元二次方程的解法及韦达定理

合集下载

一元二次方程韦达定理

一元二次方程韦达定理

一元二次方程韦达定理
一元二次方程韦达定理
一元二次方程,即用一个变量,表示二次的方程。

它的通解可以表示为ax2 + bx + c = 0(a≠0)。

韦达定理是一个重要的数学定理,他的公式为:
x = [-b +- √(b2 - 4ac)]/2a
该定理可以求解一元二次方程的两个实数根,其中a、b、c为系数,它们都是实数,x为实根。

该定理的本质是根据一元二次方程求解时,以b为中心,构成一个正方形,用其求得方程的实数根。

该定理可以用来解决方程的实数根,具体的,可以分为以下几种情况:
(1)b2 - 4ac > 0,这样有两个不相等的解
(2)b2 - 4ac = 0,这样有一个实数解
(3)b2 - 4ac < 0,这样没有实数解
韦达定理的应用非常广泛,它可以表示一元二次方程的两个实数根,还可以应用到物理中,例如轨道运动、动力学及研究分析等,从而解决实际的科学问题。

- 1 -。

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理一元二次方程的解法及韦达定理编号:撰写人:审核:一、一元二次方程的解法:例题1:用配方法、因式分解、公式法解方程:x2-5x+6=0【一元二次方程的解法总结】1、直接法:对于形如—x2=a的方程,我们可以用直接法。

方程的解为x=推论:对于形如(x+a)2=b的方程也是用直接开方的方法。

注意点:①二次项的系数为1,且a≥0②如果a为根式,注意化简。

例1:解方程:5x2=1例2:解方程:x2=4例3:解方程:4x 2+12x+9=122、配方法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们可以采用配方法的方法来解。

步骤:①把二次项的系数化为1.两边同时除以a ,可以得到:X 2+ b a x+ c a=0 ②配方:(x+ 2ba )2+c- 2()2b a =0③移项:(x+ 2ba )2=2()2b a -c ④用直接法求出方程的解。

X=-2b a注意点:解除方程的解后,要检查根号内是否要进一步化简。

例:解方程:x 2+x=13、公式法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们也可以采用公式法的方法来解。

根据配方法,我们可以得到方程的解为:X=-2b a进一步变形,就可以知道:形如:ax 2+bx+c=0(其中a ≠0)的方程的解为:x1x2注意点:①解除方程的解后,要检查根号内是否要进一步化简。

②解题步骤要规范。

例:解方程:x2+5x+2=0除了以上几种教材里的方法,一元二次方程还有其他的解法。

4、换元法对于一个方程,如果在结构上有某种特殊的相似性,可以考虑用换元法;或者,当这个题目有比较复杂的根式,换元法也是可以考虑的解法。

例1:解方程:(x2+5x+2)2+(x2+5x+2)-2=0例2:=15、有理化方法:对于一个方程,如果含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那就可以考虑用有理化的方法。

例:=46、主元法:对于一个方程,如果有两个未知数,那么,我们可以确定其中的一个为“主元“,将另一个未知数设定为常数,用公式法可以解出结果。

第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)

第三讲   一元二次方程根的判别式与韦达定理(精讲)(解析版)

