函数及其表示题型归纳总结

函数及其表示题型归纳总结
函数及其表示题型归纳总结

函数及其表示

函数的定义域、值域:

在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

求函数定义域的策略

(1)确定函数的定义域常从解析式本身有意义,或从实际出发.

(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.

(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x集合为定义域.(2)函数的三要素:定义域、值域和对应关系.

相等函数:如果两个函数的定义域和对应关系完全一致,这两个函数相等,这是判断两函数相等的依据. 两函数值域与对应关系相同时,两函数不一定相同.

函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.

分段函数:若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意

(1)分段函数虽然由几个部分构成,但它表示同一个函数.

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

(3)各段函数的定义域不可以相交.

题型一、函数概念

例1. (2019秋?桥西区校级月考)设A={x|0≤x≤2},B={y|1≤y≤2},能表示集合A到集合B的函数关系的是()

A.B.C.D.

解:A不是函数(一个x对应两个y),排除;

B中y∈[0,2],不是集合A到集合B的函数关系,排除;

C不是函数(x=1时对应两个函数值),排除;D符合要求,故选:D

变式1、(2013秋?南开区校级月考)函数y=f(x)的图象与直线x=6的交点个数为()A.至少一个B.至多一个C.恰好一个D.零个

解:根据函数的定义可知,设函数的定义域为A,

若6?A,此时交点个数为0个,若6∈A,此时交点个数为1个,

综上函数y=f(x)的图象与直线x=6的交点个数为至多一个,故选:B

变式2、下列图形能表示函数y=f(x)的图象的是()

A.B.C.D.

解:根据题意,对于A、C两图,可以找到一个x与两个y对应的情形;

对于B图,当x=0时,有两个y值对应;

对于D图,每个x都有唯一的y值对应.因此,D图可以表示函数y=f(x),故选:D 例2、下列哪一组中的函数f(x)与g(x)是相同函数()

A.f(x)=x﹣1,g(x)=﹣1B.

C.f(x)=x2,g(x)=D.y=

解:对于A,要使g(x)有意义,则x≠0,两个函数的定义域不相同,此时g(x)=x﹣1,∴f(x)与g(x)不是同一函数;

对于B,要使g(x)有意义,则x≥0,两个函数的定义域不相同,此时g(x)=x2,∴f(x)与g(x)不是同一函数;

对于C,g(x)=x2,f(x)与g(x)的定义域和对应法则相同,是同一函数;

对于D,f(x)的定义域为{x|x>1},g(x)的定义域为{x|x≤﹣1或x≥1},两个函数的定义域不相同,∴f(x)与g(x)不是同一函数.故选:C

变式1、(2019秋?重庆月考)下列各组函数中,f(x)与g(x)相等的是()A.f(x)=3﹣x,g(x)=3﹣|x|B.

C.f(x)=+1,g(x)=1+x D.

解:根据函数的定义可知,f(x)=3﹣x与g(x)=3﹣|x|的对应关系不同,根据函数的定义可知,f(x)=x2与g(x)==x对应关系不同,

根据f(x)==x+1(x≠0),g(x)=x+1的定义域不同,

f(x)==x﹣2与g(x)==x﹣2的定义域都为{x|x≠0},对应关系也相同,故为同一函数.选:D

变式2、(2019秋?梅河口市月考)在下列函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=|x+1|,g(x)=

C.D.

解:A.f(x)=x﹣1的定义域为R,的定义域为{x|x≠﹣1},定义域不同,不是同一函数;

B.的定义域为R,的定义域

为R,定义域和解析式都相同,是同一函数;

C.的定义域为{x|x≤﹣3,或x≥3},

的定义域为{x|x≥3},定义域不同,不是同一函数;

D.,解析式不同,不是同一函数.故选B

题型二、定义域

1、具体函数定义域

例1、(2019秋?桥西区校级月考)函数的定义域为()

A.[﹣2,3)∪(3,4]B.(﹣∞,3)∪(3,4]C.[﹣2,4]D.(﹣∞,4]

解:由题意可得,﹣2≤x≤4且x≠3,定义域为[﹣2,3)∪(3,4].故选:A 变式1、函数的定义域为()

A.B.C.D.

解:由,解得x且x≠﹣2.

