2019年天津市普通高中学业水平考试数学试题(含答案)

合集下载

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。

2020年6月普通高中学业水平合格性考试数学试题 Word版含答案

2020年6月普通高中学业水平合格性考试数学试题 Word版含答案

2020年6月福建省普通高中学业水平合格性考试数学试题(考试时间:90分钟;满分:100分)参考公式:样本数据x1,x2,…,x 。

的标准差s =√1n [(x 1−x ̅)2+(x 2−x ̅)2+⋯+(x n −x ̅)2] ,其中x ̅为样本平均数 锥体体积公式V=13Sh ,其中S 为底面面积,h 为高 球的表面积公式S=4πR 2,球的体积公式V=43πR 3,其中R 为球的半径 柱体体积公式V=Sh ,其中S 为底面面积,h 为高台体体积公式V =13(S ′+√S ′S +S)h ,其中S ',S 分别为上、下底面面积,h 为高 第Ⅰ卷 (选择题45)一、选择题(本大题有15小题,每小题3分,共45分.每小题只有一个选项符合题意)1.已知集合A={3},B={1,2,3},则A ∩B=A.{1,2,3}B.{1,3}C.{3}D. φ2.右图是某圆锥的三视图,则该圆锥底面圆的半径长是A.1B.2C.3D. √103.若三个数1,3,a 成等比数列,则实数a=A.1B.3C.5D.94.一组数据3,4,4,4,5,6的众数为A.3B.4C.5D.65.如图,在正方形上随机撒一粒黄豆,则它落到阴影部分的概率为A. 14B. 12C. 34 D.1 6.函数y=cosx 的最小正周期为A. π2B. πC. 3π2D. 2π 7.函数y= 1X−2的定义域为A.(-∞,2)B.(2,+∞)C.(-∞,2)U(2,+∞)D. R8.不等式2x+y-4≤0表示的平面区域是9.已知直线l 1:y =x-2,l 2:y=kx ,若l 1∥l 2,则实数k=A.-2B.-1C.0D.110.化简MN ⃗⃗⃗⃗⃗⃗⃗ + MP ⃗⃗⃗⃗⃗⃗ +QP ⃗⃗⃗⃗⃗ =A. MP ⃗⃗⃗⃗⃗⃗B. NQ ⃗⃗⃗⃗⃗⃗C. MQ ⃗⃗⃗⃗⃗⃗D. PM ⃗⃗⃗⃗⃗⃗10.不等式(x+2)(x-3)<0的解集是A.{x | x <-2,或x >3}B. {x |-2<x<3}C.{−12 < x < 13}D. {x|x <−12,或x >1312.化简tan(π+α)=A. sinαB.cos αC. –sinαD.tanα13.下列函数中,在(0,+∞)上单调递减的是A. y=x-3B.y= 2xC.y=x 2D.y=2x14.已知a=40.5,b=42,c=log 40.5,则a ,b ,c 的大小关系是Aa < b<c B .c<b<a Cc<a < b D a<c< b15.函数y={1, |x|<2,log2|x|,|x|≥2的图象大致为第Ⅱ卷(非选择题55分)二、填空题(本大题有5小题,每小题3分,共15分)16.已知向量a=(0,2),则2a= 。

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019-2020年高考(学业水平考试)数学试卷 含答案

2019-2020年高考(学业水平考试)数学试卷 含答案

2019-2020年高考(学业水平考试)数学试卷 含答案xx.1 一.填空题(本大题共12题,每题3分,共36分)1.复数3+4i (i 为虚数单位)的实部是 ;2.若=3,则x= ;3.直线y=x-1与直线y=2的夹角为 ;4.函数=的定义域为 ;5.三阶行列式121004531--中,元素5的代数余子式的值为 ; 6.函数的反函数的图像经过点(2,1),则实数a= ;7.在中,若A=,B=,BC=,则AC= ;8.4个人排成一排照相,不同排列方式的种数为 。