2023年初高中衔接素养提升专题讲义第三讲 一元二次方程根的判别式与韦达定理(精讲)(解析版)【知识点透析】1、一元二次根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac∆=-(1) 当Δ=240b ac ->时,方程有两个不相等的实数根:x =(2) 当Δ=240b ac -=时,因此,方程有两个相等的实数根:1,22b x a=-(3) 当Δ=240b ac -<时,因此,方程没有实数根.【知识点精讲】【例1】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根(3)方程有实数根;(4) 方程无实数根.【解析】:2(2)43412k k ∆=--⨯⨯=-(1) 141203k k ->⇒<;(2) 141203k k -=⇒=;(3) 141203k k -≥⇒≥;(4) 141203k k -<⇒<.【变式1】((2022秋·重庆开州·八年级统考期中)使得关于x 的不等式组6x ―a ≥―10―1+12x <―18x +32有且只有4个整数解,且关于x 的一元二次方程(a ―5)x 2+4x +1=0有实数根的所有整数a 的值之和为( )A .35B .30C .26D .21【答案】B【分析】先求出不等式组的解集,根据有且只有4个整数解可确定a 的取值范围,再通过根的判别式确定a 的取值范围,最后结合两个取值范围找出满足条件的整数相加即可.【详解】解:整理不等式组得:6x ―a ≥―10①―8+4x <―x +12②由①得:x ≥a ―106,由②得:x<4∵不等式组有且只有4个整数解,∴不等式组的4个整数解是:3,2,1,0,∴―1<a―106≤0,解得:4<a≤10,∵(a―5)x2+4x+1=0有实数根,∴Δ=b2―4ac=16―4×(a―5)×1=36―4a≥0,解得:a≤9,∵方程(a―5)x2+4x+1=0是一元二次方程,∴a≠5∴4<a≤9,且a≠5,满足条件的整数有:6、7、8、9;∴6+7+8+9=30,故选:B.【变式2】.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k―12)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4b、c恰好是这个方程的两个实数根,求△ABC 的周长.【解答】(1)证明:Δ=(2k+1)2﹣4×1×4(k―12)=4k2﹣12k+9=(2k﹣3)2,∵无论k取什么实数值,(2k﹣3)2≥0,∴△≥0,∴无论k取什么实数值,方程总有实数根;(2)解:∵x=2k+1±(2k―3)2,∴x1=2k﹣1,x2=2,∵b,c恰好是这个方程的两个实数根,设b=2k﹣1,c=2,当a 、b 为腰,则a =b =4,即2k ﹣1=4,解得k =52,此时三角形的周长=4+4+2=10;当b 、c 为腰时,b =c =2,此时b +c =a ,故此种情况不存在.综上所述,△ABC 的周长为10.【例2】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.【解析】:可以把所给方程看作为关于x 的方程,整理得:22(2)10x y x y y --+-+=由于x 是实数,所以上述方程有实数根,因此:222[(2)]4(1)300y y y y y ∆=----+=-≥⇒=,代入原方程得:22101x x x ++=⇒=-.综上知:1,0x y =-=【变式1】(2022秋·湖北武汉·八年级武汉市第一初级中学校考期末)已知a ,b ,c 满足a 2+6b =7,b 2―2c =―1,c 2―2a =―17,则a ―b +c 的值为( )A .―1B .5C .6D .―7【答案】B【分析】首先把a 2+6b =7,b 2―2c =―1,c 2―2a =―17,两边相加整理成a 2+6b +b 2―2c +c 2―2a +11=0,分解因式,利用非负数的性质得出a 、b 、c 的数值,代入求得答案即可.【详解】解:∵a 2+6b =7,b 2―2c =―1,c 2―2a =―17,∴a 2+6b +b 2―2c +c 2―2a =―,∴a 2+6b +b 2―2c +c 2―2a +11=0∴(a ―1)2+(b +3)2+(c ―1)2=0,∴a =1,b =―3,c =1,∴a ―b +c =1+3+1=5.故选:B .【变式2】((2022秋·江苏扬州·八年级统考期中)新定义,若关于x 的一元二次方程:m (x ―a )2+b =0与n (x ―a )2+b =0,称为“同类方程”.如2(x ―1)2+3=0与6(x ―1)2+3=0是“同类方程”.现有关于x 的一元二次方程:2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”.那么代数式ax 2+bx +2022能取的最大值是_________.【答案】2023【分析】根据“同类方程”的定义,可得出a ,b 的值,从而解得代数式的最大值.【详解】∵2(x ―1)2+1=0与(a +6)x 2―(b +8)x +6=0是“同类方程”,∴(a +6)x 2―(b +8)x +6=(a +6)(x ―1)2+1,∴(a +6)x 2―(b +8)x +6=(a +6)x 2―2(a +6)x +a +7,∴b +8=2(a +6)6=a +7 ,解得:a =―1b =2,∴a x 2+bx +2022=―x 2+2x +2022=―(x ―1)2+2023∴当x =1时,a x 2+bx +2022取得最大值为2023.故答案为:2023.2、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:12b x x a+==-,12244ac c x x a a⋅====韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b c x x x x a a+=-=【知识点精讲】【例3】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +;(2) 1211x x +;(3) 12(5)(5)x x --;(4) 12||x x -.【解析】:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---=(2) 121212112220072007x x x x x x +-+===-(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-(4) 12||x x -====常见的一些变形结论:利用根与系数的关系求值,要熟练掌握以下等式变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.