相似三角形的性质(导学案)
九年级数学下册《相似三角形的性质》教案、教学设计

-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。
4.7 相似三角形的性质 第二课时导学案

丹东市第二十四中学 4.7 相似三角形的性质 第二课时主备:李春贺 副备:孙芬 曹玉辉 审核: 2014-9-15 一、学习准备: 1.已知△ABC ∽△ADE ,12AD DB =,则△ABC 的BC 边上的高线 与△ADE 的DE 边上高线的比为________;对应中线的比为________; 对应顶角平分线的比为_________;相似比为____________。
2.如果5,(0)7a c e b d f b d f ===++≠,那么a c eb d f++++=_________________ 二、学习目标:1. 掌握三角形相似,则周长的比与相似比,面积的比与相似比的平方之间存在的等量关系;2. 能熟练运用此性质进行计算,并能解决一些实际问题。
3. 学习能力的养成。
三、自学提示: (一)自主学习:如图,若△ABC ∽△A 1B 1C 1,且相似比为3:4,并完成以下问题:1. 求△ABC 的周长与△A 1B 1C 1的周长之比?2. 求△ABC 与△A 1B 1C 1的面积如何表示?它们的比 是多少? 3. 观察1的结果,你能从中发现什么?观察2的结果,你能从中发现什么?4.你的结论是什么? (二)合作探究:1.如图,在△ABC 中,D,E 分别是边AB,AC 上的点,::2:3AD AB AE AC ==,求:ADE BCED S S ∆四边形。
2.如图所示,在△ABC 中,DE ∥BC ,且:1:2,3,ADE BECD S S BC ∆==四边形则DE 的长为_________。
A 11第2题图CBE DA四、学习小结: 五、夯实基础:1.若△ABC ∽△A 1B 1C 1,且AB :A 1B 1=1:2,则它们的周长的比为_________;面积的比为____________;相似比为___________。
2.把一个三角形改成和它相似的三角形,如果面积扩大到原来的100倍,那么边长扩大到原来的_______倍。
相似三角形的性质教案

相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。
二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。
三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。
2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。
教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。
4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。
教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。
(2)对应边成比例性质:相似三角形的三个对应边都成比例。
(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。
四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。
五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
性质:1. 对应角相等性质:相似三角形的三个对应角都相等。
2. 对应边成比例性质:相似三角形的三个对应边都成比例。
3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。
通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。
相似三角形的性质 导学案(含答案)

4.7相似三角形的性质 导学案 第1课时 相似三角形的性质定理(一)1、预习目标 1.三角形中除三条边外的主要线段有角平分线、高、中线.2.相似三角形对应高的比,对应角平分线的比,对应中线的比都等于相似比. 2、课堂精讲精练【例1】如图,某同学拿着一把12 cm 长的尺子,站在距电线杆30 m 的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60 cm ,则电线杆的高度是(D)A .2.4 mB .24 mC .0.6 mD .6 m【跟踪训练1】若△ABC ∽△A ′B ′C ′,BD 和B ′D ′是它们的对应中线,已知BD ∶B ′D ′=5∶2,AC =10 cm ,则A ′C ′=4_cm .【跟踪训练2】已知△ABC ∽△DEF ,且相似比为4∶3,若△ABC 中∠A 的平分线AM =8,则△DEF 中∠D 的平分线DN =6.