(结果用数值表示)9.无穷等比数列的首项为2,公比为,则的各项和为 ;10.若2+i (i 为虚数单位)是关于x 的实系数一元二次方程的一个虚根,则a= ; 11.函数y=在区间[0,m]上的最小值为0,最大值为1,则实数m 的取值范围是 ; 12.在平面直角坐标系xOy 中,点A,B 是圆上的两个动点,且满足|AB|=,则的最小值为 ;二.选择题(本大题共12小题,每题3分,共36分)13.满足且的角属于( )A.第一象限B.第二象限C.第三象限D.第四象限14.半径为1的球的表面积为 ( )A. B. C.2 D.415.在的二项展开式中,的系数是( )A.2B.6C.15D. 2016.幂函数的大致图象是( )17.已知向量,,则向量在向量方向上的投影为( )A.1B. 2C.(1,0)D.(0,2)18.设直线l 与平面平行,直线m 在平面上,那么( )A.直线l 平行于直线mB.直线l 与直线m 异面C.直线l 与直线m 没公共点D.直线l 与直线m 不垂直19.用数学归纳法证明等式)(223212*∈+=++++N n n n n 的第(ⅱ)步中,假设n=k 时原等式成立,那么在n=k+1时,需要证明的等式为( )A.)1()1(22)1(2232122+++++=++++++k k k k k kB.)1()1(2)1(223212+++=++++++k k k kC.)1()1(22)1(2)12(232122+++++=++++++++k k k k k k kD.)1()1(2)1(21223212+++=++++++++k k k k k )(20.关于与的焦距和渐近线,下列说法正确的是( )A.焦距相等,渐近线相同B.焦距相等,渐近线不同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同21.设函数y=的定义域为R ,则“f (0)=0”是“y=f (x )”为奇函数的( )A.充分不必要条件B.必要不充分条件C.充要条件D. 既不充分也不必要条件22. 下列关于实数a ,b 的不等式中,不恒成立的是( )A. B.C. D.23.设单位向量和既不平行也不垂直,则非零向量,,有结论:①若,则;②若,则;关于以上两个结论,正确的判断是( )A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立24.对于椭圆:),0,(12222b a b a by a x ≠>=+,若点()满足,则称该点在椭圆内,在平面直角坐标系中,若点A 在过点(2,1)的任意椭圆内或上,则满足条件的点A 构成的图形为( )A.三角形及其内部B.矩形及其内部C.圆及其内部D.椭圆及其内部三.解答题:(本大题共5小题,共8+8+8+12+12=48分)25.如图,已知正三棱柱的体积为,底面边长为3,求异面直线与AC 所成角的大小;26.已知函数=,求的最小正周期及最大值,并指出取得最大值是x 的值。

人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试卷含答案(共10套 )

人教版2019学年高一数学考试试题(一)一、选择题:(每小题5分,共50分) 1、下列计算中正确的是( )A 、633x x x =+ B 、942329)3(b a b a = C 、b a b a lg lg )lg(⋅=+ D 、1ln =e2、当时,函数和的图象只可能是( )3、若10log 9log 8log 7log 6log 98765⋅⋅⋅⋅=y ,则( )A 、()3,2∈yB 、()2,1∈yC 、()1,0∈yD 、1=y4、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、不增不减B 、增加9.5%C 、减少9.5%D 、减少7.84% 5、函数x x f a log )(= ( π≤≤x 2)的最大值比最小值大1,则a 的值( ) A 、2π B 、 π2 C 、 2π或π2D 、 无法确定 6、已知集合}1,)21(|{},1,log |{2>==>==x y y B x x y y A x,则B A ⋂等于( ) A 、{y |0<y <21} B 、{y |0<y <1} C 、{y |21<y <1} D 、 ∅ 7、函数)176(log 221+-=x x y 的值域是( )A 、RB 、[8,+∞)C 、]3,(--∞D 、[-3,+∞)8、若 ,1,10><<b a 则三个数ab b b P a N a M ===,log ,的大小关系是( )A 、P N M <<B 、P M N <<C 、N M P <<D 、M N P << 9、函数y = )A 、[12--,)] B 、(12--,)) C 、[12--,](1,2) D 、(12--,)(1,2)10、对于幂函数21)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( )A 、)2(21x x f +<2)()(21x f x f + B 、)2(21x x f +>2)()(21x f x f + C 、 )2(21x x f +=2)()(21x f x f +D 、无法确定二、填空题:(共7小题,共28分)11、若集合}1log |{},2|{25.0+====x y y N y y M x , 则N M 等于 __________;12、函数y =)124(log 221-+x x 的单调递增区间是 ;13、已知01<<-a ,则三个数331,,3a a a由小到大的顺序是 ;14、=+=a R e aa e x f xx 上是偶函数,则在)(______________; 15、函数=y (31)1822+--x x (3-1≤≤x )的值域是 ;16、已知⎩⎨⎧≥-<=-)2()1(log )2(2)(231x x x e x f x ,则=)]2([f f ________________; 17、方程2)22(log )12(log 122=+++x x 的解为 。

高中学业水平(会考)考试试题(含详细答案)

高中学业水平(会考)考试试题(含详细答案)