∴定义域为.故选:C

变式2、函数f(x)=﹣的定义域为

解:要使f(x)有意义,则,解得2≤x<6,

∴f(x)的定义域为[2,6).故答案为:[2,6)

2、含参定义域问题

例1、函数的定义域为R,则实数m的取值范围是

解:函数的定义域为R,则mx2+mx+1>0恒成立,

当m=0时,1>0恒成立;当m≠0时,应满足,解得0<m<4;

综上,实数m的取值范围是[0,4).故答案为:[0,4)

例2、已知函数f(x)=(a∈R)定义域为R,求实数a的取值范围.

解:若函数y=f(x)定义域为R,

①当a=0时,显然成立;

②当a≠0时,则,解得0,综上a为[0,].例3、函数的定义域是R,则m的取值范围是()

A.m≠4B.m<0或C.D.[3,+∞)

解:函数的定义域是R,则mx2+4mx+3≠0恒成立;

当m=0时,化为3≠0恒成立;当m≠0时,应满足△<0,

即16m2﹣12m<0,解得0<m<;综上,m的取值范围是0≤m<.选:C 变式1、函数y=的定义域为R,则k的取值范围是()A.(﹣∞,9)∪[0,+∞)B.[1,+∞)

C.[﹣9,1)D.(0,1]

解:∵的定义域为R,∴不等式kx2﹣6x+k+8≥0的解集为R ∴,解得k≥1,∴k的取值范围是[1,+∞).故选:B.

3、抽象函数定义域问题

例1、已知函数f(x)的定义域为{x|﹣1<x<1},则函数f(2x+1)的定义域为()A.{x|﹣1<x<1} B.{x|﹣1<x<0} C.{x|0<x<1} D.

解:∵函数f(x)的定义域为{x|﹣1<x<1},∴﹣1<2x+1<1,

解可得,﹣1<x<0,则函数f(2x+1)的定义域为(﹣1,0).故选:B

例2、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3] D.[﹣2,1]解:∵y=f(x+1)的定义域是[﹣1,2],∴﹣1≤x≤2,

∴0≤x+1≤3,∴y=f(﹣x)需满足0≤﹣x≤3,∴﹣3≤x≤0,

∴y=f(﹣x)的定义域为[﹣3,0].故选:A

变式1、若函数f(x)的定义域是[0,3],则函数的定义域为()

A. [0,3 ] B.[﹣1,2] C.[0,1)∪(1,3] D.[﹣1,1)∪(1,2]

解:函数f(x)的定义域是[0,3],即,解得,

所以函数的定义域为[﹣1,1)∪(1,2].故选:D

变式2、已知函数y=f(x+1)定义域是[﹣2,5],则y=f(3x﹣1)的定义域是()A.[﹣10,13]B.[﹣1,4]C.[0,]D.[﹣1,]

解:函数y=f(x+1)的定义域为[﹣2,5],

令﹣1≤x+1≤6,则﹣1≤3x﹣1≤6,所以0≤x≤,

所以函数y=f(3x﹣1)定义域是[0].选:C

题型三、解析式

1、待定系数法:适合于已知函数类型求解析式的问题,可设定函数的解析式,根据条

件列出方程(组)求出待定系数得解析式.

例1、已知函数f(x)为二次函数,且f(x﹣1)+f(x)=2x2+4,求f(x)的解析式解:设f(x)=ax2+bx+c(a≠0)

∴a(x﹣1)2+b(x﹣1)+c+ax2+bx+c=2ax2+(2b﹣2a)x+a﹣b+2c=2x2+4

∴,解得.∴f (x )=x 2+x +2

变式1、已知函数f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求

f (x )的解析式.

解:设f (x )=ax 2+bx +c (a ≠0),若f (0)=0,且f (x +1)=f (x )+x +1,

∴c =0且a (x +1)2+b (x +1)+c =ax 2+bx +c +x +1, ∴,解得.∴

.

变式2、已知二次函数f (x )满足f (x +1)﹣f (x )=2x 且f (0)=1.求f (x )解析式. 解:设二次函数f (x )=ax 2+bx +c (a ≠0),∵f (0)=1,∴c =1,∴f (x )=ax 2+bx +1;

又∵f (x +1)﹣f (x )=[a (x +1)2+b (x +1)+1]﹣[ax 2+bx +1]=2ax +a +b =2x ,

∴2a =2且a +b =0,∴a =1,b =﹣1;∴f (x )=x 2﹣x +1.