【例4】.已知关于x 的方程220x mx m -+=.(1)若2m =-,方程两根分别为1x ,2x ,求12x x -和3312x x +的值;(2)若方程有一正数,有一负数根,求实数m 的取值范围.【答案】.(14- (2)m <0【解析】(1)由22121212=()4x x x x x x -+-,33212121212()[()3]x x x x x x x x +=++-,借助韦达定理求解.(2)借助韦达定理表示方程有一正数,有一负数根的等价条件,进而求解.【详解】(1)当2m =-时,2222x x +-=即:210x x +-=1212140,1,1x x x x ∆=+>+=-=-因此:2212121212=()45x x x x x x x x -+-=∴-=3322212121212121212()[]()[()3]4x x x x x x x x x x x x x x +=++-=++-=-(2)220x mx m -+=212128,,22m m m m x x x x ∆=-+==21280002m m m m x x ⎧∆=->⎪∴<⎨=<⎪⎩【变式1】已知两不等实数a ,b 满足222a a =-,222b b =-,求22b a a b +的值.【解析】:b a ,是一元二次方程0222=-+x x 的不等实根则有2,2-=-=+ab b a原式=5)(]3))[(()())(()(22222233-=-++=+-+=+ab ab b a b a ab b ab a b a ab b a 【变式2】(2022秋·浙江杭州·八年级杭州外国语学校校考期末)设m 是不小于﹣1的实数,使得关于x 的方程x 2+2(m ﹣2)x +m 2﹣3m +3=0有两个实数根x 1,x 2.(1)若x 21+x 22=2,求m 的值;(2)令T =mx 11―x 1+mx 21―x 2,求T 的取值范围.【答案】(1)1 (2)0<T ≤4且T ≠2【分析】首先根据方程有两个实数根及m 是不小于-1的实数,确定m 的取值范围,根据根与系数的关系,用含m 的代数式表示出两根的和、两根的积.(1)变形x 12+x 22为(x 1+x 2)2-2x 1x 2,代入用含m 表示的两根的和、两根的积得方程,解方程根据m 的取值范围得到m 的值;(2)化简T ,用含m 的式子表示出T ,根据m 的取值范围,得到T 的取值范围.(1)∵关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个实数根,∴Δ=4(m -2)2-4(m 2-3m +3)≥0,解得m ≤1,∵m 是不小于-1的实数,∴-1≤m ≤1,∵方程x 2+2(m -2)x +m 2-3m +3=0x 1,x 2,∴x 1+x 2=-2(m -2)=4-2m ,x 1•x 2=m 2-3m +3.∵x 12+x 22=2,∴(x 1+x 2)2-2x 1x 2=2,∴4(m -2)2-2(m 2-3m +3)=2,整理得m 2-5m +4=0,解得m 1=1,m 2=4(舍去),∴m 的值为1;(2)T =mx 11―x 1+mx 21―x 2,=mx 1(1―x 2)+mx 2(1―x 1)(1―x 1)(1―x 2)=m [(x 1+x 2)―2x 1x 2]1―(x 1+x 2)+x 1x 2=m (4―2m ―2m 2+6m ―6)1―4+2m +m 2―3m +3=―2m(m ―1)2m 2―m=―2m(m ―1)2m (m ―1)=2-2m .∵当x =1时,方程为1+2(m ﹣2)+m 2﹣3m +3=0,解得m =1或m =0.∴当m =1或m =0时,T 没有意义.∴―1≤m <1且m ≠0∴0<2-2m ≤4且T ≠2.即0<T ≤4且T ≠2.【变式3】.已知12x x ,是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值,若不存在,请说明理由;(2)若k 是整数,求使12212x x x x +-的值为整数的所有k 的值.【答案】(1)不存在k ;理由见解析;(2)235k =---,,.【详解】(1)假设存在实数k ,使()()12123222x x x x --=-成立.∵一元二次方程24410kx kx k -++=的两个实数根∴()()24004441160k k k k k k ≠⎧⎪⇒<⎨∆=--⋅+=-≥⎪⎩,又1x ,2x 是一元二次方程24410kx kx k -++=的两个实数根∴1212114x x k x x k +=⎧⎪+⎨=⎪⎩∴()()()()222121212121212222529x x x x x x x x x x x x --=+-=+-939425k k k +=-=-⇒=,但0k < .∴不存在实数k ,使()()12123222x x x x --=-成立.(2)∵()22212121221121244224411x x x x x x k x x x x x x k k +++-=-=-=-=-++∴要使其值是整数,只需1k +能整除4,∴11k +=±,2±,4±,注意到0k <,要使12212x x x x +-的值为整数的实数k 的整数值为-2,-3,-5.所以k 的值为235k =---,,【变式4】(2022秋·四川凉山·八年级校考阶段练习)设一元二次方程x 2―2022x +1=0的两根分别为a ,b ,根据一元二次方程根与系数的关系可知:ab =1,记S 1=11+a +11+b ,S 2=11+a2+11+b2,S3=11+a3+11+b3,⋯,S100=11+a100+11+b100,那么S1+S2+S3+⋯+S100=______.【答案】100【分析】根据ab=1得到b=1a ,b2=1a2,b3=1a3,…b100=1a100,代入计算即可.【详解】∵一元二次方程x2―2022x+1=0的两根分别为a,b,∴ab=1,∴b=1a ,b2=1a2,b3=1a3,…b100=1a100,∴S1=11+a+11+1a=11+a+a1+a=1+a1+a=1,S2=11+a2+11+1a2=11+a2+a21+a2=1+a21+a2=1,S100=11+a100+11+1a100=11+a100+a1001+a100=1+a1001+a100=1,∴S1+S2+S3+⋯+S100=1+1+1+…+1100=100,故答案为:100.。

