航空飞行器飞行动力学 部分课后习题答案1-3单元

合集下载

南京航空航天大学 飞行器结构力学 课后习题答案 第1章

南京航空航天大学 飞行器结构力学 课后习题答案 第1章

第一章 弹性力学基础1-1 上端悬挂、下端自由的等厚度薄板,其厚度为1,容重为ρ。

试求在自重作用下的位移分量表达式。

解:如图1-1建立坐标系.利用x σ沿y 方向均匀分布及x 方向的力平衡条件0=∑x 可得,⎪⎩⎪⎨⎧==-= x l xyy x 00)(τσρσ 又因为1()()x y u u l x x E Eρσσ∂=-=-∂ )()(1x l Eu u E y vx y --=-=∂∂ρσσ 积分得)()21(12y f x lx u +-=Eρ)()(2x f y x l uv +--=Eρ又由对称性 0)(020=⇒==x f v y 由 2110()2xy u v f y uy y x Eτρ∂∂=+=⇒=-∂∂ 综上所述有2221)21(uy Ex lx u ρρ--=Ey x l uv )(--=Eρ1-2 写出图1-2所示平面问题的应力边界条件。

解:上表面为力边界,100=,=,=,m l q lxl X --=Y 。

代入x xy xy y l m Xl m Yσττσ⎧+=⎪⎨+=⎪⎩ 中得到上表面的边界条件为00=--=xy y x q lxl τσσ;=;下表面为自由边,边界条件为000==xy y x τσσ;=;侧面为位移边界。

1-3 矩形板厚为1。

试用应力函数22A xy ϕ=求解。

(并画出面力分布图)解:应力函数22A xy ϕ=满足应力函数表示的变形协调方程,可以作为解。

在无体力的情况下,矩形板的应力为22x Ax yϕσ∂==∂220y x ϕσ∂==∂2xy Ay x yϕτ∂=-=-∂∂根据应力边界条件公式x xy xy y l m X l m Yσττσ+=+=各边的应力边界为a d 边: 0,1l m == 20A X A y h Y ⎧=-=-⎪⎨⎪=⎩ c b 边: 0,1l m ==- 20A X A y hY ⎧==-⎪⎨⎪=⎩a b 边: 1,0l m =-= 0X Y A y⎧=⎪⎨=⎪⎩c d 边: 1,0l m == X A x A lY A y⎧==⎪⎨=-⎪⎩根据以上各边的应力边界条件,可画出矩形板的面力分布图如图1-3a 。

飞行器相关试题答案

飞行器相关试题答案

飞行器相关试题答案一、选择题1. 飞行器的五个主要组成部分包括:机身、机翼、尾翼、起落架和()。

A. 发动机B. 燃料系统C. 导航系统D. 通信设备答案:A. 发动机2. 以下哪种飞行原理是通过改变空气动力学特性来实现升力的?()。

A. 伯努利原理B. 牛顿第三定律C. 浮力原理D. 动量守恒定律答案:A. 伯努利原理3. 飞行器在起飞和着陆时,主要依靠哪种操作来控制速度和高度?()。

A. 油门控制B. 襟翼调节C. 起落架调整D. 飞行姿态调整答案:B. 襟翼调节4. 飞行器的航向稳定性主要由哪个部件保证?()。

A. 机身B. 机翼C. 尾翼D. 起落架答案:C. 尾翼5. 飞行器在高空飞行时,为了维持稳定,通常需要考虑哪种效应的影响?()。

A. 科里奥利效应B. 马格努斯效应C. 离心效应D. 升力效应答案:A. 科里奥利效应二、填空题1. 飞行器的设计需要考虑空气的______和______,以确保在各种飞行条件下的性能和安全。

答案:密度;粘度2. 飞行器在起飞过程中,随着速度的增加,机翼上的升力也会随之增加,当升力达到______的重量时,飞行器便能够离地起飞。

答案:飞行器3. 为了减少飞行中的阻力,飞行器的外形通常设计得十分______。

答案:流线型4. 在飞行器的飞行控制系统中,自动驾驶仪可以根据预设的______和______自动调整飞行器的飞行姿态。

答案:航线;高度5. 飞行器在遭遇恶劣天气时,飞行员需要依靠______和______来维持飞行器的稳定。

答案:仪表;经验三、简答题1. 请简述固定翼飞行器和旋翼飞行器的主要区别。

答:固定翼飞行器依靠固定机翼产生升力,通常需要跑道进行起飞和着陆,适用于长距离、高速飞行。

旋翼飞行器则通过旋转的旋翼产生升力,能够垂直起降,适用于低空、低速或悬停飞行。

2. 飞行器在高空飞行时会遇到哪些主要的环境挑战?答:飞行器在高空飞行时会面临低气压、低温、低氧、强风和辐射增强等环境挑战。

北航空气动力学课后答案(1至9章)