2、 换元法:已知[()]()f g x F x ,求f(x)的问题,可以设 t=g(x),从中解出x,代入g(x)

进行换元,最后把t 换成x.

例1、已知函数

,则f (x )=____________ 解:设

,则x =(t ﹣1)2=t 2﹣2t +1, 因为,所以f (t )=t 2﹣2t +3,

即f (x )=x 2﹣2x +3(x ≥1).故选:B

例2、已知函数f (x+1)=x 2+6x ,则f (x )=________

解:令t =x +1,则x =t ﹣1,

∴f (t )=(t ﹣1)2+6(t ﹣1)=t 2+4t ﹣5,即f (x )=x 2+4x ﹣5,答案为:x 2+4x ﹣5 例3、已知

,求函数f (x )的解析式. 解:令

得x =,t ≠1, ∵

∴f (t )=﹣2?+1=∴f (x )=,x ≠1 变式1、已知函数f (

+1)=x ﹣4,则f (x )的解析式为 解:令,则x =(t ﹣1)2,

故f (t )=(t ﹣1)2﹣4=t 2﹣2t ﹣3(t ≥1),

故答案为:f (x )=x 2﹣2x ﹣3(x ≥1)

变式2、已知f (2x +3)=x 2,则f (x )=_________

解:令2x +3=t ,求得x =

,代入已知式子, 可得f (t )==,

故有f (x )=(x 2﹣6x +9).

3、函数方程法:已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他量,

如f(-x),1()f x 可再构造其它等式组成方程组,解方程组求f(x).

例1、已知f (x )满足

,求f (x )的解析式. 解:用替换x 得:

, 消去可得,故.

变式1、已知函数f (x )满足,则f (3)=_______ 解:根据题意,函数f (x )满足

, 当x =3时,2f (3)=3f ()+,①,

当x =时,2f ()=f (3)+3,②,①②解可得:f (3)=

思考:已知3()2()3f x f x x +-=+,求()f x ?

4、配凑法:由已知条件[()]()f g x F x =,可将F(x)改写成g(x)的表达式,然后以x 代替g(x),便得f(x)的表达式.

例1、.已知函数

,则f (3)=( ) A .8

B .9

C .10

D .11 解:∵

, ∴f (x +)=

+1, 故f (x )=x 2+1,

故f (3)=9+1=10,

故选:C.

题型四、分段函数

例1、若函数,则f(﹣3)的值为()

A.B.C.2D.8

解:∵函数,

∴f(﹣3)=f(﹣3+2)=f(﹣1)=f(﹣1+2)=f(1)=f(1+2)=2﹣3=,故选:A

例2、已知函数y=,若f(a)=10,则a的值是()

A.3或﹣3B.﹣3或5C.﹣3D.3或﹣3或5 解:若a≤0,则f(a)=a2+1=10,∴a=﹣3(a=3舍去)

若a>0,则f(a)=2a=10,∴a=5

综上可得,a=5或a=﹣3,故选:B

变式1、设函数若f(a)=a,则实数a的值为()

A.±1B.﹣1C.﹣2或﹣1D.±1或﹣2

解:由题意知,f(a)=a;

当a≥0时,有,解得a=﹣2,(不满足条件,舍去);

当a<0时,有,解得a=1(不满足条件,舍去)或a=﹣1.

所以实数a的值是:a=﹣1.故选:B

变式2、设f(x)=,则f(5)的值为()A.10B.11C.12D.13解析:∵f(x)=,∴f(5)=f[f(11)]

=f(9)=f[f(15)]=f(13)=11.故选:B

高中数学必修基本初等函数常考题型幂函数

高中数学必修基本初等 函数常考题型幂函数 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质 解析式y=x y=x2y=x3y=1 x y= 1 2 x 图象 定义域R R R{x|x≠0}[0,+∞)值域R[0,+∞)R{y|y≠0}[0,+∞) 奇偶性奇函数偶函数奇函数奇函数非奇非偶函 数 单调性在(-∞, +∞)上单 调递增 在(-∞, 0]上单调递 减,在(0, +∞)上单 调递增 在(-∞, +∞)上单 调递增 在(-∞, 0)上单调递 减,在(0, +∞)上单 调递减 在[0,+ ∞)上单调 递增 定点(1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.

