单纯形法的矩阵描述
合集下载
1.2.4单纯形法的矩阵表达

这样,标准形式的LP问题便化成:
max z CB X B CN X N s.t. BX B NX N X s b X B 0, X N 0, X s 0
置入单纯形表,得:
B | N | I | 0 | b T CB | CN | 0 | z | 0
2
用B-1左乘上表中第一行各项,并B-用1 行初等变换方式Z0使基变
2.4 单纯形法的矩阵表达
前面讲解单纯形法都是用向量形式和分量形式表达的, 如果用矩阵表达就更加简单,在推导一些结论时也非 常有用。
设LP问题标准型为:
max z =CX AX +Xs= b
X 0
假设我们已经知道了其中一个基,不妨设前m列,则我 们就可以把各矩阵或向量改写成:
1
A (B, N, I ) X ( X B , X N , X s )T C (CB , CN , 0)
规则进行的初等变换,直到σ=CN-CBB-1N≤0得到最优解 为止。
这里需要特别指出的是如何在单纯形表中找到B-1,CBB-1, Z0等,进而可以矩阵运算。 Nhomakorabea3
量检验数为0
I | T CB |
B1N CN
Y=CBB-1单
纯形乘子
| B1 | 0 | B1b
|
0
| Z |
0
I | B1N | B1 | 0 | B1b 这就T是单纯0 形| C法N 的 C矩B阵B表1N达| ,C由BBTa1bIle| 可Z以| 看C出BB,单1b纯
形法的求解过程就是在上面表格的大矩阵中按照一定的
max z CB X B CN X N s.t. BX B NX N X s b X B 0, X N 0, X s 0
置入单纯形表,得:
B | N | I | 0 | b T CB | CN | 0 | z | 0
2
用B-1左乘上表中第一行各项,并B-用1 行初等变换方式Z0使基变
2.4 单纯形法的矩阵表达
前面讲解单纯形法都是用向量形式和分量形式表达的, 如果用矩阵表达就更加简单,在推导一些结论时也非 常有用。
设LP问题标准型为:
max z =CX AX +Xs= b
X 0
假设我们已经知道了其中一个基,不妨设前m列,则我 们就可以把各矩阵或向量改写成:
1
A (B, N, I ) X ( X B , X N , X s )T C (CB , CN , 0)
规则进行的初等变换,直到σ=CN-CBB-1N≤0得到最优解 为止。
这里需要特别指出的是如何在单纯形表中找到B-1,CBB-1, Z0等,进而可以矩阵运算。 Nhomakorabea3
量检验数为0
I | T CB |
B1N CN
Y=CBB-1单
纯形乘子
| B1 | 0 | B1b
|
0
| Z |
0
I | B1N | B1 | 0 | B1b 这就T是单纯0 形| C法N 的 C矩B阵B表1N达| ,C由BBTa1bIle| 可Z以| 看C出BB,单1b纯
形法的求解过程就是在上面表格的大矩阵中按照一定的
单纯性法的矩阵描述.ppt

记为:σN= CN-CBB-1N
基变量XB检验数为0,实质上是σB =CB-CBB-1B=0
XB=B-1b-B-1NXN
Z=CBB-1b+σNXN
令非基变量XN=0,得到如下公式(经过迭代后):
由于B是可行基,则得到:
基变量的取值:XB =B -1b ≥0 ; 基可行解: X =(XB,XN)T = (B-1b,0)T ; 目标函数值: z =CB B -1b ;
XB 0
I
-Z 1 0
B-1N
B-1b
CN -CBB-1N
-CBB-1b
将增广矩阵左乘B-1并令非基变量XN=0后
得到下列计算公式:
-z XB
XN
RHS
1 CB
CN
0
0
I
B-1N
B-1b
0B
N
b
1
0
CN -CBB-1N
-CBB-1b
1.
X B B1b, XN = 0 , X =(XB ,XN)T = (B-1b ,0)T
=CBXB+CNXN
=CB (B-1b - B-1NXN) +CNXN
=CBB-1b +(CN - CBB-1N)XN =CBB-1b +σNXN 式中:CBB-1b是z的常数项,
σA= C-CBB-1A σj=cj-CBB-1Pj
(当非基变量XN=0时,Z=CBB-1b)
CN-CBB-1N是非基变量XN 的系数,也是XN的检验数.
x5
20
已知可行基
2
B1
此表达式是用非基变量来表达的
注意:两边左乘B-1 ,相当于对增广矩阵(A,b)进行了初等行 变换, 即相当于对原来的单纯形表进行了一次迭代,
单纯形法的矩阵描述

