基于图形解析的带式输送机逐点法张力计算软件
DTⅡ(A)型带式输送机计算机辅助设计软件说明书

DT Ⅱ(A )型带式输送机计算机辅助设计软件说明书一. 概述DT Ⅱ(A )型固定带式输送机是通用型系列产品,可广泛用于冶金、煤炭、交通、电力、建材、化工、轻工、粮食和机械等行业。
本软件依据GB/T17119-1997连续搬运设备带承载托辊的带式输送机运行功率和张力计算标准,参照《DT Ⅱ(A )型带式输送机设计手册》,对设备选型及计算运用Visual Baic 进行编程,可直接在Windows 环境下安装运行,可辅助设计人员快速准确的进行设计计算和选型,该软件计算中目前提供了十二种最常用的侧型,适用于带宽为400、500、650、800、1000、1200、1400、1600、1800、2000、2200、2400的输送机设计,计算输出结果包括:圆周驱动力、轴功率、电机功率、各相关参数值、各关键点输送带张力以及主要滚筒合力、拉紧力等。
二. 程序计算依据及说明1. 基本原理本程序计算遵循欧拉定理,即T 1=T 2×e u φ其中:T 1----输送带紧边拉力,N T 2----输送带松边拉力,N u----输送带与传动滚筒的摩擦系数φ---输送带在传动滚筒上的包角,°(度) 那么,传动滚筒上的圆周驱动力:F U =T 1-T 2=T 2×e u φ-T 2胶带上的张力由逐点计算原理计算: T i =T i-1+∑-ii W 1各点拉力计算如下(参考图1):T 4+W 2=T 1T 2+W 1=T 3 T 1=T 2×e u φ F U =W 1+W 2图1其中:W 1----回程段的总阻力,N W 2----承载段的总阻力,N2. 主要计算公式1) 圆周驱动力计算F U =W 1+W 2=F H +F N +F s1+F s2+F st当机长大于80米时,水平输送的圆周力可简化为:F U =C·F H + F s1+F s2+F st其中:C-----系数,由表1查出,或由C=LL L 0计算,L 0=70m ~100m 之间 L------输送机长度,m F H ----主要阻力,NF N ----附加阻力,N ,程序在计算中将该力忽略不计 F s1----特种主要阻力,N F s2----特种附加阻力,N F st ----倾斜阻力,N 表1a)主要阻力F HF H =f L g [q RO +q RU +(2q B +qG )cos δ]式中:f-----模拟摩擦系数 L----输送机长度,单位:米g----重力加速度, g=9.81m/s 2~10 m/s 2q RO ----承载托辊单位质量,单位:千克/米,q RO =G1/a o G1-----承载分支每组托辊旋转部分质量,单位:千克 a o -------承载分支托辊间距,单位:米q RU ----回程托辊单位质量,单位:千克/米,q RU =G2/a u G2-----回程分支每组托辊旋转部分质量,单位:千克 a u -------回程分支托辊间距,单位:米 qB------输送带单位长度质量,单位:千克/米 qG-----物料单位长度上质量,单位:千克/米,qG=vQ 6.3 Q-------每小时输送量,单位:吨/小时 v--------输送速度,单位:米/秒δ------输送机倾角,单位:度 模拟摩擦系数参照下表2选取:表2b) 附加阻力F NF N =F ba +F f +F I +F t式中:F ba ---加料段、加速段输送物料与输送带间的惯性阻力和摩擦阻力,N F f ----加速段物料与导板间的摩擦阻力,N F I ----输送带经过滚筒时的弯曲阻力,N F t ----滚筒轴承阻力,N 其中:F ba =I v ρ(v-v 0)F f =2120b22)2(gl b v v v I u v +ρF I =9B(140+0.01F/B)(d/D) (帆布输送带) F I =12B(200+0.01F/B)(d/D) (钢绳芯输送带) F t =0.005(d 0/D)F T 式中:I v -----输送量,m 3/s ρ----物料的密度,kg/m 3 v-----带速,m/sv 0----在输送带运行方向上物料的输送速度分量,m/s u 2----物料与导料板间的摩擦系数,u 2=0.5~0.7 l b -----加速段长度,m B-----带宽,mF-----滚筒上输送带的平均张力,N d-----输送带厚度,m D-----滚筒直径,m d 0-----轴承直径,mF T -----作用于滚筒上的两个输送带拉力和滚筒旋转部分质量的向量和,N c)特种主要阻力F S1F S1=F e +F gl式中:F e -----托辊前倾阻力,NF gl -----输送物料与导料板间的摩擦阻力,N 其中:F e =C e u 0L e (qB+qG)gcos δsine (三个等长前倾托辊) F e =u 0L e qBgcos λcos δsine (二个等长前倾托辊) F gl =21222V gl b I u v ρ式中:C e ----槽角槽形系数,槽角λ=30°时,C e =0.4;槽角λ=45°时,C e =0.5 u 0----承载托辊和输送带间的摩擦系数,u 0=0.3~0.4 L e ----装有前倾托辊的设备长度,m e-----前倾角,°l-----装有导料板设备的长度,m b 1---导料槽两拦板间的宽度,mu 2----物料与导料板间的摩擦系数,u 0=0.5~0.7 d) 特种附加阻力F s2F s2=n r·F r +F a式中:n r -----清扫器个数,一个空段清扫器等于1.5个清扫器 F r -----输送带清扫器的摩擦阻力,N F a -----犁式卸料器的摩擦阻力,N 其中:F r =A·p·u 3 F a =B·k a式中:A-----输送带和清扫器的接触面积,m 2p------输送带和清扫器间的压力,一般p=30~100N/m 2 u 3-----输送带和清扫器接触的摩擦系数,u 3=0.5~0.7 k a -----刮板系数,一般k a =1500N/m e)倾斜阻力F stF st =qG×H×g×cos δH-----物料提升高度,m ,向上为正值;向下为负值2) 功率计算传动滚筒轴功率: P A =F U ×v (w) 电动机功率: P M =P A /η (w) 3) 输送带不打滑输送带不打滑,要求: F min >15.1-⨯φu Ue FF min 为驱动段皮带松边张力 4) 输送带垂度输送带在托辊间的垂度不能过小,应满足: 承载段:F czmin ≥8)(1000gqG qB a +回程段:F hcmin ≥8100gqB a u ⋅⋅⋅3. 最小张力的确定1) 先以输送带不打滑条件Fmin 初定皮带最小张力,即松边张力T2=Fmin ,将其与回程段皮带在托辊间垂度条件Fhcmin 进行对比,如果T2小于Fhcmin ,那么令T2=Fhcmin ,再根据逐点张力计算法推算出T3点的张力,将T3与Fczmin 进行比较,如果T3小于Fczmin ,则令T3=Fczmin ,这样T3就确定下来,由T3用逐点张力计算法推算出T2、T1及T4。
通用带式输送机张力计算

通用带式输送机张力计算(原创版)目录一、引言二、带式输送机张力计算的原理与方法1.欧拉公式计算2.安全系数的确定三、带式输送机张力计算的步骤1.确定输送带的物理参数2.计算输送带在相遇点的极限张力3.计算输送带在任意一点的张力四、带式输送机张力计算中的问题与解决方法1.张力最小点出现负值的问题2.输送带松弛与打滑的问题五、结论正文一、引言带式输送机是一种广泛应用于各种行业中的物料输送设备,其张力计算是设计过程中非常重要的一环。
合理的张力计算可以保证输送带的安全运行,避免输送带过紧或过松造成的设备损坏和生产效率低下的问题。