【例2】如图,△ABC 是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC =40 cm ,AD =30 cm ,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上,AD 与HG 的交点为M.(1)求证:AM AD =HGBC ;(2)求矩形EFGH 的周长.解:(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH.∴∠AHG =∠ABC ,∠AGH =∠ACB.∴△AHG ∽△ABC. ∵AD ⊥BC ,∴AM ⊥HG. ∴AM AD =HG BC. (2)设HE =x cm ,则MD =x cm ,HG =2x cm.∵AD =30 cm ,∴AM =(30-x)cm. ∵AM AD =HG BC ,∴30-x 30=2x 40. 解得x =12.∴矩形EFGH 的周长为2(x +2x)=72 cm.【跟踪训练3】如图,已知正方形DEFG 的顶点D ,E 在△ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.如果BC =4,△ABC 的面积是6,那么这个正方形的边长是127.3、课堂巩固训练1.已知△ABC ∽△A ′B ′C ′,相似比为3∶4,AD 与A ′D ′分别是△ABC 与△A ′B ′C ′的角平分线,则AD ∶A ′D ′等于(A)A .3∶4B .4∶3C .9∶16D .16∶92.如图,在边长为2的正方形ABCD 中,E 为AB 的中点,BM ⊥CE ,则Rt △BEM 与Rt △BCM 斜边上的高的比为(C)A .1∶3B .2∶3C .1∶2D .3∶53.如图,在梯形ABCD 中,AD ∥BC ,两腰BA 与CD 的延长线交于点P ,PF ⊥BC 于点F ,交AD 于点E.若AD =2,BC =5,EF =3,则PF =5.4.如图,在△ABC 中,BC =12,AD 是BC 边上的高,AD =8,P ,N 分别是AB ,AC 边上的点,Q ,M 是BC 上的点,连接PQ ,PN ,MN ,PN 交AD 于点E.若四边形PQMN 是矩形,且PQ ∶PN =1∶2,求PQ ,PN 的长.解:设PQ =y ,则PN =2y. ∵四边形PQMN 是矩形,∴PN ∥QM.∴∠APN =∠B ,∠ANP =∠C. ∴△APN ∽△ABC. ∴PN BC =AE AD ,即2y 12=8-y 8. 解得y =247.∴PQ =247,PN =487.第2课时 相似三角形的性质定理(二)1、预习目标1.相似三角形的周长比等于相似比,面积比等于相似比的平方.2.上述性质可推广到相似多边形,即相似多边形的周长比等于相似比,面积比等于相似比的平方. 2、课堂精讲精练【例1】如图,点D ,E 分别为△ABC 边AB ,AC 上的一点,且DE ∥BC ,S △ADE =4,S 四边形DBCE =5,则△ADE 与△ABC 的相似比为(D)A .5∶9B .4∶9C .16∶81D .2∶3【跟踪训练1】如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半.若BC =3,则△ABC 移动的距离是(D)A.32B.33C.62D.3-62【跟踪训练2】如图,在▱ABCD 中,E 为CD 的中点,AE 与BD 相交于点F.若△DEF 的面积为2,则▱ABCD 的面积为24.【例2】如图,在Rt △ABC 中,∠ACB =90°,点M 是斜边AB 的中点,MD ∥BC ,且MD =CM ,DE ⊥AB 于点E ,连接AD ,BD.(1)求证:△MED ∽△BCA ;(2)当S △BDM =13S △ABC 时,求S △BED ∶S △MED 的值.解:(1)证明:∵MD ∥BC , ∴∠DME =∠CBA. ∵∠DEM =∠ACB =90°, ∴△MED ∽△BCA.(2)∵∠ACB =90°,点M 是斜边AB 的中点,∴MB =12AB.∵MC =MD ,∴MD =12AB.∵△MED ∽△BCA ,∴S △MED S △ABC =(DM AB )2=14.∵S △BDM =13S △ABC ,∴S △MED S △BDM =34.又∵S △MED +S △BED =S △BDM , ∴S △BED ∶S △MED =1∶3.【跟踪训练3】如图所示,在▱ABCD 中,点E 是CD 的延长线上一点,且DE =12CD ,BE 与AD交于点F.(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.解:(1)证明:∵四边形ABCD 为平行四边形, ∴∠A =∠C ,AB ∥CD ,AD ∥BC ,AB =CD. ∴∠ABF =∠E. ∴△ABF ∽△CEB. (2)∵AD ∥BC ,∴△DEF ∽△CEB.∴S △DEF S △CEB =(DE CE )2.∵DE =12CD ,AB =CD ,∴DE CE =13,DE AB =12.∴S △DEF S △ABF =14,S △DEF S △CEB =19. ∴S △ABF =8,S △CEB =18.∴S ▱ABCD =S △ABF +S △CEB -S △DEF =8+18-2=24.3、课堂巩固训练1.