一元二次方程韦达定理的应用条件

一元二次方程韦达定理的应用条件

一元二次方程韦达定理的应用条件一元二次方程是高中数学中非常重要的一个知识点,而韦达定理则是解一元二次方程的一种常用方法。

了解一元二次方程韦达定理的应用条件对于提高数学解题的效率和准确性非常有帮助。

在本文中,我将详细介绍一元二次方程韦达定理的应用条件,并结合具体的数学例子进行讲解,以便你更全面地理解这一知识点。

一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\)、\(c\)为已知常数,\(x\)为未知数。

而韦达定理是指,对于一元二次方程:\[ax^2 + bx + c = 0\]其根可以表示为:\[x_1 + x_2 = -\frac{b}{a}\]\[x_1 \cdot x_2 = \frac{c}{a}\]下面我们来具体看一下一元二次方程韦达定理的应用条件。

对于一元二次方程来说,应当满足以下条件:1. 方程的二次项系数\(a\)不为0,即\(a \neq 0\);2. 方程的根是实数根或者虚数根(复数形式),即\(\Delta = b^2 - 4ac \geq 0\)或\(\Delta = b^2 - 4ac < 0\);3. 方程的根是有理数根或者实根,即\(\frac{b^2 - 4ac}{a}\)是一个平方数或者一个完全平方数,或者判别式\(\Delta\)为完全平方数。