特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念 【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ? ?? ;③y=4x 2;④y=x 5 +1;⑤y=(x -1)2;⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =()2 2231m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=()2 2231m m m m x ----为幂函数, ∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0. 故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法

八年级数学上册 一次函数解析式常见题型分析 人教新课标版

求一次函数解析式常见题型解析 一次函数解析式的求法在初中数学教学内容中占有举足轻重的作用,如何把这一部分内容学的扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学门有所帮助。 一:定义型 例1. 已知函数是一次函数,求其解析式。 解:由一次函数定义知 ,故一次函数的解析式为 注意:利用定义求一次函数解析式时,要保证。如本例中应保证 二. 点斜型 例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。 解:一次函数的图像过点(2,-1) ,即 这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。 三. 两点型 已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

解:设一次函数解析式为 由题意得 故这个一次函数的解析式为 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。 解:设一次函数解析式为 由图可知一次函数的图像过点(1,0)、(0,2) 有 故这个一次函数的解析式为 五. 斜截型

例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。 解析:两条直线:;:。当,时, 直线与直线平行,。 又直线在y轴上的截距为2, 故直线的解析式为 六. 平移型 例6. 把直线向下平移2个单位得到的图像解析式为___________。 解析:设函数解析式为,直线向下平移2个单位得到的直线 与直线平行 直线在y轴上的截距为,故图像解析式为 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。 解:由题意得,即 故所求函数的解析式为() 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

函数及其表示知识框架

函数及 其表示 要求层次 重难点 函数的概念与表示 C 理解函数的概念及对函数符号()y f x 的理解;会求函数的定义域、简单的函数的值域;会作出一些基本函数:一次函数,二次函数等函数的图象;理解分段函数的定义及其应用; 理解映射的概念. 映射 A 函数的表示 B 一、知识点 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。记作:y=f(x),x ∈A 。其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域。 注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; (2)函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x 。 2.构成函数的三要素:定义域、对应关系和值域 模块框架 高考要求 知识内容 函数及其表示

(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式: ①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为 零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等); ②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是 难点,因为有时这种限制比较隐蔽,容易犯错误; ③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。 (2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。 ①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等 式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。 3.两个函数的相等: 函数的定义含有三个要素,即定义域A、值域C和对应法则f。当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。 4.区间 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示。 5.映射的概念 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。记作“f:A→B”。 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射。 注意:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述。 (2)“都有唯一”什么意思? 包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。 6.常用的函数表示法 (1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式; (2)列表法:就是列出表格来表示两个变量的函数关系; (3)图象法:就是用函数图象表示两个变量之间的关系。 7.分段函数 若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 8.复合函数 若y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它的取值范围是g(x)的值域。 二、重点题型解析

(推荐)高中数学必修1基本初等函数常考题型:幂函数

幂函数 【知识梳理】 1.幂函数的概念 一般地,函数y =x 叫做幂函数.其中x 是自变量,α是常数. 2.常见幂函数的图象与性质 解析式 y =x y =x 2 y =x 3 y =1x y =12 x 图象 定义域 R R R {x|x≠0} [0,+∞) 值域 R [0,+∞) R {y|y≠0} [0,+∞) 奇偶性 奇函数 偶函数 奇函数 奇函数 非奇非偶函数 单调性 在(-∞,+ ∞)上单调递增 在(-∞,0]上单调递减,在(0,+∞)上单调递增 在(-∞,+∞)上单调递增 在(-∞,0)上单调递减,在(0,+∞)上单调递减 在[0,+∞)上单调递增 定点 (1,1) (1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1). (2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数. 特别地,当α>1时,幂函数的图象下凸; 当0<α<1时,幂函数的图象上凸. (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴. 【常考题型】 题型一、幂函数的概念

