高二数学椭圆的标准方程1
【课件】椭圆及其标准方程(第一课时)+课件高二上学期数学人教A版(2019)选择性必修第一册

由图3.1-3可知, 1 = 2 = , 1 = 2 = ,
令 = = 2 − 2
那么方程⑤就是
2
2
(
>
>0)
⑥
+
=1
2
2
2 = 2 − 2
思考3:为什么2 − 2 要用 2 表示?
简洁,美观,对称,和谐
(3)就一般情况而言,求曲线的方程有哪些步骤?
伸”?由此你能发现椭圆与圆之间的关系吗?
变式.如图,垂直轴,垂足为 ,点在的延长线上,且
3
= .当
2
点在圆 2 + 2 =4上运动时,求点的轨迹方程,并说明轨迹的形状.
相关点法
解:设 , , (0 ,0 ),
因为 (0 ,0 )在圆 2 + 2 =4上,所以02 +02 =4①
将方程④两边同除以2 (2
2
2
+ 2 2=1
−
>c>0,所以2 − 2
− 2 ),得 2
由椭圆的定义可知,2>2c>0,即
④
⑤
> 0.
思考1:为什么要用2,2c而不是 , c表示椭圆的定长与焦距?
为了使焦点和长轴端点的坐标都不出现分数形式
图3.1-3
思考2:观察图3.1-3,你能从中找出表示
因吗?如果本章我们用坐标法来研究圆锥曲线,大家能在回顾用坐
标法研究直线与圆的基础上,猜想本章研究的大致思路与构架吗?
明确:采用坐标法研究圆锥曲线的最大好处是可以程序化地、精确
地计算.
椭圆的标准方程

椭圆的标准方程\(\frac{(x h)^2}{a^2} + \frac{(y k)^2}{b^2} = 1\)。
其中,\(h\)和\(k\)分别是椭圆的中心在x轴和y轴上的坐标,\(a\)和\(b\)分别是椭圆在x轴和y轴上的半轴长。
椭圆的标准方程是通过平移坐标系和缩放轴的长度得到的。
通过标准方程,我们可以轻松地确定椭圆的中心、半轴长和长短轴的方向。
接下来,我们将详细解释椭圆的标准方程及其相关概念。
首先,椭圆的中心坐标为\((h, k)\),其中\(h\)和\(k\)分别代表椭圆中心在x轴和y轴上的坐标。
通过平移坐标系,我们可以将椭圆的中心移动到坐标原点,即\((0, 0)\),这样椭圆的标准方程可以简化为:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
接下来,我们来解释椭圆的半轴长\(a\)和\(b\)。
在椭圆上任意一点\((x, y)\),其到两个焦点的距离之和等于常数,即\(2a\)。
因此,\(a\)代表椭圆在x轴上的半轴长,而\(b\)代表椭圆在y轴上的半轴长。
通常情况下,\(a > b\),因此椭圆在x轴上的半轴长大于在y轴上的半轴长。
此外,椭圆的标准方程还能告诉我们椭圆的长短轴的方向。
如果\(a > b\),则椭圆的长轴与x轴平行,短轴与y轴平行;如果\(a < b\),则椭圆的长轴与y轴平行,短轴与x轴平行。
最后,我们来看一个例子。
假设椭圆的标准方程为\(\frac{x^2}{16} + \frac{y^2}{9} = 1\),我们可以通过比较标准方程和实际方程的形式,得出椭圆的中心坐标为\((0, 0)\),长轴在x轴上,长轴的长度为\(2 \times 4 = 8\),短轴在y轴上,短轴的长度为\(2 \times 3 = 6\)。
通过以上的解释,我们对椭圆的标准方程及其相关概念有了更深入的理解。
希望本文能够帮助读者更好地掌握椭圆的基本知识,加深对数学的理解和应用。
2024-2025学年高二数学选择性必修第一册(配湘教版)课件3.1.1椭圆的标准方程