北航空气动力学课后答案(1至9章)

第一章 1.1解:)(k s m 84.259m k R 22328315∙===-RT p ρ=36m kg 63.5063032.5984105RT P =⨯⨯==ρ 气瓶中氧气的重量为354.938.915.0506.63G =⨯⨯==vg ρ1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布 则离圆盘中心r.距底面为h 处的速度为0u kn u +=当n=0时 u=0推出0u 0= 当n=h 时 u=wr 推出hwr k =则摩擦应力τ为hwr u dn du u ==τ上圆盘半径为r 处的微元对中心的转矩为θθτdrd hwr u r rdrd h wr u r dA d 3=⋅=⋅=T则⎰⎰==T 2D 0332032D u drd hr uωπθωπ1.4解:在高为10000米处T=288.15-0.0065⨯10000=288.15-65=223.15压强为⎪⎭⎫ ⎝⎛=Ta T Pa P 5.2588MKN43.26Ta T pa p 2588.5=⎪⎭⎫ ⎝⎛=密度为2588.5Ta T a ⎪⎭⎫⎝⎛=ρρmkg4127.0Ta T a 2588.5=⎪⎭⎫⎝⎛=∴ρρ1-7解:2M KG 24.464RTPRT p ==∴=ρρ空气的质量为kg 98.662v m ==ρ第二章2-2解流线的微分方程为yx v dyv dx =将v x 和v y 的表达式代入得ydy x dx yx 2dyx y 2dx 22==, 将上式积分得y 2-x 2=c.将(1.7)点代入得c=7因此过点(1.7)的流线方程为y 2-x 2=482-3解:将y 2+2xy=常数两边微分 2ydy+2xdx+2ydx=0整理得ydx+(x+y )dy=0 (1) 将曲线的微分方程yx V dyV dy =代入上式得 yVx+(x+y )V y =0 由22y 2xy 2x V ++=得 V x 2+V y 2=x 2+2xy+y 2 ((2)由(1)(2)得()y v y x v y x =+±=,2-5解:直角坐标系与柱坐标系的转换关系如图所示 速度之间的转换关系为{θθθθθθcos v sin v v sin v cos v v r y r x +=-=由θθθθθθcos r1y v sin yrsin r 1xv cos x rrsin y rcos x =∂∂=∂∂⎪⎩⎪⎨⎧-=∂∂=∂∂⇒⎭⎬⎫==()()⎪⎭⎫⎝⎛--∂∂+-∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθsin r 1sin V cos V cos sin V cos V r x v v x r r v x v r r x x xθθθθθθθθθθθθθsin cos V sin V sin V cos V r 1cos sin r V cos r V r r r ⎪⎭⎫⎝⎛-∂∂--∂∂-⎪⎭⎫ ⎝⎛∂∂-∂∂=θθθθθθθθθθθθθθcos sin V r1sin V r 1sin V r 1cos sin V r 1cos sin r V cos r V 22r r 2r +∂∂++∂∂-∂∂-∂∂=()()θθθθθθθθθcos r1cos V sin V sin cos V sin V r y v v V y r V V V V r r y x y xy +∂∂++∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθθcos r1sin V cos V cos V sin V sin cos r V sin r V r r r ⎪⎭⎫ ⎝⎛-∂∂++∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂=θθθθθθθθθθθθθcos sin V r1cos V r 1cos V r 1cos sin v V r 1cos sin r V sin r V 22r r 2r -∂∂++∂∂+∂∂+∂∂=zV V V r 1r V z V y V x V div zr r z y x ∂∂+⎪⎭⎫ ⎝⎛∂∂++∂∂=∂∂+∂∂+∂∂=∴θυθ2-6解:(1)siny x 3x V 2x -=∂∂ siny x 3y V 2y =∂∂ 0y V x V y x =∂∂+∂∂∴此流动满足质量守恒定律(2)siny x 3x V 2x =∂∂ siny x 3y V 2y =∂∂ 0siny x 6yVx V 2y x ≠=∂∂+∂∂ ∴此流动不满足质量守恒定律(3)V x =2rsin rxy 2=θ V y =-2rsin 2ry 22-=θ33r y 2x V x =∂∂ 332y r 2y y x 4y V +-=∂∂ 0ryx 4y V x V 32y x ≠-=∂∂+∂∂∴此流动不满足质量守恒方程(4)对方程x 2+y 2=常数取微分.