本文将对带式输送机张力计算的原理与方法进行探讨,并详细阐述计算过程中的步骤和需要注意的问题。
二、带式输送机张力计算的原理与方法1.欧拉公式计算带式输送机张力计算的原理主要基于欧拉公式,该公式可以计算出输送带在任意一点的张力。
欧拉公式如下:FF2e = F1max + (F2max - F1min) * e^(-α * L)其中,FF2e 表示输送带在任意一点的张力,F1max 和 F2max 分别表示输送带在紧边和松边的最大张力,F1min 表示输送带在紧边的最小张力,α表示输送带的倾角,L 表示输送带的长度。
2.安全系数的确定在实际计算过程中,为了保证输送带的安全运行,需要确定一个安全系数。
安全系数一般取 2-3,根据输送带的材质、使用环境和工作条件等因素确定。
三、带式输送机张力计算的步骤1.确定输送带的物理参数在进行张力计算之前,需要先确定输送带的物理参数,包括输送带的宽度、厚度、密度、倾角等。
这些参数可以从输送带的产品说明书或设计图纸中获得。
2.计算输送带在相遇点的极限张力根据欧拉公式,可以计算出输送带在相遇点的极限张力。
相遇点是指输送带在运行过程中,紧边和松边张力相等的点。
3.计算输送带在任意一点的张力根据欧拉公式,可以计算出输送带在任意一点的张力。
在计算过程中,需要将输送带的物理参数和安全系数等因素综合考虑。
带式输送机张紧力的简便算法

第33卷 2005年第6期67Mining & Processing Equipment67连续输送带式输送机张紧力是胶带可靠运行的基本保证之一,具有保证胶带必需的张力、防止打滑和胶带垂度过大的作用。
带式输送机张紧力不足会出现打滑现象,严重时会磨断胶带,造成重大损失。
一般张紧力计算首先要确定胶带总阻力,通过阻力确定圆周驱动力及特性点张力,但确定实际运转带式输送机的张紧力时,由于承载分支阻力的分析、计算复杂,参数确定困难,本文介绍一种简便算法,具体如下。
1带式输送机受力分析带式输送机的基本布置形式见图1,由于其设计准则存在着模糊性,实际计算张紧力时,根据的是侧型简单带式输送机的基本资料,因此,下面有关力的分析、计算以侧型简单带式输送机为依据。
由于带式输送机属于粘弹性体,在运行中,发生刚性位移和弹性位移,胶带正应力与线应变呈曲线关系,因此各点的张力是不同的,侧型简单带式输送机的张力是由相遇点到分离点,即 D →A 点逐渐变小,根据逐点计算法,胶带张力由A 至 B、C、D 点是逐点增加,且 A 点为回程分支张力最小点,C 点为承载分支张力最小点,D 点为带式输送机最大张力点,D、A 两点张力差就是输送机牵引力。
带式输送机基本上受 3 种力的作用:圆周驱动力 Fu、拉紧力 F0 和阻力。
Fu 和 F0 可见图 1,但阻力比较复杂,阻力之和∑F 阻 在数值上等于圆周驱动力,方向与之相反,具体包括主要阻力FH、附加阻力FN、主要特种阻力FS1、附加特种阻力 FS2 和倾斜阻力Fst。
在 5 种阻力中,FH、FN 是所有带式输送机都有的,FS1、FS2 和 Fst的计算需要根据输送带的实际侧型及附属装备情况具⑵ SK 型径向双作用水环式真空泵,具有结构先进、工作可靠、性能稳定、寿命长、高效节能等优点,且有在中等和较高真空度条件下抽气量大且节能的特点,其性能非常适合选矿厂真空过滤机的工作要求,值得推广应用。
通用带式输送机张力计算

通用带式输送机张力计算摘要:一、带式输送机概述二、张力计算方法1.公式推导2.影响因素分析3.计算步骤三、张力计算实例四、总结与建议正文:带式输送机张力计算对于确保输送带正常运行和延长设备使用寿命具有重要意义。
下面将详细介绍带式输送机张力计算的方法、影响因素及实例。
【提纲】二、张力计算方法1.张力计算公式推导带式输送机的张力计算公式为:T = W × L / (π × d × μ)其中,T 为张力,W 为输送带单位长度质量,L 为输送距离,d 为输送带直径,μ 为摩擦系数。