举个例子,对于一元二次方程 \(2x^2 + 3x - 2 = 0\),我们可以应用韦达定理进行求解。

首先根据公式 \(x_1 + x_2 = -\frac{b}{a}\) 和\(x_1 \cdot x_2 = \frac{c}{a}\),代入系数,可以求得该方程的两个根。

这样,我们就可以利用韦达定理来快速求解一元二次方程的根。

了解一元二次方程韦达定理的应用条件对于解题非常重要。

只有在满足特定条件的情况下,我们才能够有效地使用韦达定理来求解一元二次方程的根。

希望通过本文的讲解,你能更加深入地理解一元二次方程韦达定理的应用条件,并在实际解题中灵活运用。

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根一、关于韦达定理的性质1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有x 1+x 2=-b a , x 1x 2=c a .2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a不难得出 x 1+x 2=-b a , x 1x 2=c a .(法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0 对比一元二次方程的一般式ax 2+bx +c =0,得b =-a (x 1+x 2),c =ax 1x 2,∴ x 1+x 2=-b a , x 1x 2=c a .3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0.4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.二、利用韦达定理求一元二次方程的根例如,求一元二次方程x 2―22x ―6=0的根.很明显,根据我们所学习惯,首选方法是十字相乘法.(法一)因式分解,得 (x -32)(x +2)=0,解得, x 1=32, x 2=- 2.当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.(法二) a =1,b =-22,c =-6,∴ b 2-4ac =8+24=32,∴ x =-b ±b 2-4ac 2a =22±422=2±22, 于是有 x 1=32, x 2=- 2.结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.(法三)已知方程x2―22x―6=0,根据韦达定理有x1+x2=22,x1x2=―6.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且(2+a)(2-a)=―6. (满足条件x1x2=―6)于是有2-a2=―6,则a2=8,因此a=2 2∴x1=2+22=32,x2=2-22=- 2.上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.例1:解方程x2―6x―25=0,根据韦达定理有x1+x2=6,x1x2=―25.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=3+a,x2=3-a,(满足条件x1+x2=6)且(3+a)(3-a)=―25. (满足条件x1x2=―25)于是有9-a2=―25,则a2=34,因此a=34∴x1=3+34,x2=3-34.例2:解方程x2+24x―63=0,根据韦达定理有x1+x2=-24,x1x2=―63.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-12+a,x2=-12-a,(满足条件x1+x2=-24)且(-12+a)(-12-a)=―63. (满足条件x1x2=―63)于是有144-a2=―63,则a2=207,因此a=207∴x1=-12+207,x2=-12-207.例3:解方程x2―14x+48=0,根据韦达定理有x1+x2=14,x1x2=48.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=7+a,x2=7-a,(满足条件x1+x2=14)且(7+a)(7-a)=48. (满足条件x1x2=48)于是有49-a2=48,则a2=1,因此a=1∴x1=7+1=8,x2=7-1=6.例4:解方程x2+18x+40=0,根据韦达定理有x1+x2=-18,x1x2=40.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-9+a,x2=-9-a,(满足条件x1+x2=-18)且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)于是有81-a 2=40, 则a 2=41, 因此a =41∴ x 1=-9+41, x 2=-9-41.通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如例5:解方程2x 2+9x ―5=0,(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92)且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52)于是有 8116-a 2=―52, 则a 2=12116, 因此a =114∴ x 1=-94+114=12, x 2=-94-114=-5.(法二)a =2,b =9,c =-5,∴ b 2-4ac =81+40=121,∴ x =-b ±b 2-4ac 2a=9±114, 于是有x 1=12, x 2=-5.当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.。