得xdydy dx -= 由流线方程yx v dy v dx =(1) 由)(得2r k v v r k v 422y 2x =+= 由(1)(2)得方程3x r ky v ±= 3yr kx v = 25x r kxy 3x V =∂∂∴25y r kxy 3y V ±∂∂ 0y Vx V y x =∂∂+∂∂∴此流动满足质量守恒方程2—7解:0x Vz V 0r yz 23r yz 23z V y V z x 2727y z =∂∂-∂∂=⋅+⋅-=∂∂-∂∂同样 0yV x V x y =∂∂-∂∂ ∴该流场无旋()()()2322222223222z y x z y x z y x d 21zy xzdzydy xdx dz v dy v dx v d ++++⋅=++++=++=Φ c zy x 1222+++-=Φ∴2—8解:(1)a x V x x =∂∂=θ a yV y y =∂∂=θ a z Vz z -=∂∂=θ021v ;021v ;021v z y x =⎪⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂==⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y V x V x V z V z V x V x x z x y z (2)0y V x V 210x V z V 210z V y V 21x y z z x y y z x =⎪⎪⎭⎫⎝⎛∂∂-∂∂==⎪⎭⎫ ⎝⎛∂∂-∂∂==⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=ωωω;; 位该流线无旋,存在速度∴ (3)azdz 2aydy ax dx dz v dy v dx v d z y x -+=++=ϕc az ay 21ax 21222+-+=∴ϕ2—9解:曲线x 2y=-4.()04y x y x f 2=+=, 切向单位向量22422422y2x 2y2x yx 4x x y 2yx 4x x f f fx f f fy +-+=+-+=v t ⋅∇=⋅=∇=ϕϕ切向速度分量 把x=2.y=-1代入得()()x 2x y x 2x j yi x 2+-+--=∂∂+∂∂=∇=ϕϕϕ 2121y x 4x 2xy y x 4x x 2242242+=⎪⎪⎭⎫ ⎝⎛+-+= 23t v v t -=⋅= j 23i 23j 21i 2123t v v t t --=⎪⎭⎫⎝⎛+-==2—14解:v=180hkm =50s m根据伯努利方程22V 21V 21p ρρρ+=+∞∞ pa p =∞驻点处v=0.表示为1531.25pa 501.22521V 21pa p 22=⨯⨯==-∞ρ相对流速为60s m 处得表示为75.63760225.12125.1531V 21V 21pa p 222-=⨯⨯-=-=-∞ρρ第三章3—1解:根据叠加原理.流动的流函数为()xyarctg 2Q y V y x πϕ+=∞, 速度分量是22y 22x y x y2Q x V y x x 2Q V y V +⋅=∂∂-=+⋅+=∂∂=∞πϕπϕ; 驻点A 的位置由V AX =0 V Ay =0求得 0y V 2Qx A A =-=∞;π 过驻点的流线方程为2x y arctg 2y x y arctg 2y y Q V Q V A A A =+=+∞πθπ θθππθππsin 2r x y arctg 2y -⋅=⎪⎭⎫ ⎝⎛-=∞∞V V Q 或即 在半无限体上.垂直方向的速度为θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Q 线面求极值()0-sin v -cos sin v 2d dv 22y=+=∞∞θπθθπθθθ 当0sin =θ 0v v min y y ==2-tg -=θπθmax y y v v =用迭代法求解2-tg -=θπθ得 取最小值时,y 1v 2183.1139760315.1 ==θ 取最大值时,y 2v 7817.2463071538.4 ==θ由θπθθππ-sin v r sin 2y x y 2v 222y ∞==+=Q Qθπθθθππ-cos sin v r cos 2v y x x 2v v 22x +=+=++=∞∞∞Q Q 可计算出当∞∞===v 6891574.0v v 724611.0v x y 1,时,θθ6891514.0v v 724611.0v x y 2=-==∞,时,θθ 合速度∞=+=v v v 2y 2x V3—3解:设点源强度为Q.根据叠加原理.流动的函数为 xa 3-y arctg 2a x y arctg 2a x y arctg 2πθπθπθϕ+++-=两个速度分量为()()()⎥⎥⎦⎤⎢⎢⎣⎡+++++++--=222222a 3-y x xy a x a x y a x a x 2x πθ()()()⎥⎥⎦⎤⎢⎢⎣⎡++++++-=222222y a 3-y x a3-y y a x y y a x y 2v πθ对于驻点.0v v y x ==.解得a 33y 0x ==A A ,3—4解:设点源的强度为Q.点涡的强度为T.