2.影响因素分析(1)输送带参数:包括输送带类型、厚度、弹性模量等;(2)输送物料:物料的密度、形状、摩擦系数等;(3)输送条件:输送速度、输送距离、倾斜度等;(4)环境因素:温度、湿度等。
3.张力计算步骤(1)了解输送带类型及规格;(2)确定输送物料的性质和输送条件;(3)计算输送带单位长度质量;(4)根据公式计算张力;(5)根据实际运行情况,调整计算结果。
【提纲】三、张力计算实例以某矿用带式输送机为例,输送带采用钢丝绳芯输送带,规格为B=1000mm,Q=500t/h,v=3m/s,L=1000m,μ=0.15。
1.计算输送带单位长度质量根据输送带类型和规格,查询相关资料得到钢丝绳芯输送带的单位长度质量为W=450N/m。
2.计算张力T = 450N/m × 1000m / (π × 0.1m × 0.15) ≈ 1.43×10N3.实际调整根据带式输送机的设计和张力计算结果,调整张紧装置的紧度,使输送带达到合适的张力。
【提纲】四、总结与建议带式输送机张力计算是保证设备正常运行的关键环节,通过对输送带张力的合理计算,可以确保输送带在运行过程中不会出现打滑、疲劳等问题。
在实际应用中,还需注意以下几点:1.选择合适的输送带类型和规格;2.考虑输送物料的性质和输送条件;3.定期检查输送带的张力,及时调整;4.加强输送带的维护和保养。
带式输送机计算书(标准版)

带式输送机计算书(标准版)带式输送机设计计算No:项目:1、已知原始数据及工作条件(1)带式输送机布置形式及尺寸见附图,输送机投影长L=63.2m, 提升高度H=8.255m,输送角度a=7.50度,输送物料:混合料粒度0~30mm,物料容重γ=0.9t/m3, 动堆积角ρ=20度,输送量:Q=100t/h(2)工作环境:干燥有尘的通廊内(3)尾部给料,头部卸料,导料槽长度Ld= 4.5m,(4)设有弹簧清扫器和空段清扫器。
(5)输送带参数:皮带层数:Z=4扯断强度:1002、计算步骤每层质量: 1.22kg/m2(1)输送带宽度计算皮带型号:EP-100B=SQRT(Q/(k*γ*v*c*ξ))上胶厚质量 5.1kg/m2已知:Q=100t/h下胶厚质量 1.7kg/m2端面系数k=360物料容重γ=0.90t/m3皮带速度v= 1.25m/s倾角系数c=0.91速度系数ξ= 1.00将以上各数值代入计算式,得:B=0.521m根据计算和设计经验,选取B=800mm的普通胶带,满足块度要求。
(2)张力的逐点计算设带式输送机各点张力如图所示,则各点张力关系如下:S2=S1+W11弹簧清扫器阻力w1S3=k1*S22S4=S3+W23空载段运行阻力w2S5=k2*S44S6=k3*S55S7=k4*S66S8=S7+W3+W47空载段运行阻力w3空载段清扫器阻力w4S9=k5*S88S10=k6*S99S n=S10+W5+W6+W710导料槽阻力w5物料加速度阻力w6 承载段运行阻力w7弹簧清扫器阻力W1:W1=1000B=800N带入⑴ 得:S2=S1+W1=S1 +800查表,改向滚筒阻力系数k1= 1.02带入⑵ 得:S3=k1*S2= 1.02S1 +816空载段运行阻力W2:W2=(q0+q")*L*w"-q0H工作条件(平行托辊阻力系数w")清洁,干燥0.018少量尘埃,正常湿度0.025大量尘埃,湿度大0.035查表:有Z=4~6,取Z= 4.00层EP-100上下胶层厚 4.5+1.5mm,得qm=9.34kg/mq0=q m*g=92N/m查表,得G"=11.0kg下托辊间距l0= 3.0m因此,得:q"=G"*g/l0=36N/m查表,得w"=0.035L1=41.837m, H1=5.842m头轮至垂直拉紧中心带入上式得:(适用于向上输送)螺旋及车式输入投影W2=-348N带入⑶ 得:S4=S3+W2= 1.02S1 +468查表,改向滚筒阻力系数k2= 