两种方法证明韦达定理

两种方法证明韦达定理

两种方法证明韦达定理韦达定理是代数学中的一个重要定理,主要描述了一元二次方程的根与系数之间的关系。

本文将详细介绍两种证明韦达定理的方法,帮助读者深入理解这一数学原理。

方法一:利用一元二次方程的求根公式证明首先,我们有一元二次方程:[ ax^2 + bx + c = 0 ]其求根公式为:[ x_{1,2} = frac{-b pm sqrt{b^2 - 4ac}}{2a} ]根据求根公式,我们可以得到方程的两个根:[ x_1 = frac{-b + sqrt{b^2 - 4ac}}{2a} ][ x_2 = frac{-b - sqrt{b^2 - 4ac}}{2a} ]将两个根相加,得到:[ x_1 + x_2 = frac{-b + sqrt{b^2 - 4ac}}{2a} + frac{-b - sqrt{b^2 -4ac}}{2a} ][ x_1 + x_2 = frac{-2b}{2a} = -frac{b}{a} ]将两个根相乘,得到:[ x_1 cdot x_2 = left(frac{-b + sqrt{b^2 - 4ac}}{2a}ight) cdot left(frac{-b - sqrt{b^2 - 4ac}}{2a}ight) ][ x_1 cdot x_2 = frac{(-b)^2 - (b^2 - 4ac)}{4a^2} = frac{b^2 - b^2 +4ac}{4a^2} = frac{4ac}{4a^2} = frac{c}{a} ]因此,我们证明了韦达定理:对于一元二次方程( ax^2 + bx + c = 0 ),其两个根( x_1 ) 和( x_2 ) 满足( x_1 + x_2 = -frac{b}{a} ) 和( x_1 cdot x_2 = frac{c}{a} )。

方法二:利用因式分解证明对于一元二次方程( ax^2 + bx + c = 0 ),我们可以将其因式分解为:[ ax^2 + bx + c = a(x - x_1)(x - x_2) ]其中( x_1 ) 和( x_2 ) 分别为方程的两个根。

虚系数一元二次方程满足韦达定理

虚系数一元二次方程满足韦达定理

虚系数一元二次方程满足韦达定理然而,在一些问题中,我们需要求解一些特殊的方程,这些方程的系数中存在虚数。

这样的方程被称为虚系数一元二次方程。

虚系数方程在数学领域中有着广泛的应用和研究,特别是在复数及其应用、代数学和数论中。

虚系数方程满足韦达定理,即对于任意二次方程ax² + bx + c = 0,其根可由以下公式计算:x₁ = (-b + √(b² - 4ac)) / 2ax₂ = (-b - √(b² - 4ac)) / 2a当方程的系数a、b和c都是实数时,方程的解可以求得。

而当方程存在虚数时,方程的解为复数。

为了更好地理解虚系数一元二次方程满足韦达定理的原理和推导过程,我们需要从复数的性质开始,然后逐步引入虚系数方程的概念。

复数是由实数和虚数构成的数,表示为 a + bi,其中a为实数部分,bi为虚数部分,i为虚数单位,满足i² = -1、复数的加法、减法、乘法和除法等运算都可以通过实数部分和虚数部分的运算得到。

在解一元二次方程时,我们可以引入复数的概念,使得方程的根在实数范围之外也有解。

这就是虚数的应用。

虚系数方程的根是复数,可以表示为x₁ = p + qi和x₂ = p - qi,其中p和q都是实数部分。

通过韦达定理求解虚系数方程的根,可以得到复数的实部和虚部。

假设有一个虚系数方程a(x-α)(x-β)=0,其中α和β为复数。

根据展开公式,可以得到方程的展开式为:ax² - a(α + β)x + aαβ = 0根据韦达定理,方程的根应满足以下条件:α+β=(-b/a)αβ=(c/a)将以上两个条件代入方程的展开式中,可以得到:ax² - 2a(α + β)x + a²(αβ) = 0由此可知,虚系数方程满足韦达定理,其系数与根之间存在一定的关系。