根据叠加原理得合成流动的位函数为Q ππθϕ2lnr 2Γ+=πθϕπθϕθ2r 1r 12r 1r r Γ=∂∂==∂∂=V V ; 速度与极半径的夹角为Qarctg arctg r Γ==V V θθ3—5根据叠加原理得合成流动的流函数为⎪⎪⎭⎫ ⎝⎛+--+=∞y a y yaarctg a y y aarctg V ϕ 两个速度分量为()()()()⎥⎦⎤⎢⎣⎡++---+++=∂∂=∞1y v 2222x y a x a x a y a x a x a V ϕ ()()⎥⎦⎤⎢⎣⎡+--++=∂∂-=∞2222y y v y a x yy a x y a V ϕ 由驻点()0a 30,得驻点位置为±==y x v v零流线方程为0ay y aarctg a y y x aarctgy =--++∞∞V V 对上式进行改变.得⎪⎭⎫ ⎝⎛-=-+a y tan ay2a y x 222当0x =时.数值求解得a 03065.1y ±=3—9解:根据叠加原理.得合成流动的流函数为a y y arctg 2a y y arctg 2y v -++-=∞ππϕQ Q速度分量为()()2222x y a x ax 2y a x a x 2y v v +-+++++-=∞ππQ Q()()2222y y a x ax 2y a x a x 2v +-+++++-=ππQ Q由0v v y x ==得驻点位置为⎪⎪⎭⎫ ⎝⎛+±∞0v a a 2,πQ 过驻点的流线方程为ay yarctg 2a y y arctg 2y v =-++--∞ππQ Q 上面的流线方程可改写为ay yarctg a y y arctg y v 2--+=∞Q π 222a y x ay2a y y arctg a y y arctg tan y v 2tan -+=⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛∴∞Qπ 容易看出y=0满足上面方程当0y ≠时.包含驻点的流线方程可写为⎪⎭⎫ ⎝⎛-=-+∞Q y v 2tan ay2a y x 222π当12v a ===∞πQ 时.包含驻点的流线方程为tany y21y x 22--=-+3—10解:偶极子位于原点.正指向和负x 轴夹角为α.其流函数为 22yx x sin ycos 2+--=ααπϕM 当45=α时22y x xy 222+--=πϕM3—11解:圆柱表面上的速度为a2sin v 2v πθΓ--=∞ 222222a 4a 2sin v 4v ππθΓ+Γ=∞ 222222v a 4av 2sin 4sin 4v v ∞∞∞Γ+Γ+=⎪⎪⎭⎫ ⎝⎛ππθθ 压强分布函数为222p v asin 41sin 41v v 1⎪⎪⎭⎫ ⎝⎛Γ+-=⎪⎪⎭⎫ ⎝⎛-=∞∞θπθC第四章4—1解:查表得标准大气的粘性系数为n kg 1078.1u 5-⨯= 65el 1023876.11078.16.030225.1u ⨯=⨯⨯⨯==-∞LV R ρ 平板上下两面所受的总得摩擦阻力为N S V L R F 789.021e 664.0222=⨯⨯=∞ρ 4—2解:沿边阶层的外边界.伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m 0m 00m 00m m v v v 21p 12201002〈〉∴〉∂∂〈〈∂∂〉-=-=∂∂-=∂∂=+--xpx p x v x v x v xx p c m m m ρρρρδδδ4—4解:(a )将2x y 21y 23v v ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=δδδ带入(4—90)中的第二式得δδδδδ28039dy vv 1v v 0x x =⎪⎪⎭⎫ ⎝⎛-=⎰** 由牛顿粘性定律δτδu u 23y v u 0y x w =⎪⎪⎭⎫ ⎝⎛∂∂==下面求动量积分关系式.因为是平板附面层0dx dv =∴δ积分关系式可表示为dxd v 2w **=δρτδ 将上述关系式代入积分关系式.得δρδδv dxu d 14013=边界条件为x=0时.0=δ 积分上式.得平板边界层的厚度沿板长的变化规律()64.428039646.0x x x64.4ll ⨯==∴=**R R δδ(b )()74.164.483x x 83dy v v 1lx =⨯=∴=⎪⎪⎭⎫ ⎝⎛-=*∞*⎰R δδδδ(c )由(a )知()64.4x x l =R δ(d )646.0x x646.0v 21324xx 64.4u23l f l 2wf l w =∴====R C R C R δρτδδδτ)得—由(; (e )单面平板的摩擦阻力为()292.1x x 292.1s v 21b bdx v 21l f l 2f l02f=∴===⎰R C R X C C X F F δδρρ摩阻系数为假设版宽为4—6解:全部为层流时的附面层流厚度由式(4—92)得 ()01918.048.5L e ==LR L δ全部为湍流时的附面层流厚度由式(4—10)得()0817.037.0L 51e ==-L LR δ第五章5-1 一架低速飞机的平直机翼采用NACA2415翼型.问此翼型的f .f x 和c 各是多少?解:此翼型的最大弯度f =2% 最大弯度位置f x =40% 最大厚度c =15%5-2 有一个小α下的平板翼型.作为近似.将其上的涡集中在41弦点上.见图。

