立体几何线面角二面角解答题练习

合集下载

【高中数学】立体几何(线线、线面、面面成角)解答题C

【高中数学】立体几何(线线、线面、面面成角)解答题C

C1.在四棱锥V -ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(Ⅰ)证明AB ⊥平面VAD .(Ⅱ)求面VAD 与面VDB 所成的二面角的大小.1.证明:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .建立如图空间直角坐标系,并设正方形边长为1,则A (12,0,0),B (12,1,0),C (-12,1,0), D (-12,0,0),V (0,0,∴1(0,1,0),(1,0,0),(2AB AD AV ===-由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥13(0,1,0)(,0,)022AB AV AB AV ⋅=⋅-=⇒⊥又AB ∩AV =A∴AB ⊥平面VAD(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量设(1,,)ny z =是面VDB的法向量,则110(1,,)(,1,0(1,1,230(1,,)(1,1,0)0x nVB y z n zn BD y z =-⎧⎧⎧⋅=⋅-=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=⋅=⎪⎪⎪⎩⋅--=⎩⎩∴(0,1,0)(1,cos ,7AB n ⋅-<>==-,又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos72.如图1,已知ABCD 是上、下底边长分别是2和6,高为3的等腰梯形.将它沿对称轴OO 1折成直二面角,如图2.(Ⅰ)证明AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小. 2.解法一(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB. 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3) O 1(0,0,3). 从而.0333),3,3,0(),3,1,3(11=⋅+-=⋅-=-=BO AC BO AC所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅OC BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量. 设),,(z y x n =是0平面O 1AC 的一个法向量, 由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x C O n AC n 取 得)3,0,1(=n .设二面角O —AC —O 1的大小为θ,由n 、1BO 的方向可知=<θn所以cos <=cos θn ,1BO .43||||1=⋅BO n BO n即二面角O —AC —O 1的大小是.43arccos解法二(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1,所以∠AOB 是所折成的直二面角的平面角, 即OA ⊥OB. 从而AO ⊥平面OBCO 1, OC 是AC 在面OBCO 1内的射影.ABOCO 1D图3因为3tan 11==∠OO OB B OO 33tan 111==∠OO C O OC O ,所以∠OO 1B=60°,∠O 1OC=30°,从而OC ⊥BO 1 由三垂线定理得AC ⊥BO 1.(II )解 由(I )AC ⊥BO 1,OC ⊥BO 1,知BO 1⊥平面AOC.设OC ∩O 1B=E ,过点E 作EF ⊥AC 于F ,连结O 1F (如图4),则EF 是O 1F 在平面AOC 内的射影,由三垂线定理得O 1F ⊥AC. 所以∠O 1FE 是二面角O —AC —O 1的平面角. 由题设知OA=3,OO 1=3,O 1C=1,所以13,3221212121=+==+=C O A O AC OO OA A O ,从而1332111=⋅=AC C O A O F O , 又O 1E=OO 1·sin30°=23,所以.413sin 111==∠F O E O FE O 即二面角O —AC —O 1的大小是.43arcsin 3.如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ;(2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值;(3)在BC 边上是否存在一点G ,使得D 点到平面PAG 的距离为1,若存在,求出BG 的值;若不存在,请说明理由.3.解:以A 为原点,AB 所在直线为x 轴,AD 所在直线为x 轴、y 轴,AP 所在直线为z 轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(12,0,),D(0,2,0),E(0,1,12),P(0,0,1).∴CD =(-1,0,0),AD =(0,2,0),AP =(0,0,1),AE =(0,1,12) ,PC =(1,2,-1),(1) 00CD AD CD AD CD PAD CD AP CD AP CD PDC AP AD A ⎫=⇒⊥⎪⊥⎫⎪=⇒⊥⇒⇒⎬⎬⊂⎭⎪=⎪⎭平面平面平面PDC ⊥平面PAD (2)∵cos ,||||AE PCAE PC AE PC 〈〉==2-121+14·6=3010,PA B DE∴所求角的余弦值为3010. (3)假设BC 边上存在一点G 满足题设条件,令BG =x ,则G(1,x ,0),作DQ ⊥AG ,则DQ ⊥平面PAG ,即DQ =1.∵2S △ADG =S 矩形ABCD ,∴||||||||AG DQ AB AD =2∴||AG =2,又AG =x 2+1,∴x =3<2,故存在点G ,当BG =3时,使点D 到平面PAG 的距离为1.4.如图,已知三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A 与AB 、AC 均成45°角,且A 1E ⊥B 1B 于E ,A 1F ⊥CC 1于F .⑴求证:平面A 1EF ⊥平面B 1BCC 1; ⑵求直线AA 1到平面B 1BCC 1的距离;⑶当AA 1多长时,点A 1到平面ABC 与平面B 1BCC 1的距离相等.4.解:⑴CC 1∥BB 1,又BB 1⊥A 1E ,∴CC 1⊥A 1E ,而CC 1⊥A 1F ,∴CC 1⊥平面A 1EF ,∴平面A 1EF ⊥平面B 1BCC 1 ⑵作A 1H ⊥EF 于H ,则A 1H ⊥面B 1BCC 1,∴A 1H 为A 1到面B 1BCC 1的距离,在△A 1EF 中,A 1E =A 1F =2,EF =2,∴△A 1EF 为等腰Rt △且EF 为斜边,∴A 1H 为斜边上中线,可得A 1H =12EF =1⑶作A 1G ⊥面ABC 于G ,连AG ,则A 1G 就是A 1到面ABC 的距离,且AG 是∠BAC 的角平分线,A 1G =1 ∵cos ∠A 1AG =cos45°cos30°=63,∴sin ∠A 1AG =33,∴A 1A =133=15.如图,甲、乙是边长为4a 的两块正方形钢块,现在将甲裁剪焊接成一个正四棱柱,将乙裁剪焊接成一个正四棱锥,使它们的全面积等于一个正方形的面积(不计焊接缝的面积) (1)将你的裁剪方法用虚线标示在图中,并作简要的说明;(2)试比较你所制作的正四棱柱与正四棱锥体积的大小,并证明你的结论。