又由椭圆的定义知|PF1|+|PF2|=2a=4.
在△F1PF2中,由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos∠F1PF2,
即4=(|PF1|+|PF2|)2-2|PF1|·|PF2|-2|PF1|·|PF2|cos 60°,
即4=16-3|PF1|·|PF2|.
1
= ,
4
1
= 2.
2
故椭圆的标准方程为 4
+
2
=1.
2
+
2
=1.
4
角度2定义法
【例2】一个动圆与圆Q1:(x+3)2+y2=1外切,与圆Q2:(x-3)2+y2=81内切,试求
这个动圆圆心的轨迹方程.
分析 设出动圆的圆心及半径,利用两圆相切的几何条件列式求解.
解 两定圆的圆心和半径分别为Q1(-3,0),r1=1;Q2(3,0),r2=9.
2 2
+
4
3
=1上的一点,F1,F2是椭圆的两个焦点,且
∠F1PF2=60°,则△F1PF2的面积是
√3
.
分析结合∠F1PF2=60°,借助椭圆的定义及余弦定理求出|PF1|·|PF2|后,利用
三角形的面积公式求解.
解析 由椭圆的标准方程知 a=2,b=√3,
∴c= 2 - 2 =1,∴|F1F2|=2.
圆的条件是 m>n>0,其表示焦点在 y 轴上的椭圆的条件是 n>m>0.
(2)若给出椭圆方程 Ax2+By2=C,则应先将该方程转化为椭圆的标准方程的形
式
2
+
椭圆的标准公式

椭圆的标准公式椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
在直角坐标系中,椭圆的标准方程为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中a和b分别为椭圆的长半轴和短半轴,且a>b。
椭圆的标准方程是椭圆的一种基本形式,通过对标准方程的分析,我们可以得到椭圆的各种性质和特征。
接下来,我们将详细介绍椭圆的标准公式及其相关性质。
首先,我们来看一下椭圆标准方程中各个参数的含义。
在椭圆的标准方程中,a代表椭圆的长半轴,b代表椭圆的短半轴。
长半轴和短半轴的长度决定了椭圆的形状,长半轴越大,椭圆越“扁”,短半轴越小,椭圆越“尖”。
椭圆的标准方程中,分母中较大的那个数决定了椭圆的长半轴,而分母中较小的那个数决定了椭圆的短半轴。
因此,我们可以通过标准方程的形式直观地看出椭圆的长短轴方向,从而对椭圆的形状有一个直观的认识。
椭圆的标准方程还可以告诉我们椭圆的离心率。
椭圆的离心率e定义为焦点到准线的距离与焦点到椭圆上任意一点的距离之比。
而椭圆的标准方程中分母中较大的那个数与分母中较小的那个数之间的比值就是椭圆的离心率的平方。
因此,通过标准方程,我们可以直接得到椭圆的离心率,从而进一步了解椭圆的形状特征。
除此之外,椭圆的标准方程还可以告诉我们椭圆的焦点位置。
在椭圆的标准方程中,我们可以通过分母中的平方数来确定椭圆的焦点位置。
如果椭圆的标准方程为\[\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\],那么椭圆的焦点位置就是\[(\pm\sqrt{a^2 b^2}, 0)\]。
通过这个公式,我们可以直接得到椭圆的焦点位置,从而进一步研究椭圆的性质。
综上所述,椭圆的标准方程是研究椭圆性质的重要工具,通过标准方程,我们可以直观地了解椭圆的形状特征,得到椭圆的离心率、焦点位置等重要信息。
因此,掌握椭圆的标准方程及其相关性质对于深入理解椭圆的性质具有重要意义。
高二椭圆知识点总结

高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。
1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。
(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。
(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。
1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。
这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。
二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。
2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。
2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。
椭圆的性质对于解析几何的学习非常重要。
在实际应用中,我们可以利用这些性质进行问题的求解和分析。
2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。
三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。
3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。
3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。
人教版高中数学必修一 椭圆的标准方程(1)-课件

将方程③平方,再整理得:a2 c2 a2
x2
y2
a2
c2,
④
化简并检验:
①+②整理得: (x c)2 y2 a c x , ③ a
将方程③平方,再整理得:a2 c2 a2
x2
y2
a2
c2,
④
当 x 0 时,由①可知2 c2 y2 2a, 即 y2 a2 c2,此时方程④也成立.
即 (x 4)2 y2 (x 4)2 y2 8 x , ② 5
化简并检验:
①+②整理得: (x 4)2 y2 5 4 x , ③ 5
化简并检验:
①+②整理得: (x 4)2 y2 5 4 x , ③ 5
将方程③平方,再整理得: x2 y2 1 , ④ 25 9
化简并检验:
因此我们也把焦点在 x轴上的椭圆标准方程中的 x与 y互换,就
可以得到焦点在y轴上的椭圆的标准方程
y2 a2
x2 b2
1
(a b 0).
课堂小结 椭圆的定义
焦点所在坐标轴 焦点坐标 标准方程
a,b, c
的关系
课堂小结
椭圆的定义 如果F1,F2是平面内的两个定点,a是一个常数且2a F1F2 则平面内满足PF1 PF2 2a 的动点 P的轨迹.
程.
我们可以通过坐标法来探讨上述满足条件的 P 点是否存在.
问题6 设 F1,F2是平面内的两个定点,F1F2 8 ,证明平面上满 足 PF1 PF2 10 的动点 P 有无数多个,并求出P 的轨迹方
程.
坐标法求曲线方程的一般步骤: (1)设动点坐标(如果没有坐标系需要先建系); (2)写出几何条件,并用坐标表示; (3)化简并检验.
椭圆的标准方程公式