普通高中学生学业水平考试数学试题第Ⅰ卷 (选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项符合题目要求)1.集合M={a ,c ,d}, N={b ,d},那么M ∩N= ( ) A. φ B.{d} C. {a ,c} D. {a,b,c,d}2.不等式4x2-4x +1≥0的解集为 ( )A. {21}B.{x|x ≥21} C. R D. φ3.=+=)3(,1)(f xx x f 则若函数 ( )A. 23B. 32C. 43D. 344.已知向量 的值是则且y b a b y a,),4,8(),,1(⊥== ( )A. 2B. 21C. -2D. -215.sin 38π的值等于 ( )A.23-B. -21C. 21D. 236.下列函数中,在区间(0,1)上为增函数的是 ( ) A. y =|x| B. y = 2-xC. y = x 1D. y = x 21log7.程序框图的三种基本逻辑结构是 ( ) A.顺序结构、条件分支结构和循环结构 B.输入输出结构、判断结构和循环结构 C.输入输出结构、条件分支结构和循环结构 D. 顺序结构、判断结构和循环结构8.若直线l 经过第二象限和第四象限,则直线l 的倾斜角的取值范围是 ( )A.[0, 2π)B. [2π,π)C. (2π,π) D.(0, π)9.在△ABC 中,a = 3 , b = 7 ,c = 2 ,则角B 等于 ( )A. 3πB. 4πC. 6πD. 32π10.下列说法正确的是 ( ) A.若直线l 与平面α内的无数条直线平行,则l ∥α. B.若直线l ∥平面α,直线a α⊂C.若直线l ∥平面α,则直线l 与平面α内的无数条直线平行.D.若直a ∥平面α,直线b ∥平面α,则a ∥b11.在等比数列{a n }中,公比q ≠1,a 5 = p ,则a 8为 ( )12.圆 x 2+y 2-2X=0与圆x 2+y 2+4y=0的位置关系是 ( )A. 相离B. 外切C. 相交D. 内切13.一城市公交车的某一点每隔10分钟有一辆2路公交车通过,则乘坐2路公交车的乘客在该点候车时间不超过4分钟的概率是 ( )A.51 B. 52 C. 53D. 54 14.将函数y = sin(x-))(R x ∈3π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图像向左平移3π个单位长度,则的图像的函数解析式是( )A. y=sinx 21 B. y=sin (321π-x ) C. y=sin (2x- 6π) D. y=sin (621π-x )15.某次考试中,甲同学的数学成绩和语文成绩分别为x 1和x 2,全市的数学平均分和语文平均分分别为21x x 和,标准差分别为s 1和s 2,定义甲同学的数学成绩和语文成绩的标准分别为kkk k s x x y -=(k=1,2).给出下列命题: (1)如果X 1 >X 2 ,则y 1>y 2 ; (2)如果1x >2x ,则y 1 >y 2;(3)如果s 1>s 2,则y 1>y 2 ; (4)如果k k x x >,则y k >0. 其中真命题的个数是 ( )A. 4B. 3C. 2D. 1第二卷(非选择题 共55分 )二、填空题(本大题共5个小题,每小题4分,共20分.把答案填在题中的横线上)16.与向量a=(3,4)平行的单位向量的坐标是_ .17.设函数f(x)﹦2x+1,x∈{-1,2,3},则该函数的值域为_ .18.与直线3x - 2y = 0平行,且过点(-4 ,3)的直线的一般式方程是_ .19.已知数列{a n}的前n项和s n=n2+n,则数列{a n}的通项a n =_ .20. 如图所示的程序框图输出的c值是_ .三、解答题(本大题共5个小题,共35分. 解答时应写出文字说明,证明过程或演算步骤)21.(本小题满分6分)已知函数f(x)=x2+1.(1)证明f(x)是偶函数;+)上是增函数.(2)用定义证明f(x)在[0,∞∈)的最小正周期和最22.(本小题满分6分)求函数f(x)=2cos2x+23sinxcosx-1(x R大值。

2019年天津中考数学试题及答案

2019年天津中考数学试题及答案

2019年天津中考数学试题及答案 你的中考数学复习的怎么样啦,⼀起来看看考试栏⽬组⼩编为你提供的2019年天津中考数学试题及答案,希望能够帮助到你,想知道更多相关资讯,请关注⽹站更新。