1.03螺旋及车式选1.0垂直拉紧选1.03带入⑷ 得:S5=k2*S4= 1.05S1 +482查表,改向滚筒阻力系数k3= 1.04螺旋及车式选1.0垂直拉紧选1.04带入(5)得:S6=k3*S5= 1.09S1 +501查表,改向滚筒阻力系数k4= 1.03螺旋及车式选1.0垂直拉紧选1.03带入(6)得:S7=k4*S6= 1.13S1 +516空载段运行阻力W3:W3=(q0+q")*L*w"-q0H已知 q0=92N/m,q"=36N/m查表,得w"=0.035L=21.363m, H=2.413m拉紧中心至尾轮的投W3=-126N空段清扫器阻力W4:W4=200B=160N带入(7)得:S8=S7+W3+W4= 1.13S1 +550查表,改向滚筒阻力系数k5= 1.02带入(8)得:S9=k5*S8= 1.15S1 +561查表,改向滚筒阻力系数k6= 1.04带入(9)得:S10=k6*S9= 1.19S1 +584导料槽阻力W5:已知导料槽长度l= 4.5mW5=(16*B*B*γ+70)*l=356N物料加速度阻力W6:W6=q*v*v/(2*g)因为:q=Q*g/(3.6*v)=218N/m所以: W6=17N承载段运行阻力W7:W7=(q+q0+q')*L*w'+(q0+q)*Hq0=q m*g=92N/m查表,得G'=11kg上托辊间距l0'= 1.2m 因此,得:q'=G'*g/l0'=90N/m工作条件(槽形托辊阻力系数w')清洁,干燥0.02少量尘埃,正常湿度0.03大量尘埃,湿度大0.04查表,得w'=0.04L2=63.200H2=8.255带入上式得:W7=3563N带入(10)得:S n=S10+W5+W6+W7= 1.19S1 +4521根据式:S n=S1*eμα采用胶面滚筒α=200°μ=0.35,查表得eμα= 3.39带入上式得:S n= 3.39S1联立(10)式,则:3.39S1 = 1.19S1 +4521因此:S1 =2058NS n =6978N各点张力:S2=S1+W1=2858NS3=k1*S2=2916NS4=S3+W2=2567NS5=k2*S4=2644NS6=k3*S52750NS7=k4*S62833NS8=S7+W3+W4=2867NS9=k5*S8=2924NS10=k6*S9=3041N计算凹弧起点张力S11承载段运行阻力W8:W8=(q+q0+q')*L*w'+(q0+q)*H L3=44.4m,H3=0mw8=708.9478NS11=S10+W8=3750NR2≥ 1.5*S11/(qm*g)=61.43127m计算凸弧最小曲率半径R1托辊槽角35度R1≥42*B*sinλ=19.26364m(3)功率计算传动滚筒轴功率为:N0=(S n-S1)*v/1000= 6.1k W电动机功率为:N=K*N0/η采用Y型电动机得K= 1.2传动滚筒η=0.9所以,N=8.2k W根据计算和设计经验,电动机选型为:额定功率为:15k W组合号为:(4)胶带核算求得胶带最大张力为6978N查表当B=800mm,Z=4层时,胶带最大允许张力为26667N所以满足最大张力要求。
张力放线计算软件开发和应用

张力放线计算软件开发和应用刘芳;李冰;张帆;刘春田【摘要】研发了一种指导张力架线施工设计的计算软件,该软件适用于当今电网建设发展水平,能够精确计算架线施工所需的各种数据.在提高张力架线计算精度的基础上将计算时间缩短90%以上,并介绍了该软件在锦乐500 kV线路工程中的应用情况.【期刊名称】《华北电力技术》【年(卷),期】2015(000)011【总页数】6页(P24-29)【关键词】张力架线;导线展放;计算软件【作者】刘芳;李冰;张帆;刘春田【作者单位】国网冀北电力有限公司电力经济技术研究院,北京100045;国网冀北电力有限公司电力经济技术研究院,北京100045;国网冀北电力有限公司电力经济技术研究院,北京100045;国网冀北电力有限公司电力经济技术研究院,北京100045【正文语种】中文【中图分类】TM752在输电线路工程张力架线的放线施工前,需要进行施工方案设计,例如放线区段的划分、牵张机张力数值的确定、放线滑车的悬挂方式、转向场的设置措施等都需要有准确的数字依据。