【例1】 (1)下列函数:①y=x 3 ;②y=12x ?? ??? ;③y=4x 2;④y=x 5+1;⑤y=(x -1)2 ; ⑥y=x ;⑦y=a x (a>1).其中幂函数的个数为( ) A .1 B .2 C .3 D .4 (2)已知幂函数y =( ) 22 23 1m m m m x ----,求此幂函数的解析式,并指出定义域. (1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B. [答案] B (2)[解] ∵y=( ) 22 23 1m m m m x ----为幂函数, ∴m 2 -m -1=1,解得m =2或m =-1. 当m =2时,m 2 -2m -3=-3,则y =x -3 ,且有x≠0; 当m =-1时,m 2 -2m -3=0,则y =x 0 ,且有x≠0. 故所求幂函数的解析式为y =x -3 ,{x|x≠0}或y =x 0 ,{x|x≠0}. 【类题通法】 判断一个函数是否为幂函数的方法 判断一个函数是否为幂函数的依据是该函数是否为y =x α (α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件. 【对点训练】 函数f(x)=( ) 22 3 1m m m m x +---是幂函数,且当x∈(0,+∞)时,f(x)是增函数,求f(x) 的解析式. 解:根据幂函数的定义得 m 2 -m -1=1.解得m =2或m =-1. 当m =2时,f(x)=x 3 在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3在(0,+∞)上是减函数,不符合要求. 故f(x)=x 3 . 题型二、幂函数的图象

(完整版)一次函数题型总结归纳

a a t 精心整理 一次函数题型总结 函数定义 1、判断下列变化过程存在函数关系的是() A.是变量, B.人的身高与年龄 C.三角形的底边长与面积 y x ,x y 2±=A 、1B 、2C 、3D 、42、若函数y=(3-m)x m-9是正比例函数,则m=。 3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数(2)是正比 例函数 一次函数与坐标系 1.一次函数y=-2x+4的图象经过第象限,y 的值随x 的值增大而(增大或减少)

2.已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= . 3.已知k >0,b >0,则直线y=kx+b 不经过第 象限. 4、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. B. C. D. 1-14 1-4 1(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度 是多少? 4、东从A 地出发以某一速度向B 地走去,同时小明从B 地 出发以 另一速度向A 地而行,如图所示,图中的线段、B 地的 1y 距离(千米)与所用时间(小时)的关系。 2

a t s ⑵试求出A 、B 两地之间的距离。 函数图像的平移 1.把直线向上平移3个单位所得到的直线的函数解析式为 .13 2+=x y 2、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是()。 A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2) 的增大而,当. 函数图像与坐标轴围成的三角形的面积 1、函数y=-5x+2与x 轴的交点是与y 轴的交点是与两坐标轴围成的三角形面积是。 2.已知直线y =x +6与x 轴、y 轴围成一个三角形,则这个三角形面积为___。3、已知:在直角坐标系中,一次函数y=的图象分别与x 轴、y 轴相交于23

函数概念及其表示(知识点总结例题分类讲解)

龙文教育教师1对1个性化教案 教导处签字: 日期:年月日

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则. 【例题讲解】 考点一:函数与映射概念考查

例1 判断下列图象能表示函数图象的是( ) 练习1:函数()y f x =的图象与直线x = a 的交点个数 ( ) A. 只有一个 B.至多有一个 C.至少有一个 D.0个 练习2:下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →= ; ( 2 ){| 0}A x x =>,{|}B y y R =∈,:f x y →= 练习3:下列是映射的是( ) 图1 图2 图3 图4 图5 (A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、5 函数相等:如果两个函数的定义域相同,并且对应关系完全一致. 例2 指出下列各函数中,哪个与函数y x =是同一个函数: (1)2 x y x =; (2)y = (3)s t =. 练习1:判定下列各组函数是否为同一个函数: (1)()f x x =, ()f x (2)()1f x x =+,21 ()1 x f x x -=- 练习2:试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (A)

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高一基本初等函数测试题

第二章:基本初等函数 第I 卷(选择题) 一、选择题5分一个 1.已知f(x)=a x5 +bx 3+cx +1(a≠0),若f=m,则f(﹣2014)=( ) A .﹣m ? B .m ? C.0 D .2﹣m 2.已知函数f (x )=lo ga(6﹣ax)在[0,2]上为减函数,则a 的取值范围是( ) A .(0,1) B .(1,3)?C .(1,3]?D.[3,+∞) 3.已知有三个数a=( )﹣ 2,b =4 0.3 ,c =80.2 5,则它们之间的大小关系是( ) A .a0,a≠1,f(x )=x 2 ﹣a x .当x ∈(﹣1,1)时,均有f(x)<,则实数a 的取值范围是( ) A.(0,]∪[2,+∞)?B.[,1)∪(1,2]?C.(0,]∪[4,+∞) D.[,1)∪(1,4] 5.若函数y=x 2﹣3x ﹣4的定义域为[0,m],值域为[﹣,﹣4],则m的取值范围是( ) A.(0,4]?B. C. D. 6.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A.y = (x ∈R 且x≠0)?B.y=()x (x ∈R) C.y=x(x∈R ) D .y=x 3(x∈R) 7.函数f (x)=2x ﹣1+log 2x 的零点所在的一个区间是( ) A.( 81,41) B.(41,21)?C.(2 1 ,1) D .(1,2) 8.若函数y =x 2﹣3x ﹣4的定义域为[0,m],值域为,则m 的取值范围是( ) A.(0,4]?B. C. ?D. 9.集合M ={x |﹣2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以M为定义域,N 为值域的函数关系的是( ) A . B. C.?D. 10.已知函数f (x)对任意的x1,x 2∈(﹣1,0)都有0 ) ()(2 121<--x x x f x f ,且函数y=f(x ﹣1)是偶 函数.则下列结论正确的是( )