立体几何中二面角和线面角

立体几何中二面角和线面角

立体几何中的角度问题一、 异面直线所成的角1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。

2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值二、直线与平面所成夹角1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点。

求CD 与平面ADMN 所成的角的正弦值。

2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。

三、二面角与二面角的平面角问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.2、如图5,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足5FB FD a ==,6EF a =。

(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

(第三个解答题)立体几何

(第三个解答题)立体几何
线面垂直⇒面面平行
垂直关系 垂直关系 3.面面垂直的判断定理 .
β l α
l⊥α, l⊂β⇒β⊥α ⊥ ⊂
线面垂直⇒面面垂直
垂直关系 垂直关系 4.面面垂直的性质 .
α l m β
α⊥β,α∩β=m,l⊂β,l⊥m α β ⊂ ⊥ ⇒ l⊥α ⊥
面面垂直⇒线面垂直
要想让我们减轻学习的负担, 要想让我们减轻学习的负担, 只 有一个办法, 有一个办法, 就是提升自己的学习成 提升自己的学习能力。 绩,提升自己的学习能力。
α β n m
α∥β,γ∩α=m, γ∩β=n γ α β ⇒m∥n ∥ 面面平行⇒线线平行
垂直关系 垂直关系 1.线面垂直的判断定理 .
l aP
α
b
l⊥a, l⊥b, ⊥ ⊥ a∩b=P, ⇒l⊥α ⊥ a⊂α,b⊂α ⊂ ⊂ 线线垂直⇒线面垂直
垂直关系 垂直关系 2.线面垂直的性质(1) .线面垂直的在空间四边形 ABCD 中,E、F、G、 .如图, 、 、 、 H 分别是 AB、BC、CD、DA 上的中点, 上的中 、 、 、 求证: 为平行四边形. 求证:四边形 EFGH 为平行四边形
A E B F C G H D
一、定理的熟悉
变式 1:如图,在空间四边形 ABCD 中,E、F、 :如图, 、 、 G、H 分别是 AB、BC、CD、DA 上的点,若四 上的点, 、 、 、 、 为平行四边形, 边形 EFGH 为平行四边形, l 求证: 求证:AC//平面 EFGH. 平面
A
O B
C
l⊥a, ,l⊥b, ⇒ l⊥a ⊥α⊥ α l⊥ a⊂ ⊥ ⊂ ⊥ a∩b=P, ⇒l⊥α ⊥ a⊂α,b⊂α ⊂ ⊂
一、定理的熟悉
5.已知平面α⊥ 平面γ,平面β⊥平面γ , . 平面γ 平面γ 平面α∩平面β=l,求证:l⊥平面γ. ,求证: ⊥平面γ l α