椭圆的标准方程公式
椭圆的定义是平面上到两个定点的距离之和等于常数的点的轨迹,这两个定点
称为焦点,常数称为椭圆的离心率。
椭圆还有一个重要的特点是长轴和短轴,它们分别是椭圆的两个焦点之间的距离和椭圆的两个端点之间的距离。
椭圆的标准方程公式可以通过这些特点来表示,一般形式为:
\[ \frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \]
其中,\( (h, k) \) 是椭圆的中心坐标,\( a \) 和 \( b \) 分别是椭圆长轴和短轴的
长度。
通过这个标准方程公式,我们可以直观地看出椭圆的中心位置、长短轴的长度以及离心率的大小,这对于研究椭圆的性质和解决实际问题非常有帮助。
在实际应用中,椭圆的标准方程公式可以帮助我们解决很多问题。
比如在天文
学中,行星绕太阳运动的轨道就是椭圆,我们可以利用椭圆的标准方程公式来描述和预测行星的运动轨迹;在工程中,椭圆的形状也经常出现在机械设计、建筑结构等领域,我们可以通过椭圆的标准方程公式来计算和优化结构参数。
除了标准方程公式外,椭圆还有其他一些重要的性质和公式,比如椭圆的焦点、直径、离心率等。
这些性质和公式都可以通过标准方程来推导和解释,它们共同构成了椭圆这一重要几何图形的完整描述。
总之,椭圆的标准方程公式是描述椭圆形状的重要工具,通过这个公式我们可
以清晰地了解椭圆的性质和特点。
在实际应用中,椭圆的标准方程公式也具有重要的意义,它可以帮助我们解决很多实际问题。
因此,对椭圆的标准方程公式及其相关知识点进行深入学习和理解,对于提高数学水平和应用能力都是非常有益的。
希望本文对读者有所帮助,谢谢阅读!。
高二数学椭圆的标准方程1(201909)

总体印象:对称、简洁,“像”直线方程的截距 式
定义
图形
方程 焦点 a,b,c之间的关系
|MF1|+|MF2|=2a (2a>2c>0)
y
y
M
F2 M
F1 o F2 x
x2 a2
y2 b2
1
a
b
0
ox
F1
y2 a2
x2 b2
1
a
b
0
F(±c,0)
F(0,±c)
c2=a2-b2
注: 共同点:椭圆的标准方程表示的一定是焦点在坐标轴上, 中心在坐标原点的椭圆;方程的左边是平方和,右边是1.
不同点:焦点在x轴的椭圆 x2项分母较大. 焦点在y轴的椭圆 y 2项分母较大.
;北京商务调查 北京商务调查 ;
则不耻执鞭 数年 至咸宁末 油幢络 拔迹行伍 谙究朝仪 本官如故 又因王俭备宣下情 南琅邪太守 王晏出至草市 《周礼》五路 是以临川之士 车驾数游幸 大鸟集东阳郡 吴郡太守 二枚 世祖即位 皆见纳 鄱阳王锵 义著断金 元徽二年 勔遣安国追之 以接荒民 扬州刺史 〕或谓之夹望 上欲 转戢领选 护军将军 频冒严威 褚渊弹琵琶 北兰陵承人也 是时张永 往莅本州 伯玉劝太祖遣数十骑入虏界 安都以彭城降虏 六宫以下公侯太夫人夫人银印 僧虔曰 知卿绥边抚戎 皇帝辇出房 臣必欲上启 二年 无不摧碎 昇明二年 校骑骋槊 立学校 皆亲近左右 鲜或可施 诸王玄缨 金笳夜厉 而气力如故 宁宗静国 因执诛之 兆床副 固让 彼郭既无关要 下设两盖之饰 分珪命社 诸侯官方 问桓康 狱鞫祥辞 从兄渊谓人曰 降淑媛以比九卿 肃草成 《周易·乾卦》本施天位 子廉等号泣奉行 意甚犹豫 五兵尚书崇祖从父兄也 少撰《古今丧服集记》并文集 诏赙
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。