通过求解方程的根,可以得到复数的实部和虚部。

虚系数方程在实际问题中的应用很广泛。

一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。

判别式的表达式为:D=b²-4ac。

其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。

2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。

举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。

3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。

抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法及韦达定理
编号: 一、一元二次方程的解法: 例题 1: 用配方法、因式分解、公式法解方程: x2-5x+6=0
撰写人:
审核:
【总结】 以上的三种方法之中,最简单的方法是哪一种?
【一元二次方程的解法总结】
1、直接法:对于形如—x2=a 的方程,我们可以用直接法。方程的解为 x=± a
例: 解方程:x2+x=1
3、公式法: 对于形如:ax2+bx+c=0(其中 a≠0)的方程,我们也可以采用公式法的方法来解。 根据配方法,我们可以得到方程的解为:
X=- b ± ( b )2 c 2a 2a
进一步变形,就可以知道:形如:ax2+bx+c=0(其中 a≠0)的方程的解为:
b
x1=
一元二次方程习题 1、等腰△ABC 两边的长分别是一元二次方程 x2-9x+18=0 的两个解,求这个三角 形的周长。
【举一反三】 例题 1:Rt△ABC 两边的长分别是一元二次方程 x2-5x+6=0 的两个解,求这个三 角形的面积。
例题 2:矩形的两边的差为 2,对角线的长为 4,求矩形的面积。
8、有一人患了流感,经过两轮传染后共有 121 人欢乐流感,每轮传染中平均一
个人传染了几个人?
解题方案:
设每轮传染中平均一个人传染了 x 个人,
(Ⅰ)用含 x 的解析式表示:
第一轮后共有
人患了流感;
第二轮传染中,这些人中的每个人又传染了 x 个人,第二轮后共有
人患了
流感;(Ⅱ)根据题意,列出相应方程为
例:解方程 x2 y 2 4x 2 y 5 0
除了这种方法,遇到这种题目,你还有别的解法吗?
二、判别式的运用: 我们知道: 方程 ax2+bx+c=0(其中 a≠0)的解为:
b
x1=
b2 4ac ,x2= b
b2 4ac
2a
2a
其中,我们把: =b2-4ac 称之为判别式 (1) 当 >0 的时候,方程有两个不同的实数根。 (2) 当 =0 的时候,方程有两个相同的实数根。 (3) 当 <0 的时候,方程没有实数根。没有实数根与没有根是两个不同的概念。
比例函数 y= m 的图象上,求满足条件的 m 的最小值. x
例 题 2:已知关于 的方程(1)
有两个不相等的实数根,且关
于 的方程(2) 解?
没有实数根,问 取什么整数时,方程(1)有整数
例题 3:已知 a>0,b>0,且:a+2b+ab=30,求 ab 的最大值。 5、若 n(n≠0)是关于 x 的方程 x2+mx+2n=0 的根,求 m+n 的值。
6、关 于 x 的 方 程 a( x+m)2+b=0 的 解 是 x1=-2,x2=1,( a,m,b 均 为 常 数 ,a≠ 0), 解方程方程 a(x+m+2)2+b=0。
7、 设 方 程 ( x-a)( x-b) -x=0 的 两 根 是 c、 d, 解 方 程 ( x-c)( x-d) +x=0。
例 2:
解方程: 3x 4 3 5 3x 1
5、有理化方法: 对于一个方程,如果含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那 就可以考虑用有理化的方法。 例:
解方程: x2 7x 10 x2 7x 6 4
6、主元法: 对于一个方程,如果有两个未知数,那么,我们可以确定其中的一个为“主元“,将另一个 未知数设定为常数,用公式法可以解出结果。
|x1-x2|= (x1 x2 )2
(x1 x2 )2 4x1x2
( b)2 4( c )
a
a
b2 4ac
a2
=
a
韦达定理的应用: 1、运用韦达定理求方程的解或者系数的范围。
例题 1:
如果关于 x 的方程: x2 2x a 0的一个根是1- 2,求方程的另一个根及a的值。
例题 2:已知关于 x 的方程(a2-1)x2-(a+1)x+1=0 的两个根互为倒数,求 a 的值。
判别式的运用: (1)求方程系数的取值范围。 例:已知方程 ax2+8x+a=0 有两个不同的实数根,求 a 的取值范围。
(2)求最大值最小值的问题。