高等飞行动力学试题解答

高等飞行动力学试题解答

目录1.请推导飞机小扰动运动方程,并分析其使用条件。

(2)2.什么是驾驶员操纵期望参数,分析其含义。

(12)3.请列写敏捷性尺度并对其含义进行分析说明。

(13)4.试说明评估飞机飞行性能的基本内容和基本方法。

(16)1.请推导飞机小扰动运动方程,并分析其使用条件。

一、小扰动法简介(1)基本概念研究飞行器的稳定性和操纵性问题时,一般把飞机运动分为基准运动和扰动运动。

基准运动(或称未扰动运动)是指在理想条件下,飞行器不受任何外界干扰,按预定规律进行的运动,如定直平飞、定常盘旋等。

基准运动参数用下标“*”表示,如V、*α、*θ等。

*由于各种干扰因素,使飞行器的运动参数偏离了基准运动参数,因而运动不按预定的规律进行,这种运动称为扰动运动。

受扰运动的参数,不附加任何特殊标记,例如V、α、θ等。

与基准运动差别甚小的扰动运动称为小扰动运动。

(2)基本假设在小扰动假设条件下,一般情况就能将飞行器运动方程进行线性化。

但为了便于将线性扰动运动方程组分离为彼此独立的两组,即纵向和横侧小扰动方程组,以减少方程组阶次而解析求解,还需要做下列假设:1)飞行器具有对称平面(气动外形和质量分布均对称),且略去机体内转动部件的陀螺力矩效应。

2)在基准运动中,对称平面处于铅垂位置(即0φ=),且运动所在平面且运动所在平面与飞行器对称平面相重合(即0β=)。

在满足上述条件下,可以认为,在扰动运动中,纵向气动力和力矩只与纵向运动参数有关,而横侧向气动力和力矩也只与横侧运动参数有关。

有了这些推论,就不难证明扰动运动方程可以分离为彼此独立的两组。

其中一组只包含纵向参数,即飞行器在铅垂平面内作对称飞行时的运动参数,,,,,,,,,g g e p u w q x z αθγδδ等,称为纵向扰动运动方程组;另一组只包含横侧参数,即飞行器在非对称平面内的运动参数,,,,,,,,,,g a r v p r y βψχφμδδ等,称为横侧向扰动运动方程组。