如图,△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,△ADE 的周长是6,则△ABC 的周长是(C)A .6B .12C .18D .242.已知△ABC 与△DEF 相似且周长的比为2∶3,则△ABC 与△DEF 的面积比为(D)A .2∶3B .16∶81C .9∶4D .4∶93.如图,E为▱ABCD的边AB延长线上的一点,且BE∶AB=2∶3,△BEF的面积为4,则▱ABCD 的面积为(A)A.30 B.27 C.14 D.324.如果两个相似三角形的周长比为1∶2,那么它们某一组对应边上的高之比为1∶2.5.如图,在梯形ABCD中,AD∥BC,两腰的延长线相交于点P.若S△PAD∶S梯形ABCD=1∶2,且BC=26,求AD的长.解:∵S△PAD∶S梯形ABCD=1∶2,∴S△PAD∶S△PBC=1∶3.∵AD∥BC,∴△PAD∽△PBC.∴ADBC=33.∴AD=2 2.。
九年级数学 相似三角形的判定(教案、导学案)

27.2相似三角形27.2.1 相似三角形的判定第1课时相似三角形的判定(1)【知识与技能】1.了解相似三角形的概念及其表示方法;2.掌握平行线分线段成比例定理及平行于三角形一边的直线的性质定理;3.掌握相似三角形判定的预备定理.【过程与方法】经历从探究到归纳证明的过程,发展学生的合情推理能力和逻辑思维能力.【情感态度】体验从一般到特殊及由特殊到一般的认知规律,发展辩证思维能力. 【教学重点】平行线分线段成比例定理及判定三角形相似的预备定理.【教学难点】探索平行线分线段成比例定理的过程.一、情境导入,初步认识问题1相似多边形的性质是否也适用于相似三角形呢?问题2如果△ABC与△A1B1C1相似,能类似于两个三角形全等,给出一种相似表示方法吗?△ABC 与△A 1B 1C 1的相似比为k ,那么△A 1B 1C 1与△ABC 的相似比也是k 吗?问题3 如何判定两个三角形相似呢?【教学说明】通过上述三个问题的设置,既帮助学生认识了相似三角形的一些基本知识,又为引出平行线分线段成比例定理作些铺塾,教师可釆用自问自答形式讲述这部分内容. 二、思考探究,获取新知问题1 如图,任意画两条直线l 1,l 2,再画三条与l 1,l 2相交的平行线l 3,l 4,l 5分别度量AB ,BC ,DE ,EF 长度,则EFDEBC AB 与相等吗?呢?与DF DE AC AB 呢?与DFEFCA BC【教学说明】教师可让学生在自己准备的 白纸上画出类似图形,测出所截各条线段的长度(尽可能准确些),然后求出相应比值的近似值,便于作出说明.教师巡视,发现问题及时引导.对出现比值相差较大情形,帮助他们分析,找出原因,尽量让学生们获得对应线段的比值近似相等这一结果,形成感性认知.最后,教师可综合大多数同学的认知,给予总结,得出结论.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等.【教学说明】这一结论不要求学生证明,只需形成感性认识.为了便于记忆,上述定理的结论可使用下面形象化的语言,如:.等全下全下,全上全上,上下上下,下上下上==== 问题 2 如图,当l 1//l 2//l 3时,在(1)中是否仍有呢?,,AF EFAC BCAF AE AC AB EF AE BC AB ===在(2)中是否仍有呢?,,DFBFACBCDF DB AC AB BF DB BC AB ===【教学说明】针对问题2,教师应引导学生利用“平行线分线段成比例定理”来进行说明,不可继续用测量方法得到,这样就由感性认识 上升到理性思考.这里建议将学生进行分组,小组讨论,相互交流,形成认识,最后教师再与全 班同学一道分析,得出结论.平行于三角形一边的直线截其他两边(或两边的延长线),所得到的对应线段的比相等.问题3 如图,在△ABC 中,DE// BC ,DE 分别交AB 、AC 于D 、E ,则△ABC 与△ADE 能相似吗?为什么?问题4如图,已知DE//BC,DE分别交AB.AC的反向延长线于D、E,则△ADE与△ABC能相似吗?为什么?【教学说明】将全班学生分成两组,分别完成问题3、4的探究,教师应先给予点拨,突破难点(即添加辅助线,达到两个三角形的三边的比能相等的目的),然后学生自主完成,锻炼逻辑思维能力和推理能力.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 (相似三角形判定的预备定理).三、运用新知,深化理解1.如图,DE//BC,EF//AB,请尽可能多地找出图中的相似三角形,并用符号表示出来.2.如图D 为△ABC 中BC 边的中点,E 为AD 中点,连接并延长BE 交 AC 于F.过E 作EG//AC 交BC 于G. (1) 求AC EG 的值;(2)求CF EG 的值;(3)求FCAF的值.3.如图,已知在△ABC 中,DE//BC ,AD=EC ,BD=1cm ,AE=4cm ,BC=5cm , 求 DE 的长.【教学说明】 让学生自主完成,也可合作完成,在练习中加深理解.教师巡视指导,及时点拨.在完成上述题目后,教师引导学生完成创 优作业中本课时的“名师导学”部分.