2019年天津中考数学试题及答案 ⼀、选择题 1.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于( )A.50°B.40°C.25°D.20° 2.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是( )A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠5 3.如图将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4)B.(-2,4)C. (2,-3)D.(-1,-3) 4.反⽐例函数y=k/x(k>0)的部分图象如图所⽰,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的⾯积为S1,△BOD的⾯积为S2,则S1和S2的⼤⼩关系为( )A.S1>S2 B.S1=S2 C.S1 ⼆、填空题 12.某捐款⼤约1510000000元⼈民币,这个数字⽤科学记数法表⽰为 ___________. 13.已知|x|=5,y=3,则x-y=_______ 三、解答题 22.在同⼀条件下,对同⼀型号的汽车进⾏耗油1升所⾏驶路程的实验,将收集到的数据作为⼀个样本进⾏分析,绘制出部分频数分布直⽅图和部分扇形统计图.如下图所⽰(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表⽰12.5≤x<13部分百分数是____; (2)请把频数分布直⽅图补充完整,这个样本数据的中位数落在第组; (3)哪⼀个图能更好地说明⼀半以上的汽车⾏驶的路程在13≤x<14之间?哪⼀个图能更好地说明⾏驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?。

2022年6月天津市普通高中学业水平合格性考试数学试题(含答案解析)

2022年6月天津市普通高中学业水平合格性考试数学试题(含答案解析)

2022年6月天津市普通高中学业水平合格性考试数学试题学校:___________姓名:___________班级:___________考号:___________A .a b +B .b - 11.为了得到函数cos y x ⎛=- ⎝A .向左平行移动π3个单位长度C .向左平行移动13个单位长度12.从2名女生和3名男生中任选()A .35B .1213.甲、乙两人独立地破译密码译的概率是()A .112B .1214.函数()4x f x e x =+-的零点所在的区间是A .6B .8C .12二、填空题16.函数sin y x =,x ∈R 的最大值为.17.一支田径队有男运动员56人,女运动员42人,按性别进行分层,用分层随机抽样三、解答题(1)求证://MN 平面PDB ;(2)求证:AC ⊥平面PDB .24.已知函数()24x x x f a =-+(1)若()14f =,求a 的值;(2)当1a =时,(i )根据定义证明函数()f x 在区间(ii )记函数()()(),08,0f x x g x f x x x ⎧≥⎪=⎨--<⎪⎩,若()()33g b g b +=-,求实数b 的值.参考答案:24.(1)1-(2)(i )证明见解析;(ii )【分析】(1)根据函数值直接代入求参即可;(2)(i )任取(12,2,x x ∈+∞(ii )根据题意研究该分段函数单调性,根据【详解】(1)因为函数f 解得1a =-,所以a 的值为(2)当1a =时,()f x =(i )任取()12,2,x x ∈+∞,且则()()(21124f x x x f x =--()()12124x x x x =+--,因为122x x >>,所以1x +所以()()120f x f x ->,即所以函数()f x 在区间(2,()g x ⎧=答案第7页,共7页若()()33g b g b +=-,显然①30b b +≥>,即0b ≥时,()()2234314b b b +-++=-②03b b +>>,即3b -<时,()()223431b b b -+-+-=-③30b b +≥>,即30b -≤<()()223431b b b +-++=--解得352b -±=,均符合题意综上所述,0b =或32b -±=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市普通高中学业水平考试(数学)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分100分,考试用时90分钟。

参考公式:
·主体体积公式 sh柱体=V ,其中S 表示柱体的底面积,h 表示柱高.
·椎体体积公式 sh 31V =
椎体 其中S 表示锥体的底面积,h 表示椎体的高. ·球的体积公式 3R 3
4V π=球,其中R 表示球的半径 第I 卷
一、选择题:本题共20题,在每小题给出的四个选项中,只有一个是符合题目要求的.
1.已知集合{}1|>=x x M ,{}2|<=x x N ,则N M ⋂等于( )
A .{}21|<<x x
B . {1|<x x 或}2>x
C .R
D .φ
2.函数)6sin(2π
+=x y ,R x ∈的最小值为( )
A .2
B .1
C .-1
D .-2
3.i 是虚数单位,负数
i
i +12等于( ) A .i --1 B .i -1 C .i +-1 D .i +1 4.已知向量),1(m a =,)1,2(=b 。