高一必修一基本初等函数知识点总结归纳修订版

高一必修一基本初等函数知识点总结归纳 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高一必修一函数知识点() 〖〗指数函数 (1)根式的概念 n 叫做根指数,a 叫做被开方数. ②当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:n a =;当n a =;当n 为偶数时, (0) || (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意 义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r a b a b a b r R =>>∈ (4)指数函数 例:比较 〖〗对数函数

(1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =. (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘:log log ()n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数 (6) 反函数的求法

一次函数题型归纳解析

一次函数题型归纳解析 1.判断k 、b 的符号 在不作出函数图象的情况下,根据函数图象经过的象限,可判断出k 、b 的符号,反之亦然. 例1 正比例函数或一次函数(y=kx+b)的图象如图所示,则k 、b 的符号 ( ) A 、k <0,b >0. B 、k >0,b >0. C 、k <0,b <0. D 、k >0,b <0. 【评析】 注意到图象自左向右上升,函数值y 随着x 的增大而增大,图象自左向右下降,函数值y 随着x 的增大而减小;直线与y 轴正方向相交,k 为正,直线与y 轴的负方向 相交,k 为负.反之亦然. 2.判断直线经过的象限 例2下列图象中,表示直线y=x-1的是 ( ) (A)11O y x (B)-11 O y x (C)-1-1O y x (D)1-1O y x 3.确定函数的解析式 此类问题主要是考查考生利用待定系数法来求出有关函数一般解析式中的未知系数,从而确定该函数解析式的能力. 例3 某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下: 印数x (册) 5000 8000 10000 15000 …… 成本y (元) 28500 36000 41000 53500 …… (1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);

(2)如果出版社投入成本48000元,那么能印该读物多少册?分析(1)设所求一次函数的解析式为y=kx+b, 则 500028500, 800036000. k b k b += ? ? += ? 解得k=5 2 ,b=16000。 ∴所求的函数关系式为y=5 2 x+16000。 (2)∵48000=5 2 x+16000。 ∴x=12800。 答:能印该读物12800册. 评析此题主要考查待定系数法以及解方程(组)的运算能力.解题时应根据函数图象上的点的坐标与函数解析式之间的关系列出方程或方程组,然后再求解. 4.图表信息 例4某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如右下图所示,其中BA是线段,且BA∥x轴,AC是射线。 (1)当x≥30,求y与x之间的函数关系式; (2)若小李4月份上网20小时,他应付多少元的上网费用? (3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少? 分析:观察图象,求出函数解析式,确定函数的值。 解:(1)当x≥30时,设函数关系式为y=kx+b 则 3060 4090 k b k b += ? ? +=? 解得 3 30 k b = ? ? =- ? 所以y=3x-30。 (2)4月份上网20小时,应付上网费60元。 (3) 由75=3x-30解得x=35,所以5月份上网35个小时。 A C B 60 90 30 40 X小时 Y(元)

高中数学函数及其表示知识点

第二章 函数 第一课时 (一)知识梳理 1.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。 2.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的 x ,在集合B 中都有 的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为__________ (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值, {} A x x f ∈)(称为函数)(x f y =的值域。 (3)函数的三要素: 、 和 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:映射的概念 例1.下述两个个对应是A 到B 的映射吗? A R =,{|0}B y y =>,:||f x y x →=; 考点2:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 例1. 试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (2)x x x f =)(,???<-≥=;01 ,01)(x x x g (3)x x f = )(1+x ,x x x g +=2)(;