由于需要的数据繁多,计算过程繁琐复杂,人工计算无法提供如此大量精确的数据,迫切需要编制程序进行电算。
近年有过一些计算软件,具备张力放线计算的基本功能。
但随着电网建设高速发展、大截面导线逐渐普及,施工现场特殊工况(包括线路途经高大山区、交叉跨越数量多难度大等情况)越来越多,确定架线施工分段的选择及计算内容更趋复杂,原有的计算软件已远远不能满足需要。
为此,参考原有的开发经验,重新开发出一种方便快捷、精度较高、实用性较强较广的张力架线放线计算软件。
该软件可用于目前所有电压等级输电线路张力放线计算,并考虑了张力架线施工未来的发展需要,可在今后输电线路工程建设中推广应用。
目前国外还没有开发此类计算软件的相关报道。
国内方面,宁波东方电力机具制造公司的岑阿毛和北京送变电公司分别在2000年编制出张力架线放线计算软件,并将软件在数家施工单位的张力架线施工中进行了实施应用,取得了良好的效果。
张力逐点计算法

张力逐点计算法
【原创实用版】
目录
1.张力计算法的概述
2.张力逐点计算法的原理
3.张力逐点计算法的应用实例
4.张力逐点计算法的优缺点
正文
张力计算法是工程中常用的一种计算方法,主要用于计算各种结构在受力情况下的张力。
而张力逐点计算法则是张力计算法中的一种,它通过对结构中的每一个点进行受力分析,从而得出整个结构在受力情况下的张力。
张力逐点计算法的原理非常简单,首先,需要对结构进行受力分析,确定每个点的受力情况。
然后,根据力学原理,计算出每个点所受的张力。
最后,将所有点的张力相加,得出整个结构在受力情况下的总张力。
张力逐点计算法在工程中有广泛的应用,例如,在建设桥梁时,可以通过张力逐点计算法来计算出桥梁在受力情况下的张力,从而确保桥梁的安全。
张力逐点计算法虽然操作步骤较为繁琐,但优点也非常明显。
首先,它可以精确计算出每个点的张力,使得工程设计更加精确。
其次,它可以考虑到结构的所有受力点,使得工程设计更加全面。
然而,张力逐点计算法也存在一些缺点。
首先,由于需要计算大量的数据,所以计算过程较为繁琐,需要耗费大量的时间和精力。
其次,由于张力逐点计算法需要对结构进行受力分析,所以只适用于静力结构,对于动态结构,则需要采用其他的计算方法。
张力逐点计算法

张力逐点计算法
(实用版)
目录
1.张力计算法的背景和意义
2.张力逐点计算法的定义和原理
3.张力逐点计算法的应用实例
4.张力逐点计算法的优点和不足
5.张力逐点计算法的未来发展方向
正文
1.张力计算法的背景和意义
在工程领域,特别是桥梁、高楼等大型建筑结构中,张力的计算是一个非常重要的环节。
合理的张力计算可以保证结构的稳定性和安全性。
因此,研究张力计算法具有重要的理论和实际意义。
2.张力逐点计算法的定义和原理
张力逐点计算法是一种基于结构力学原理的计算方法,主要通过计算每个节点的张力来分析结构的稳定性。
其原理是在保证节点力学平衡的基础上,通过逐点计算张力,分析结构在各种受力情况下的稳定性。
3.张力逐点计算法的应用实例
张力逐点计算法在实际工程中有广泛的应用,例如在桥梁设计中,通过计算桥梁每个节点的张力,可以判断桥梁在各种受力情况下的稳定性,从而保证桥梁的安全性。
4.张力逐点计算法的优点和不足
张力逐点计算法的优点在于其可以精确计算每个节点的张力,从而准确分析结构的稳定性。
同时,该方法具有较强的通用性,适用于各种类型
的结构。
然而,这种方法的计算过程较为复杂,需要耗费较多的计算资源,且对于复杂的结构,计算结果的可靠性可能会受到一定的影响。
5.张力逐点计算法的未来发展方向