若b a //,则m 的数值为( )
A .2-
B .21-
C .2
D .2
1 5.命题p :“12),,0(>+∞∈∀x ”的否定p ⌝是( )
A .“12
),,0(00>+∞∈∃x x ” B .“12
),,0(00≤+∞∈∃x x ” C .“12),,0(≤+∞∈∀x x ”
D .“12),,0(≤+∞∉∀x
x ”
6.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≥+≤0
201y x y x x ,则目标函数y x z 2+=的最小值是( )
A .7
B .1
C .-7
D .-1
7.在等比数列{}n a 中,若32,452==a a ,则7a 等于( )
A .128
B .-128
C .64
D .-64
8.椭圆192522=+y x 的离心率为( ) A .53
B.54
C.43
D.2516
9.若双曲线)0(142
22>=-a y a x 的一条渐近线方程为x y 2=,则a 的值为( )
A.8
B.4
C.2
D.1
10.若抛物线px y 22=的焦点坐标为)0,2(,则p 的值为( )
A.1
B.2
C.4
D.8
11.下列函数在R 上是减函数的为( )
A .x y 5.0log = B.x
y 2= C.x y 5.0= D.3x y =
12.直线012:1=--y x l 与直线01:2=+-y mx l 互相垂直的充要条件是( )
A.2-=m
B.21
-=m C.21
=m D.2=m
13.将函数x y 2cos =的图象向右平移6π
个单位长度,所得图象的函数解析式为(

A .)62cos(π
+=x y
B .)32cos(π
+=x y
C .)62cos(π
-=x y
D .)32cos(π
-=x y
14.一个水平放置的圆锥的三视图如图所示,则这个圆锥的体积等于( )
A .π2
B .π34
C .π32
D .3π
15.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为35秒,当你到达路口时,看见绿灯亮的概率为( )
A .73 B.21 C.207 D.12
7 16.同时投掷两个质地均匀的筛子,向上的点数之和为5的概率是( ) A .91 B.365 C.6
5 D.3625 17.若3.05
=a ,53.0=b ,5log 3.0=c ,则a 、b 、c 三个数的大小关系为( ) A .b a c << B.a c b << C.a b c << D.c a b <<
18.已知m ,n 是空间两条不同的直线,βα,是空间两个不同的平面,下列命题为真命题的是( )
A .若α//,n n m ⊥,则α⊥m
B. 若βαα//,⊥m ,则β⊥m
C. 若α⊥⊥n n m ,,则α⊥m
D. 若βαα⊥⊥,m ,则β⊥m
19.如图,在三棱柱111C B A ABC -中,侧棱⊥1CC 底面ABC ,CB CA ⊥,1CC CB CA ==,则异面直线1AB 与BC 所成角的余弦值为( )
A .33 B.3
6 C.2
2 D.0
20.有如下说法:
①为了解某小学六个年级全体学生的身高情况,现只选取一年级学生的身高作为样本,这样的抽样方式是合理的。

②如图,随机向图中边长为1的正方形内投点10000次,统计出恰有4527次落在阴影图形内,由此可以估计阴影图形的面积是0.4527。

③若在一次试验中事件A 发生的概率为100
1,则重复做100次这样的试验,事件A 恰好发生1次。

其中正确的是( )
A .② B. ③ C. ②③ D. ①②③
第Ⅱ卷(非选择题 共55分)
二、填空题:本题共5个小题,每小题3分,共15分。

21.若向量)4,3(),2,1(=-=b a ,则a 与b 的夹角的余弦值等于 。

22.已知a>0,b>0,若ab=36,则a+b 的最小值
为 。

23.若函数x m x x f )1()(2
-+=为偶函数,则实数m 的
值为 。

24.阅读右面的程序框图,运行相应的程序,输出的结果
是 。

25.如下图所示,货轮在海上以40 n mile/h 的速度向正南方向航行,到达B 点时,观测到灯塔A 在货轮的南偏东45°方向,继续航行半小时后货轮到达C 点,此时观测到灯塔A 在货轮的南偏东75°方向,则货轮到达C 点时与灯塔A 的距离为 n mile 。

三、解答题:本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤。

26.(本小题8分)
已知等差数列{}n a 中,43,523221=-=+a a a a 。

(1)求数列{}n a 的首项1a 和公差d ;
(2)求数列{}n a 前10项的和10S 的值。

27.(本小题10分) 已知),2
(,35cos ππαα∈-=。

(1)求)3cos(π
α+的值;
(2)求α2tan 的值。

28.(本小题10分)
已知两点)0,6(),0,0(A O ,圆C 以线段OA 为直径。

(1)求圆C 的方程;
(2)若直线01:=--y x l 与圆C 相交于M ,N 两点,求弦MN 的长。

29.(本小题12分)
已知函数x x x f 3)(3
-=。

(1)求曲线)(x f y =在点))(,2(x f P 处的切线方程;
(2)求函数)(x f 在区间[0,2]上的最小值和最大值;
(3)若函数2)()(ax x f x g +=在区间[-1,1]内恰有两个零点,求实数a 的取值范围。

参考答案。

相关文档
最新文档