函数及其表示知识点

函数及其表示 一、知识梳理 1.映射的概念 设是两个集合,如果按照某种对应法则,对于集合中的任意元素,在集合中都有唯一确定的元素与之对应,那么这样的单值对应叫做从到的映射,通常记为 ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。 2.函数的概念 (1)函数的定义:设是两个非空的数集,如果按照某种对应法则,对于集合中的 ,在集合中都有 的数和它对应,那么这样的对应叫做从到的一个函数,通常记为__________ (2)函数的定义域、值域 在函数中,叫做自变量, 叫做的定义域;与的值相对应的值叫做函数值, 称为函数的值域。 (3)函数的三要素: 、 和 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:映射的概念 例1.下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →=; (2){|0}A x x =>,{|}B y y R =∈,:f x y →= 例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个 例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( ) ()A 8个 ()B 12个 ()C 16个 ()D 18个 考点2:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 例1. 试判断以下各组函数是否表示同一函数? (1),; (2), (3),; (4),

高中数学必修基本初等函数常考题型指数函数及其性质

指数函数及其性质 【知识梳理】 1.指数函数的定义 函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 【常考题型】 题型一、指数函数的概念 【例1】 (1)下列函数: ①23x y =?;②1 3x y +=;③3x y =;④3 y x =. 其中,指数函数的个数是( ) A .0 B .1 C .2 D .3 (2)函数()2 2x y a a =-是指数函数,则( ) A .1a =或3a = B .1a = C .3a = D .0a >且1a ≠ [解析] (1)①中,3x 的系数是2,故①不是指数函数; ②中,1 3 x y +=的指数是1x +,不是自变量x ,故②不是指数函数; ③中,3x y =的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数; ④中,3 y x =中底数为自变量,指数为常数,故④不是指数函数.所以只有③是指数函数.

(2)由指数函数定义知()2 21 01 a a a ?-=??>≠??且,所以解得3a =. [答案] (1)B (2)C 【类题通法】 判断一个函数是否为指数函数的方法 判断一个函数是否是指数函数,其关键是分析该函数是否具备指数函数三大特征: (1)底数0a >,且1a ≠. (2)x a 的系数为1. (3)x y a =中“a 是常数”,x 为自变量,自变量在指数位置上. 【对点训练】 下列函数中是指数函数的是________(填序号). ①2x y =? ;②12x y -=;③2x y π?? = ??? ;④x y x =; ⑤1 3y x =-;⑥1 3y x =. 解析: ①中指数式 x 的系数不为1,故不是指数函数;②中1 12 22 x x y -==?,指数式2x 的系数不为1,故不是指数函数;④中底数为x ,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x ,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③. 答案:③ 题型二、指数函数的图象问题 【例2】 (1)如图是指数函数①x y a =,②x y b =,③x y c =,④x y d =的图象,则a , b , c , d 与1的大小关系为( ) A .1a b c d <<<< B .1b a d c <<<< C .1a b c d <<<< D .1a b d c <<<< (2)函数3 3x y a -=+(0a >,且1a ≠)的图象过定点________. [解析] (1)由图象可知③④的底数必大于1,①②的底数必小于1.

基本初等函数考点总结及习题

二次函数、基本初等函数及函数的应用自主学习导引 1.(2012·四川)函数y=a x-1 a(a>0,且a≠1)的图象可能是( D ) 2.(2012·湖北)函数f(x)=x cos 2x在区间[0,2π]上的零点的个数为( D ) A.2 B.3 C.4 D.5 、 考题分析 对于基本初等函数,高考主要考查其图象与性质,题目较容易;基本初等函数的应用、函数与方程是近几年高考的热点,考查内容一般为函数的实际应用题、函数零点个数的判定或根据零点的个数求参数的范围.题型一般为选择题或填空题,难度中等. 网络构建 高频考点突破 考点一:二次函数 } 【例1】已知函数f(x)=x2+2ax+2,x∈[-5,5]. (1)当a=-1时,求函数f(x)的最大值和最小值; (2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