【答案】1.解:△ADE ~△ABC ,△CEF ~△CAB, △ADE ~△EFC. 2.解:(1)∵EG//AC ,∴△DGE ~△DCA ,∴21==DA DE AC EG . (2)∵EG//AC ,E 是AD 的中点,∴G 是CD 的中点,即CG=DG.又D 是BC 的中点,∴BD=CD ,∴BG=3CG ,BC=4CG ,∴34BG BC = . ∵EG//FC, ∴△BEG ~△BFC,∴43==BC BG FC FG . (3)过D 点作DH//CF ,交BF 于H.易得DH=AF ,∴21==FC DH FC AF . 3.解:∵DE//BC ,∴ECAEDB AD =,又AD=CE ,∴AD 2=4,∴AD=2,∴AB=3.由DE//BC 可知△ADE ~△ABC ,∴)(cm 310352=⨯==BC DE AB AD . 四、师生互动,课堂小结 1.这节课你学到了哪些知识? 2.你还有哪些疑惑?【教学说明】师生以交谈方式回顾本节知识,重点应关注哪些内容,还有什么地方不太明白,及时解疑.完成创优作业中本课时的“课时作业”部分.本课时教学思路应从探究、猜想、验证归纳出发,遵循学生的理解认知能力,由浅入深、逐步推进,激发学生自主探究的学习热情,培养学生的自主学习能力.27.2 相似三角形 27.2.1 相似三角形的判定 第1课时 相似三角形的判定(1)一、新课导入 1.课题导入问题1:我们学过哪些判定两个三角形全等的方法?问题2:类比上面这些方法,猜一猜判定两个三角形相似的方法有哪些? 由此导入课题(板书课题). 2.学习目标(1)能用符号表示两个三角形相似,能确定它们的相似比、对应边和对应角.(2)能叙述平行线分线段成比例定理及其推论,并能结合图形写出正确的比例式.(3)能用平行线分线段成比例定理的推论证明三角形相似的判定引理. 3.学习重、难点重点:平行线分线段成比例定理及其推论. 难点:正确理解定理中的“对应线段”. 二、分层学习1.自学指导(1)自学内容:教材P29~P30思考上面的内容. (2)自学时间:8分钟.(3)自学方法:学生分小组采用度量的方法和已学知识探究平行线分线段成比例定理,并完成自学参考提纲.(4)自学参考提纲:①三个角相等,三条边成比例的两个三角形相似.在△ABC 和△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=C′,AB BC CAk A B B C C A ==='''''', 那么△ABC 和△A′B′C′相似,记作△ABC ∽△A′B′C′,△ABC与△A′B′C′的相似比为k,△A′B′C′与△ABC的相似比为1 k .全等三角形也是相似三角形, 它们的相似比为1.②相似三角形的对应角相等,对应边成比例.③完成教材P29探究:a.如图1,量一量,算一算,ABBC与DEEF相等吗?BCAB与EFDE呢?ABAC与DEDF呢?BCAC与EFDF呢?b.由上一步可得:∵l3∥l4∥l5,∴ABBC=DEEF,BCAB=EFDE,ABAC=DEDF,BC AC =EFDF.c.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例.d.指出图1中的所有对应线段(如AB与DE):BC与EF,AC与DF.④把平行线分线段成比例定理应用到三角形中,会出现图2和图3两个基本图形:在这两个图形中,把DE看成平行于△ABC的边BC的直线,截其他两边(如图1)或其他两边的延长线(如图2),于是可得推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:∵DE∥BC,∴ADDB=AEEC,ADAB=AEAC,BDAB=CEAC.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:能否正确理解“对应线段”,尤其是在推论的两个图形中.②差异指导:根据学情,指导学生结合图形理解“对应线段”.(2)生助生:小组交流、研讨.4.强化(1)分清平行线分线段成比例定理的条件与结论,弄清哪些是“对应线段”.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等(强调“对应”).1.自学指导(1)自学内容:教材P30思考~P31.(2)自学时间:6分钟.(3)自学方法:学生分小组对不同类型的相似三角形进行证明,并完成自学参考提纲.(4)自学参考提纲:①已知DE∥BC,运用定义证明△ADE∽△ABC(如图1,作EF∥AB).证三个角相等:∠A公共,由DE∥BC可得∠ADE=∠B,∠AED=∠C.证三条边成比例:由DE∥BC可得ADAB=AEAC,由EF∥AB可得BFBC=AEAC.由DE∥BC,EF∥AB可得四边形BFED是平行四边形,所以BF=DE.故DE BCADAB=AEAC=BFBC.所以△ADE∽△ABC.②如图2, DE∥BC分别交BA、CA的延长线于点D、E,那么△ADE与△ABC 相似吗?能否给予证明?相似.∵DE ∥BC,∴∠E=∠C,∠D=∠B.过E 作EF ∥BD 交CB 的延长线于点F. ∵DE ∥BC ,EF ∥BD ,∴,AE AD BF AEAC AB BC AC==. 