1:求
y
x值和最小值。
例 2:已知 a>0,b>0,且 a+2b+ab=30,求 a、b 为何值时,ab 取得最大值。
三、韦达定理 对于方程 ax2+bx+c=0(其中 a≠0)的解为:

(Ⅲ)解这个方程,得

(Ⅳ)根据问题的实际意义,平均一个人传染了
个人.
步骤:①把二次项的系数化为 1.
两边同时除以 a,可以得到:
X2+
b
x+
c
=0
aa
②配方:
(x+ b )2+c- ( b )2 =0
2a
2a
③移项:
(x+ b )2= ( b )2 -c 2a 2a
④用直接法求出方程的解。
X=- b ± ( b )2 c 2a 2a
注意点:解除方程的解后,要检查根号内是否要进一步化简。
推论:对于形如(x+a)2=b 的方程也是用直接开方的方法。 注意点:①二次项的系数为 1,且 a≥0 ②如果 a 为根式,注意化简。 例 1:解方程:5x2=1
例 2:解方程:x2= 4 2 3
例 3:解方程:4x2+12x+9=12
2、配方法:
对于形如:ax2+bx+c=0(其中 a≠0)的方程,我们可以采用配方法的方法来解。
b2 4ac ,x2= b
b2 4ac
2a
2a
注意点: ① 解除方程的解后,要检查根号内是否要进一步化简。 ② 解题步骤要规范。 例: 解方程:x2+5x+2=0
除了以上几种教材里的方法,一元二次方程还有其他的解法。 4、换元法 对于一个方程,如果在结构上有某种特殊的相似性,可以考虑用换元法;或者,当这个题 目有比较复杂的根式,换元法也是可以考虑的解法。 例 1: 解方程:(x2+5x+2)2+(x2+5x+2)-2=0
2、构造方程进行计算: 例题 1:已知 3a2+2a-1=0,3b2+2b-1=0。求|a-b|的值
例题 2:已知 a,b,c 都是整数,且有 a+b+c=0,abc=16,求 a、b、c 三个数中的最大数的最小值。
例题 3:已知在四边形 ABCD 中,对角线 AC、BD 相交于点 O,且 S△AOB=4,S△COD=9,求四 边形 ABCD 面积的最小值。
2、解方程: ( 1) x2-2=-2x; (2)x(x-3)+x-3=0;??? ( 3) 4x2+12x+9=81.
3、先 化 简 ,再 求 值 :( a-1)÷( 2 -1),其 中 a 为 方 程 x2+3x+2=0 的 一 个 根 . a 1
【举一反三】 例题 1:设 a,b 分别是方程 x2+3x+1=0 的两个根,求: (1)a2+b2+ab 的值;(2)求 a3+b3 的值
例题 2:已知:5a2+12a-1=0,b2-12b-5=0,且:ab≠1,求:
ab 5ab2 5b 的值。 b2
4、关于 x 的方程(a-5)x2-4x-1=0 有实数根,求 a 的取值范围。
【举一反三】 例题 1:已知关于 x 的方程 x2-2(k-3)x+k2-4k-1=0. (1)若这个方程有实数根,求 k 的取值范围; (2)若这个方程有一个根为 1,求 k 的值; (3)若以方程 x2-2(k-3)x+k2-4k-1=0 的两个根为横坐标、纵坐标的点恰在反
b
x1=
b2 4ac ,x2= b
b2 4ac
2a
2a
那么就有:x1+x2=
b ,x1x2=
c
.
a
a
除了这两个式子之外,还有几个,我们也必须要熟悉的:
(1)|x1-x2|=
a
(2)
1 x1
+
1 x2
=
a b
11 a (3) x1 x2 = c
注:以上的几个公式,教材没有提及,所以,运用的时候要加以证明,在做选择题或者填空 题时可以直接运用。 下面给出公式(1)的推理:
相关文档
最新文档