专题5:向量法做立体几何的线面角问题(解析版)

专题5:向量法做立体几何的线面角问题(解析版)

专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。

解二面角问题三种方法(习题及答案)

解二面角问题三种方法(习题及答案)

C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。

(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。

下面举几个例子来说明。

例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。

例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。

这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。

2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。

(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。

总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。

并且能够很快地利用图形的一些条件来求出所要求的。

在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。

至于求角,通常是把这角放在一个三角形中去求解。

由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。

湘教版高考总复习数学精品课件 第8章立体几何与空间向量 课时规范练54 几何法求线面角、二面角及距离

湘教版高考总复习数学精品课件 第8章立体几何与空间向量 课时规范练54 几何法求线面角、二面角及距离

3 ×1= 3,
7.(2022·浙江,8)如图,已知正三棱柱ABC-A1B1C1,AC=AA1,E,F分别是棱
BC,A1C1上的点.记EF与AA1所成的角为α,EF与平面ABC所成的角为β,二面
角F-BC-A的平面角为γ,则( A )
A.α≤β≤γ
B.β≤α≤γ
C.β≤γ≤α
D.α≤γ≤β
1 2 3 4 5 6 7 8 9 10 11 12 13 14
课时规范练54
几何法求线面角、二面角及距离
基础
巩固练
π
α 所成的角为6 ,则直线
1.已知直线 l 和平面
的取值范围为( D )
π
A.[0, ]
6
π π
B.[ , ]
6 3
π
C.(0, )
2
π π
D.[ , ]
6 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14
l 和平面 α 内任意直线所成的角
故选ABD.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
9.如图,在三棱锥P-ABC中,已知PA⊥平面ABC,PA=3,PB=PC=BC=6,则二面
角P-BC-A的正弦值为
3
3
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
解析 取BC的中点D,连接PD,AD.因为PB=PC,所以PD⊥BC.因为PA⊥平面
ABC,BC⊂平面ABC,所以PA⊥BC.因为PD⊂平面PAD,PA⊂平面
PAD,PA∩PD=P,所以BC⊥平面PAD.因为AD⊂平面PAD,所以BC⊥AD.所以
∠PDA为二面角P-BC-A的平面角.因为PB=PC=BC=6,所以

文科立体几何线面角二面角专的题目-带答案

文科立体几何线面角二面角专的题目-带答案

连结 OB.因为 AB=BC= ,所以△ABC 为等腰直角三角形,且 OB⊥AC,OB= =2.

知,OP⊥OB.
由 OP⊥OB,OP⊥AC 知 PO⊥平面 ABC.
精彩文档
实用标准文案
(2)作 CH⊥OM,垂足为 H.又由(1)可得 OP⊥CH,所以 CH⊥平面 POM. 故 CH 的长为点 C 到平面 POM 的距离.
(2)求直线 与平面 所成角的正弦值.
9.在多面体
中,底面 是梯形,四边形 是正方形,




(1)求证:平面
平面 ;
(2)设 为线段 上一点,
,求二面角
的平面角的余弦值.
10.如图,在多面体
中,四边形 为等腰梯形,
,已知


,四边形 为直角梯形,

.
精彩文档
实用标准文案
(1)证明: 平面 ,平面
.
由已知得 .
精彩文档
取平面 的法向量
实用标准文案

,则
.
设平面 的法向量为
.