又∵四边形BDEF 是平行四边形,∴DE=BF,∴AE AD DEAC AB BC==. ∴△ADE ∽△ABC.③如图3,△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC. ∵DE ∥BC ,EF ∥AB ,∴∠CEF=∠A,∠ADE=∠B=∠EFC,AD AE DB EC =,BF AEFC EC=. 又∵四边形BDEF 是平行四边形, ∴BD=EF,DE=BF. ∴AD AE DEEF EC FC==, ∴△ADE ∽△EFC.④如图4,DE ∥FG ∥BC ,找出图中所有的相似三角形. 由DE ∥FG ∥BC ,易知△ADE ∽△AFG ∽△ABC. 2.自学:结合自学指导进行自学. 3.助学 (1)师助生:①明了学情:看学生能否添加辅助线构造比例线段进行转化. ②差异指导:根据学情指导学生弄清引理的证明思路和方法. (2)生助生:小组交流、研讨. 4.强化(1)判定三角形相似的预备定理及其两个基本图形. (2)点两名学生板演自学参考提纲中第③、④题,并点评. 三、评价1.学生学习的自我评价:这节课你有什么收获?还有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生的课堂参与程度、思维状况、小组协作等方面的课堂表现去评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时先给出相似三角形的定义,说明有关概念,明确相似三角形的符号表示和相似比的意义.由于三角形的相似与比例线段密不可分,因此在形成相似三角形的概念之后,主要安排学习比例线段,进而讨论平行于三角形一边的平行线的性质与判定以及平行线分线段成比例定理,为研究相似三角形提供了必要的知识准备.教学过程中应遵循学生的理解认知能力,由浅入深,逐步推进.一、基础巩固(70分)1.(10分)如图,在△ABC中,DE∥BC, 且AD=3,DB=2.图中的相似三角形是△ADE∽△ABC,其相似比是35.第1题图第2题图2.(10分)如图,DE∥BC,DF∥AC,则图中相似三角形一共有(C)A.1对B.2对C.3对D.4对3.(10分)如图,DE∥BC,12ADDB,则AEAC=(B)A.12B.13C.23D.32第3题图第4题图4.(10分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是(A )5.(10分)如图,AB ∥CD ∥EF,AF 与BE 相交于点G ,且AG=2,GD=1,DF=5,求BC CE .解:∵AB ∥CD ∥EF,∴35BC AD AG GD CE DF DF +===. 6.(20分)如图,DE ∥BC.(1)如果AD=5,DB=3,求DE ∶BC 的值;(2)如果AD=15,DB=10,AC=15,DE=7,求AE 和BC 的长.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC,∴58DE AD BC AB ==. (2)AE AD AC AB =,即151525AE =,求得 AE=9. DE AD BC AB =,即71525BC =,求得 BC=353. 二、综合应用(20分)7.(20分)如图,△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA.(1)写出对应边的比例式;(2)写出所有相等的角;(3)若AB=10,BC=12,CA=6,求AD 、DC 的长.解:(1)BC AB AC CA DC DA==; (2)∠BAC=∠CDA,∠B=∠ACD,∠ACB=∠DAC; (3)由(1)中的结论和已知条件可知121066DC AD==,求得AD=3,DC=5. 三、拓展延伸(10分)8.(10分)如图,在△ABC 中,DE ∥BC 分别交AB 、AC 于点D 、E ,试证明:ADAB=DOCO.证明:∵DE ∥BC ,∴△ADE ∽△ABC,△DOE ∽△COB,∴,AD DE DO DE AB BC CO CB==. ∴AD DO AB CO =.。
《相似三角形的性质(2)》导学案

6.5相似三角形的性质(2)学习目标1.运用类比的思想方法,通过实践探索得出:相似三角形对应线段(高、中线、角平分线)的比等于相似比;2.会运用相似三角形对应高的比与相似比的性质解决有关问题.学习过程一:“学”——自主学习复习回顾:如图,△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比是2:3,则△ABC 与△A’B’C’的面积比是多少?你的依据是什么?回顾“相似三角形的面积比等于相似比的平方”这个结论的探究过程,你有什么发现?合作探究:活动一:如图,△ABC ∽△A ′B ′C ′,△ABC 与△A ′B ′C ′的相似比是k ,AD 、A ′D ′是对应高.A A ′B ′ BC C ′D CB AD ’ A ′ C ′B ′D' A' B' C' D A B C D' A' B' C' D A B C结论:相似三角形对应高的比等于___________.活动二、相似三角形对应中线的比、对应角平分线的比与相似比的关系。