随着计算机技术的发展,张力逐点计算法的计算效率和精度将得到进一步提升。
同时,结合人工智能和大数据技术,可以进一步优化计算方法,提高计算效率和结果的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于图形解析的带式输送机逐点法张力计算软件
软件开发:心宇
QQ:2833890129
邮箱:xinyusoftware@
在机械化连续搬运设备中,带承载托辊的带式输送机(本文简称带式输送机)广泛应用于电力、冶金、煤炭等诸多行业,具有长距离、大运量、连续输送、易于实现自动化等特点,在各行各业普遍使用。
带式输送机由输送带、托辊、滚筒及驱动装置、制动器、张紧装置、头架、尾架等部分组成,结构复杂。
带式输送机的设计首先需完成张力计算,获得准确的张力数据后,才能进行功率计算、电机选型、输送带的选型,以及头架、尾架、滚筒等受力部件的设计。
因此准确的张力计算对带式输送机的设计尤为重要,它关系到带式输送机的运行安全和制造成本。
目前,带式输送机计算方法主要采用“GB/T17119-1997连续搬运设备带承载托辊的带式输送机运行功率和张力计算”,在DTII及DTII(A)系列的带式输送机设计手册中,也都按该方法来计算。
“GB/T17119-1997”是国标且等同于国际标准ISO5048:1989的计算方法。
在国标“GB/T17119-1997”计算方法中,鉴于附加阻力计算的复杂性,以及为了实现简化计算的目的,引入了附加阻力系数C,并给出了简化的圆周驱动力计算公式:F U=CfLg[q RO+q RU+(2q B+q G)]+q G Hg+F S1+F S2。
在DTII及DTII (A)系列的带式输送机设计手册所给出的计算实例中,根据上述的圆周驱动力计算公式,首先计算出总的圆周驱动力F U,在F U的基础上再完成轴功率、最大张力和各特性点张力等相关计算。
在DTII(A)系列的设计手册给出的特性点张力计算公式中特别声明:“不适合于传动滚筒合张力的计算,更不适合用于确定圆周驱动力”。
如果引入附加阻力系数C,将出现以下几个问题:
1)带式输送机是一个封闭整体,计算的张力数值也应是闭合的,如果不闭合,说明某些点的张力值是不准确的。
如果先计算出圆周驱动力FU,在FU
为已知条件且采用另一套公式计算各特性点张力,如何能实现张力的闭合?(是先有“蛋”后用“鸡”?还是先有“鸡”后有“蛋”?)
2)对于连续起伏的带式输送机如何实现计算的准确性?
3)对于多滚筒驱动如何实现张力的准确分配?
4)在国标“GB/T17119-1997”计算方法中,明确说明对于长度小于80m的带式输送机建议采用公式计算附加阻力,不建议仍采用C估算。
综上所述,引入附加阻力系数C对输送机的计算是有局限性的。
在“GB/T17119-1997”中详细给出了各种阻力(包括附加阻力)的计算公式,如果利用这些计算公式,构建逐点法解析方程,采用先计算张力再计算驱动力的思路,多次迭代逐步求精,无需引入附加阻力系数C,便可避免上述4点问题,实现对输送机更精确的计算。
但是,采用逐点法计算同时也会带来以下问题:
1)逐点法计算过程繁琐,不适合人工计算;
2)逐点法计算需采集完整的输送机数据点。
因此,编写带式输送机计算软件实现逐点法计算,是解决计算过程繁琐的最佳途径,本软件采用国标“GB/T17119-1997”计算方法中的相关计算公式构建解析方程,利用软件技术实现多次迭代逐步求精,从而完成输送机各点的张力计算。
在采集输送机数据点过程中,本软件采用基于图形解析的方法,直接从输送机布置图中获得数据点,计算数据与输送机理论外形实现完全吻合。
同时计算范围不受输送机布置形式限制,可完成多段凸凹弧布置、多段起伏布置、多驱动轮布置、长距离、大运量、大带宽等极端环境下的输送机计算(理论计算带宽可达3m)。
(未完待续……)
承接有偿计算服务,详情请联系软件作者:
QQ:2833890129;邮箱:xinyusoftware@。