91116-飞行力学-飞行动力学习题课(一)2014

91116-飞行力学-飞行动力学习题课(一)2014
飞行力学习题课(一)
Flight Dynamics
第一章 飞行器质心运动方程
本章要点:
✓ 气动特性参数及其随飞行状态和构型参数的 变化趋势
✓ 喷气式发动机性能参数以及其高度特性、速 度特性、转速特性、特定油门状态
✓ 常用坐标系的定义;坐标系间的夹角和相互 转换
✓ 飞机质心在铅垂平面内和水平面的运动方程 及其特殊运动状态下的简化
Lqp Lx ( )Ly ()Lz ( )

由于
LxT LyT
Lx Ly
( ) ( )
Lz
T
Lz
(
)
Lpq Lz ( )Ly ()Lx ( )
所以
LqpT LzT( )LyT()LxT() Lz ( )Ly ()Lx () Lpq
LpqT Lqp
Lpq , Lqp 互为转置矩阵
Vxz
Vzx )
Fx
m( dVz dt
Vyx
Vxy )
Fx
VVxy
u v
Lbk
V 0
Lbg LTkg
V 0
Vz w
0
0
xy
p
q
z r
Fx Fy
T 0
cos
D 0
Lba
C
Lbg
0
Fz T sin
L
mg
Flight Dynamics7
Flight Dynami1cs9
2.5 某 轻 型 喷 气 飞 机 重 量 W=30000N, 翼 载 荷
W/S=1000N/m2 在某高度上的可用推力 Ta =4000N。假设 CD=0.015+0.024CL2 和 CLmax=1.4。试确定最大和最小平飞 速度。(任取一高度求解)

西工大飞行器结构力学课后答案

西工大飞行器结构力学课后答案

西工大飞行器结构力学课后答案第一题根据飞机结构力学的基本原理,飞机的结构力学可以被分解为静力学和动力学两个部分。

静力学是研究在静止或恒定速度下的力学行为,包括计算飞机各个部件的受力和应变情况。

而动力学则是研究在变化速度和加速度下的力学行为,包括计算飞机受到的各种动力荷载和振动情况。

第二题飞机的结构力学分析中,常用的方法包括有限元分析、静力学分析和动力学分析。

有限元分析是一种基于数值计算的方法,可以建立飞机结构的数学模型,并以此模型进行力学分析。

静力学分析是通过平衡方程来计算飞机结构的受力和应变情况,包括应力分析和变形分析。

动力学分析是通过力学方程来计算飞机在动态载荷下的振动响应和疲劳寿命。

第三题飞机的结构力学分析对于设计和制造过程中的决策具有重要意义。

在设计阶段,结构力学分析可以帮助工程师评估不同设计方案的有效性和可行性。

通过分析飞机的受力和应变情况,可以优化设计,并确保飞机在正常工作范围内具有足够的强度和刚度。

在制造阶段,结构力学分析可以帮助工程师确定合适的材料和加工工艺,以确保飞机结构的可靠性和安全性。

通过分析飞机的受力和应变情况,可以预测飞机在使用寿命内的疲劳寿命,并采取相应的措施延长飞机的使用寿命。

此外,结构力学分析还可以应用于飞机维修和事故调查过程中。

通过分析事故飞机的受力和应变情况,可以确定事故原因,并提出相应的维修和改进建议,以减少事故的发生对飞机结构的影响。

第四题对于飞行器结构力学的研究,需要掌握一些基本理论和方法。

首先是静力学的基本原理,包括力的平衡方程、应力和应变的定义和计算方法。

其次是动力学的基本原理,包括力的运动方程、振动的模型和计算方法。

此外,还需要了解一些基本的力学性能指标,如强度和刚度。

在进行结构力学分析时,需要掌握一些基本的计算方法。

常见的方法包括有限元法、解析法和试验法。

有限元法是一种基于数值计算的方法,可以建立飞机结构的数学模型,并以此模型进行力学分析。

解析法则是通过解析计算的方法进行力学分析,主要针对简单和规则的结构。

第二章-3 飞行动力学-飞机的横侧运动+飞机方程

第二章-3  飞行动力学-飞机的横侧运动+飞机方程

四、气动导数变化对横侧动力学特性的影响
1.滚转阻尼模态 时间常数与飞机横滚阻尼气动导数Clp成反比 Clp大,滚转阻尼特性好;过大,副翼操纵滚转困难,飞机进 入盘旋太慢,影响盘旋机动性能; 超音速飞机一般都是小展弦比机翼,Clp小,滚转阻尼特性不 好,因此有必要加人工阻尼。 2.荷兰滚模态 航向静稳定性越大,荷兰滚模态固有频率越高; Cl太大,会降低荷兰滚阻尼。 3.螺旋模态
重力 倾斜 产生 的侧 力
横侧向方程
偏航角不产生力或力矩,仅为几何关系