结论:相似三角形对应中线的比、对应角平分线的比等于 。
二:“思”——乐学精思例1、 如图,AF 是△ABC 的高,点D 、E 分别在AB 、AC 上,且DE ∥BC ,DE 交AF 于点G 。
设DE=6,BC=10,GF=5,求点A 到DE 、BC 的距离。
三:“练”——巩固反馈自主训练1.两个相似三角形的相似比为2:3,它们的对应角平分线之比为_______,周长之比为_______,面积之比为________2.若两个相似三角形面积之比为16:9,则它们的对高之比为_____,对应中线之比为_____3.如图,△ABC ∽△DBA ,D 为BC 上一点,E 、F 分别是AC 、AD 的中点,且AB =ABA'B'C' 32cm 20cmO28cm,BC=36cm,则BE:BF=________4、如图,D、E分别在AC、AB上,∠ADE=∠B,AF⊥BC,AG⊥DE,垂足分别是F、G,若AD=3,AB=5,求:(1)AGAF的值.(2)△ADE与△ABC的周长的比,面积的比.5、如图:与小孔O相距32cm处有一支长30cm燃烧的蜡烛AB,经小孔,在与小孔相距20cm的屏幕上成像,求像A'B'的长度。
浙江省义乌市下骆宅初中九年级 数学 相似三角形的性质及其应用(1) 导学案

4.4相似三角形的性质及其应用(1)导学案学习目标:1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.3、会运用上述两个性质解决简单的几何问题.学习重点:本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质学习难点:相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.教学过程:课前回顾:如图:已知三角形ABC相似于三角形A,B,C,(1)试求出三角形ABC与三角形A,B,C,的相似比。
(2)试求出三角形ABC与三角形A,B,C,的周长与面积。
(3)试判断三角形ABC与三角形A,B,C,的周长比、面积比与相似比间的关系。
二、自主学习1(1)阅读P113-114做一做之前部分并完成做一做,(2)已知两个三角形相似,请完成下列表格完成课内练习三、自主学习2:自学书本例题。
完成课本作业题部分4.5.6四、拓展练习1.若两个相似三角形的相似比是2∶3,则它们的对应高线的比是,对应中线的比是,对应角平分线的比是,周长比是,面积比是。
2.两个等边三角形的面积比是3∶4,则它们的边长比是,周长比是。
3.如图,在三角形ABC中,点D,E,F,M分别在三角形三边上,且四边形DEFM是正方形,若S三角形ADE=1,S正方形DEFM=4,求三角形ABC的面积。
相似三角形的性质教案

相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。
2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。
二、教学重难点:1.教学重点:相似三角形的性质。
2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。
三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。
例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。
(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。
(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。
记作ΔABC∼ΔDEF。
(2)相似三角形的性质:相似三角形的对应边成比例。
即有如下比例关系:AB/DE=BC/EF=AC/DF。
3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。
例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。
(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。
代入已知条件,得6/9=8/EF=10/DF。
由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。
例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。
(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。
代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k ,则对应边上
相似三角形的性质 一、 复习引入
1 •相似三角形的判别法的哪些?
2•你还知道相似三角形的性质有什么吗?
3.什么是相似比?
