yx =()是由方程y x y e cos =确定的函数,求d y .5.计算不定积分⎰x x x d 3cos .6.计算定积分⎰+e1d ln 2x xx. 四、应用题(本题12分)圆柱体上底的中心到下底的边沿的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大? 五、证明题(本题4分) 当0>x 时,证明不等式x x arctan >.高等数学基础模拟试题一参考答案一、单项选择题(每小题3分,本题共15分) 1.D 2.C 3.B 4.A 5. B二、填空题(每小题3分,本题共15分) 1.]3,2()2,1(2.0=x3.214.)1,(--∞5.c x +sin三、计算题(每小题6分,共54分)1. 解:5655sin lim 66sin lim5655sin 66sin 56lim 5sin 6sin lim0000=⋅=⋅=→→→→xx x xx x x x x x x x x x 2. 解:由导数四则运算法则得4224222sin 22ln 2cos )2(sin 2)2(sin x x x x x x x x x x x x y xx x x --+=+-'+='312sin 22ln 2cos x x x x x x x +--+=3. 解:)e 2sin(e e cos e sin e 2xx x x x y =='4. 解:等式两端求微分得 左端y x x y x y d cos )(cos d )cos (d +==y x x x y d cos d sin +-=右端y yy d e )e (d ==由此得 y y x x x y y d e d cos d sin =+-整理后得x x xy y yd ecos sin d -=5. 解:由分部积分法得⎰⎰-=x x x x x x x d 3sin 313sin 31d 3cos c x x x ++=3cos 913sin 31 6. 解:由换元积分法得⎰⎰⎰=++=+32e 1e1d )ln 2()d ln 2(d ln 2u u x x x xx252322==u 四、应用题(本题12分)解:如图所示,圆柱体高h 与底半径r 满足222l r h =+圆柱体的体积公式为 h r V 2π=将222h l r-=代入得h h l V )(π22-=求导得 )3(π))(2(π22222h l h l h V -=-+-='令0='V 得l h33=,并由此解出l r 36=.即当底半径l r 36=,高l h 33=时,圆柱体的体积最大.五、证明题(本题4分) 证明:设x x x F arctan )(-=,则有2221111)(x x x x F +=+-='当0>x 时,0)(>'x F ,故)(x F 单调增加,所以当0>x 时有0)0()(=>F x F ,即不等式x x arctan >成立,证毕.。

相关文档
最新文档