写成p算子形式

式中各大导数:
二、横侧向扰动运动与三种模态

纵向运动时的同一飞机,以M=0.9.高度h=11000m作定常平飞, 各参数及气动导数如下(对稳定轴系》:
代入方程
扰动运动 控制输入为0:a=r=0
拉氏变换后得代数方程:
三、空速、高度变化对横侧动力学的影响
1.荷兰滚模态
荷兰滚模态的简化特征方程 由于 ,荷兰滚模态的固有频率为:
与空速成正比
阻尼比: 2.滚转阻尼模态
都正比于
滚转阻尼模态传递函数的时间常数为: TL与V0成反比。
3.螺旋模态 螺旋模态小实根的近似表示式
由于 远远大于其他项,所以 螺旋模态时间常数与飞行速度成正比
特征多项式:
特征根:
扰动运动的解
一对共挽复根代表振荡运动模态 大负根代表滚转快速阻尼模态 小根(可正可负)代表缓慢螺旋运动的模态 飞机横侧扰动运动由此三种典型模态线性叠加而成

经拉氏反变换,(设0=1)得
都受振荡模 态影响
1.滚转阻尼模态

飞机受扰后的滚转运动,受到机翼产生的较大阻尼力矩的阻 止而很快结束。这是由于大展弦比机翼的滚转阻尼导数Clp大, 而转动惯量Ix较小所致。对应一个大的负实根。

中国大学mooc《飞行力学(北京理工大学) 》满分章节测试答案

中国大学mooc《飞行力学(北京理工大学) 》满分章节测试答案

title飞行力学(北京理工大学) 中国大学mooc答案100分最新版content部分章节作业答案,点击这里查看第一章作用在飞行器上的力和力矩(下)测验(单元一)1、对于机(弹)体坐标系,英式和俄式定义是不同的,其中()。

答案: 飞行器的立轴正方向定义相反2、在地面坐标系中,确定速度矢量的方向可以通过()。

答案: 弹道倾角和弹道偏角3、俄式弹道坐标系和英式航迹坐标系之间存在以下哪种关系,()。

答案: 英式航迹坐标系绕其轴旋转-90°可与俄式弹道坐标系重合4、若某矢量在坐标系A和坐标系B中的投影之间存在,则坐标系A与B之间的关系是()。

答案: 两个坐标系的轴重合5、判断飞行器是否具有纵向静稳定性,可以根据()。

答案: 焦点和质心相对于飞行器头部的前后位置6、飞行器的弹道倾角是指()。

答案: 飞行器的速度矢量与水平面的夹角7、飞行器的侧滑角是指()。

答案: 飞行器速度矢量与飞行器纵向对称面之间的夹角8、研究飞行力学问题时,将地面坐标系当成惯性坐标系,需要()。

答案: 忽略地球的自转和公转,将其视为静止不动9、飞行器的俯仰角是指()。

答案: 飞行器的纵轴与水平面之间的夹角10、如果坐标系A和坐标系B的原点重合,且坐标系A的某坐标轴被坐标系B的某两个坐标轴形成的平面所包含,则由坐标系A向坐标系B进行旋转变换时,()。

答案: 经过2次初等旋转变换,即可使两个坐标系完全重合11、飞行器绕质心转动的动力学方程一般投影到()中。

答案: 弹体坐标系12、在建立导弹动力学基本矢量方程时,用到了()。

答案: 固化原理13、关于纵向运动和侧向运动,()是正确的。

答案: 导弹的纵向运动可以独立存在,但侧向运动不能独立存在14、民航飞机在一定的高度上平飞,关于其运动特点,下述描述错误的是()。

答案: 飞机主要通过侧滑形成侧向力,从而进行水平面内的转弯15、在水平面内飞行的两个飞行器,速度相同,则()。

答案: 法向过载大的飞行器的曲率半径较小,飞行器越容易转弯16、关于过载下列说法错误的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档