本节课我们将研究相似三角形的其他性质•
二、 新课讲解
1. 探究活动一探究相似三角形对应高的比
右图△ A B C,AD 为BC 边上的高。
则:(1)利用方格把三角形扩大2倍,得△ A 'B 'C '并作
出B 'C '边上的高A 'D '。
求:△ A B C 与厶A 'B 'C '的相似比为多少?
AD 与A 'D '比是多少?
(2)如右图两个相似三角形相似比为 的高有什么关系呢? ______________
说说你判断的理由是什么?
归纳:相似三角形对应边上的高之比等于 ________________
2. 探究活动二类比探究相似三角形对应角平分线的比
如右图△ A B C , AF 为/ A 的角平分线。
则:(1)把三角形扩大2倍后得△ A 'B 'C ', A 'F '为 / A '的角平
分线,△ A B C 与厶A 'B 'C '的相似比 为多少?
AF 与A 'F '比是多少?
k,则对应角的
(2)如右图两个相似三角形相似比为
角平分线比是多少? 说说你判断的理由是什么?
归纳:相似三角形对应边上的角平分线之比等于 3. 探究活动二类比探究相似三角形对应中线的比
如右图△ A B C , AE 为BC 边上的中线。
则:⑴把三角形扩大2倍后得△ A 'B 'C ', A 'E '为B 'C '边上的中线。
△ ABC 与厶A 'B 'C '的相似比为多 少?
AE 与A 'E '比是多少?
(2)如右图两个相似三角形相似比为k ,则对应边上的中线的比是多少
呢?
A 说说你判断的理由是什么? 归纳:相似三角形对应边上的中线之比等于 三角形的性质定理 1: __________________ 三、基础训练
1、 两个相似三角形对应边比为3:5,那么相似比 ____________ 对应边上的高之比为
,
对应边上的中线比为 ___________ 对应角的角平分线比为 ________________ 。
2、 两个相似三角形对应角的角平分线比为 1:4,可直接得到对应边上的高之比为
,
对应边上的中线比为 ______________ 。
3、 已知△ ABCA 'B 'C ',△ ABC 的三边分别为3、
4、5,^ A 'B 'C '的三边长分 别为 12、16、R,则 R= ____________________________ 。
4•两个相似三角形中一组对应角平分线的长分别是 2cm 和5cm ,则这两个三角形的相似 比是 在这两
O o
E f <7
个三角形的一组对应中线中,如果较短的中线是3cm,那么较长的中线是_____________ 。
------- 二 5、已知△ ABC s\A 'B ' C '中一组对应角平分线 AD 、A/D/的长分别是5cm 和2cm ,
(1) 求这两个三角形的相似比。
(2) 如果A 'E '是3cm,那么AE 的长是多少?
四、探究活动四:探究相似三角形周长的比
右图(1)(2)(3)分别是边长为1、2、3的等边三
角形,它们都相似.
(2)与(1)的相似比二
(2) 与(1)的周长比二
(3) 与(1)的相似比二
(3)与(1)的周长比二
从上面可以看出当相似比=k 时,周长比= 归纳:相似三角形的周长比等于 ____________ 探究活动五:类比探究相似三角形面积的比(如上图)
(2)与(1)的相似比二 ___________________ ,
(2) 与(1)的面积比= ___________________ ;
(3) 与(1)的相似比二 __________________ ,
(3)与(1)的面积比= ____________________ .
从上面可以看出当相似比=k 时,面积比= ______________
归纳:相似三角形的面积比等于相似比的 _____________ 五、课堂检测 1、 两个相似三角形对应边比为 3:5,那么相似比为_,周长比为 ____________ ,面积比为 ______ 2、 把一个三角形变成和它相似的三角形,则如果边长扩大为原来的
100倍,那么面积扩大
为原来的 ______________ 倍;
如果面积扩大为原来的100倍,那么边长扩大为原来的 _________________ 倍。
3、 已知△ ABCA 'B 'C ',AC:A 'C '=4:3。
(1) 若厶ABC 的周长为24cm ,则厶A 'B 'C '的周长为 ___________________ cm ;
(2) 若厶ABC 的面积为32cm2,则厶A 'B 'C '的面积为 _______________ cm2。
4、已知,在△ ABC 中,DE // BC,DE:BC=3:5
⑵
则(1)AD:DB= _______
⑵△ ADE的面积:梯形DECB的面积= ______________
⑶△ ABC的面积为25,则厶ADE的面积=___。
六、课堂小结:
这节课我们学习了什么?
七、作业布置。