) 2.设二次函数f (x )=ax 2+bx +c ,如果f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)= A .-b 2a B .-b a C .c 答案 C 考点二:指数函数、对数函数及幂函数 < 【例2】(1)(2012·威海模拟)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a 、b 满足的关系是 ( D ) A .0<a -1<b -1<1 B .0<b <a -1<1 C .0<b -1<a <1 D .0<a -1<b <1 【规律总结】 利用幂函数、指数函数、对数函数的图象与性质求参数的范围(值) (1)幂、指、对函数的参数一般与其单调性有关,故解题时要特别关注函数的单调性; { (2)在涉及函数的图象时,需注意应用函数图象与坐标轴的交点、对称性或函数图象的变换求解. [易错提示] (1)涉及对数函数与幂函数时,需注意其定义域; (2)在幂函数的有关计算中,要注意参数值的验证. 3.若x ∈(e -1 , 1),a =ln x ,b =? ?? ??12ln x ,c =e ln x ,则 A .c >b >a B .b >a >c C .a >b >c D .b >c >a 4.(北京卷2)若0.52a =,πlog 3b =,22π log sin 5 c =,则( A ) A .a b c >> B .b a c >> C .c a b >> D .b c a >> ( 5.设323log ,log 3,log 2a b c π===

一次函数 最全面 知识点题型总结

初中数学一次函数知识点总结 基本概念: 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 函数性质: 1.y的变化值与对应的x的变化值成正比例,比值为k. 即:y=kx+b(k,b为常数,k ≠0)。 2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。 3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。 4.在两个一次函数表达式中: 当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合; 当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行; 当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交; 当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。 图像性质 1.作法与图形:

(1)列表. (2)描点;一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。 2.性质: (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。 (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。 3.函数不是数,它是指某一变化过程中两个变量之间的关系。 一次函数的图象特征和性质: y =kx+b b>0 b<0 b=0 y=kx k >0 经过第一、二、 三象限 经过第一、三、 四象限 经过第一、 三象限图象从左到右上升,y随x的增大而增大 k <0 经过第一、二、 四象限 经过第二、三、 四象限 经过第二、 四象限图象从左到右下降,y随x的增大而减小

基本初等函数题型总结

基本初等函数题型总结 题型1 指数幂、指数、对数的相关计算 【例1】 计算: (1)12lg 3249-43lg 8+lg 245;(2)lg 25+23 lg 8+lg 5×lg 20+(lg 2)2. (3)353log 1+-232log 4++103lg3+????1252log . 变式: 1.计算下列各式的值: (1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27 . (3)lg 5(lg 8+lg 1 000)+(lg 2 3)2+lg 16+lg 0.06. 题型2指数与对数函数的概念 【例1】(1)若函数y =(4-3a )x 是指数函数,则实数a 的取值范围为________. (2)指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (3)函数y =a x -5+1(a ≠0)的图象必经过点________. 题型3 指数与对数函数的图象 【例1】如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( ) A .a <b <1<c <d B .b <a <1<d <c C .1<a <b <c <d D .a <b <1<d <c 【例2】函数y =2x +1的图象是( )

【例3】函数y =|2x -2|的图象是( ) 【例4】直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图象有两个公共点,则a 的取值范围是________. 【例5】方程|2x -1|=a 有唯一实数解,则a 的取值范围是____________. 变式: 1.如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35,110 ,则相应于 c 1,c 2,c 3,c 4的a 值依次为( ) A.3,43,35,110 B.3,43,110,35 C.43,3,35,110 D.43,3,110,35 2.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( ) A .0<a <b <1 B .0<b <a <1 C .a >b >1 D .b >a >1 4.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .0 B .1 C .2 D .3 5.函数y =x 3 3x -1 的图象大致是( ) 题型4指数与对数型函数的定义域、值域、单调性、奇偶性 例 1函数f (x )=1-2x +1x +3的定义域为____________. 2判断f (x )= x -x )(2231的单调性,并求其值域.

高中数学__函数及其表示知识点

函数及其表示 (一)知识梳理 1.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的x ,在集合B 中都有的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为__________ (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,{} A x x f ∈)(称为函数)(x f y =的值域。 (3)函数的三要素:、和 2.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 3.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 4.映射的概念 设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →:,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。 (二)考点分析 考点1:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 例1.试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (2)x x x f = )(,?? ?<-≥=; 01 , 01)(x x x g (3)x x f =)(1+x ,x x x g +=2)(; (4)12)(2--=x x x f ,12)(2 --=t t t g (5)1 212)(++= n n x x f ,1212)()(--=n n x x g (n ∈N *) ; 考点2:映射的概念 例1.下述两个个对应是A 到B 的映射吗?

相关文档
最新文档