,可取

所以
.由已知得
.
所以 所以
.解得 (舍去), .
.又
,所以
.
所以 与平面 所成角的正弦值为 . 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空 间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出平面的法向量;第四,破“应用公式关”. 2.解: (1)因为 AP=CP=AC=4,O 为 AC 的中点,所以 OP⊥AC,且 OP= .
中,
(1)证明: 平面 ;

【高中数学】立体几何(线线、线面、面面成角)解答题A

【高中数学】立体几何(线线、线面、面面成角)解答题A

A1.正方形ABCD 中,AB=2,E 是AB 边的中点,F 是BC 边上一点,将△AED 及△DCF 折起(如图所示),使A ,C 点重合于A ´点。

(1) 证明:A ´D ⊥EF ; (2) 当F 为BC 中点时,求A ´D 与平面DEF 所成角; (3)当BF=41BC 时,求三棱锥A ´-EFD 的体积。

FEDCBABEFDA'1.解:(1)∵A ´D ⊥A ´E ,A ´D ⊥A ´F , ∴A ´D ⊥平面A ´EF ,∴A ´D ⊥EF. (1) 如图,取EF 中点G ,连A ´G ,DG ,∴BE=BF=1,∠EBF=90º,∴EF=2, HBEGFDA'又∵A ´E=A ´F=1,∴∠EA ´F=90º, A ´G ⊥EF ,得A ´G=22. ∵A ´G ⊥EF ,A ´D ⊥EF ,A ´G ∩A ´D ,= A ´, ∴EF ⊥平面A ´DG ,∴平面DEF ⊥平面A ´DG.作A ´H ⊥DG 与H ,得A ´H ⊥平面DEF , ∴∠A ´DG 为A ´D 与平面DEF 所成角, 在Rt △A ´DG 中,A ´G=22,A ´D=2,∴∠A ´DG=arctan42. (3)∵A ´D ⊥平面A ´EF , ∴A ´D 是三棱锥D- A ´EF 的高. 又由BE=1,BF=21推出EF=25,又∵A ´F=23,A ´E =1,∴∠A ´EF=90º,可得:S △A ´EF=45.VA ´-EFD=VD-A ´EF=31 S △A ´EF* A ´D=31*45*2=65.∵A ´D ⊥平面A ´EF ,∴A ´D 是平面A ´EF 的高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何线面角二面角解答题练习1.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。

已知∠ABC =45°,AB =2,BC=22,SA =SB =3。

(Ⅰ)证明:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的大小; 解答:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由22AD BC ==,3SA =,2AO =,得1SO =,11SD =.SAB △的面积22111222S ABSA AB ⎛⎫=-= ⎪⎝⎭.连结DB ,得DAB △的面积21sin13522S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得2h =.设SD 与平面SAB 所成角为α,则222sin 1111h SD α===. 所以,直线SD 与平面SBC 所成的我为22arcsin 11. 解法二: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-,,, (0220)CB =,,,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,22022E ⎛⎫⎪⎪⎝⎭,,,连结SE ,取SE 中点G ,连结OG ,221442G ⎛⎫ ⎪ ⎪⎝⎭,,. 221442OG ⎛⎫= ⎪ ⎪⎝⎭,,,22122SE ⎛⎫= ⎪ ⎪⎝⎭,,,(220)AB =-,,.0SE OG =,0AB OG =,OG 与平面SAB 两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.(2220)D ,,,(2221)DS =-,,.22cos 11OG DS OG DSα==,22sin 11β=,所以,直线SD 与平面SAB 所成的角为22arcsin11.BCASOEGyxzODCAS7、如图1,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图2. (I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角; 解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )过点B 作1BH AG ⊥于点H ,连结2G H .由(I )的结论可知,BH ⊥平面12G ADG , 所以2BG H ∠是2BG 和平面12G ADG 所成的角.因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥.因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形.由题设12AB =,25BC =,8EG =,则17GF =.所以218G O G E ==,217G F =,15OF ==,1210G G EO ==.因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥.故222222221126810200BG BE EG G G =++=++=,2BG =.又110AG ==,由11BH AG G E AB =得81248105BH ⨯==.故2248sin 525BH BG H BG ∠===.即直线2BG 与平面12G ADG所成的角是arcsin 解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建AE BGDFCAEBCFDG 1G 2图1图2立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,, (6250)D -,,,1(008)G ,,,(600)B ,,. 所以(0250)AD =,,,1(608)AG =,,.设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,,.过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上.因为12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,,.设2BG 和平面12G ADG 所成的角是θ,则22222224|sin 25643BG n BG nθ===++.故直线2BG 与平面12G ADG 所成的角是arcsin 25.16、(理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点。

(Ⅰ)求证:CM EM ⊥;(Ⅱ)求CM 与平面CDE 所成的角; 解答:方法一:(I )证明:因为AC BC =,M 是AB 的中点,所以CM AB ⊥.又EA ⊥平面ABC ,所以CM EM ⊥.(II )解:过点M 作MH ⊥平面CDE ,垂足是H ,连结CH 交延长交ED 于点F ,连结MF ,MD . FCM ∠是直线CM 和平面CDE 所成的角. 因为MH ⊥平面CDE ,所以MH ED ⊥, 又因为CM⊥平面EDM , 所以CM ED ⊥,则ED ⊥平面CMF ,因此ED MF ⊥. 设EAa =,2BD BC AC a ===,在直角梯形ABDE 中,AB =,M 是AB 的中点,所以3DE a =,EM =,MD =,得EMD △是直角三角形,其中90EMD =∠,所以2EM MD MF a DE ==.在Rt CMF △中,tan 1MFFCM MC==∠,所以45FCM =∠,故CM 与平面CDE 所成的角是45.方法二:如图,以点C 为坐标原点,以CA ,CB 分别为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系C xyz -,设EA a =,则(2)A a 00,,,(020)B a ,,,(20)E a a ,,.(022)D a a ,,,(0)M a a ,,. (I )证明:因为()EM a a a =--,,,(0)CM a a =,,,所以0EM CM =,故EM CM ⊥.yEMACBDEDCMAEH(II )解:设向量001y z (),,n =与平面CDE 垂直,则CE ⊥n ,CD ⊥n ,即0CE =n ,0CD =n .因为(20)CE a a =,,,(022)CD a a =,,,所以02y =,02x =-, 即(122)=-,,n ,2cos 2CM CM CM ==,nn n,直线CM 与平面CDE 所成的角θ是n 与CM 夹角的余角, 所以45θ=,因此直线CM 与平面CDE 所成的角是452.如图,正四棱柱1111ABCD A B C D -中,124AA AB == (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.解法一:依题设知2AB =,1CE =. (Ⅰ)连结AC 交BD 于点F 由三垂线定理知,1BD A C ⊥.在平面1A CA ,连结EF 交1A C 于点G , 由于1AA ACFC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED .(Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥, 故1A HG ∠是二面角1A DE B --的平面角.EF =CE CF CG EF ⨯==EG ==13EG EF =, 13EF FD GH DE ⨯=⨯=1AC ==11A G A C CG =-= 11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan . 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D xyz -依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,. (021)(220)DE DB ==,,,,,, 11(224)(204)AC DA =--=,,,,,. (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥.又DBDE D =,所以1A C ⊥平面DBE .y x A BCD E A 1B 1C 1D 1 AB CD EA 1B 1C 1D 1FH G(Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . 1AC ,n 等于二面角1A DE B --的平面角,4214==. 所以二面角1A DE B --的大小为.卷(18).如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面,2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小;(Ⅲ)求点B 到平面OCD 的距离。

相关文档
最新文档