X=
X X
B N
X1=
B
1b 0
z1= CBB-1b
σN = CN-CBB-1N
σB=CB-CBB-1B=0
σA= C-CBB-1A σj= cj-CBB-1Pj
设初始基变量是松弛变量,占据A的后m列, 可行基B占据前m列,余下各列的子块仍用N表 示。即:A=(B N I),C=(CB CN 0)。把 上述各个公式运用于初始表和以B为基的单纯 形表中:
Cj
CB
CN
0
系数 基变量 解向量 XB
XN
XS
0
XS
b
B
N
I
σj
CB
CN
0
………..
………….
CB
XB
B-1b
I
B-1N
B-1
σj
0
CN-CBB-1N -CBB-1
例12 求下列LP问题
max z x2 3x3 2x5
x1 3x2 x3
2x5 7
2x2 4x3 x4
12
20
00
3 1 0
8 1 = 2 4 0
-2 0
4 3 1
0 x1 10 1 [5/2] 0 1/4 2 0
3 0
-1 3 0
x3 x6 σj x2 x3 x6 σj
3 0 -1/2 1 0 -5/2
0 1/2 4 2/5 1 5 1/5 0 11 1 0
-1/5 0
1 0 0 0 1 0 0
2 1/ 2 1/ 2
1 3
B P4
P1
P2
0
1
0 1
2 -1 1 0 0 0
x1 x2 x3 x4
灵敏度分析(运筹学).ppt

0
0
1
0
0
0
x3
1 0
0 1 1
0 2 -1
-1
0
x4
0 1
0
0
-3/2 -1 1
-1
2.5.1 单纯形法的矩阵描述
1. 约束方程系数矩阵的变化
约束方程系数矩阵
,进行初等行
变换,相当于左乘一个相应的初等阵。
即
,在A中所包含的矩阵B,左
乘 后,则得到
。
2. 约束方程右端项的变化
3. 目标函数系数的变化
1. 灵敏度分析的概念:
当某一个参数发生变化后,引起最优解如何改变的 分析。 可以改变的参数有: bi——约束右端项的变化,通常称资源的改变; cj ——目标函数系数的变化,通常称市场条件的变 化; pj ——约束条件系数的变化,通常称工艺系数的变 化; 其他的变化有:增加一种新产品、增加一道新的工 序等。
2.分析原理及步骤:
(1)借助最终单纯形表将变化后的结果按下述基
本原则反映到最终表里去。
B①-1bi△变b化:=
(b+△b)´=B-1 b´+B-1 △b
(b+△b)=
B-1
b+
②pj变化:(pj+△ pj )´= B-1 (pj+△ pj )= B-1 pj+ B-1 △ pj = pj ´+ B-1 △ pj
围来确定最优解是否改变。 由于系数的改变,最优值z可能发生 变化而不再是原值了。
2、约束条件右端值的变化
约束条件右端值每增加一个单位 引起的最优值的改进量称为对偶 价格。
对偶价格只适用于在右端值仅发 生了很小变动的情况
2.5.3 单纯形法灵敏度分析
线性规划单纯形法的矩阵表示

y1 y1 y2 y2 y 3
min cT x s.t. Ax b, Bx a, x 0.
max bT y1 aT y2 s.t. AT y1 BT y2 c 对偶 y1无限制, y2 0.
用对偶单纯形法求下列线性规划问题
min s.t.
x4
x5
右端项
-f x4 x1
0 3 0 1
-3 -2 4/3 1/3
3 1 1/3 -2/3
0 1 0
1 0 2/3 -1/3
-2 0
2/3
2/3
基变量
x1 0 0 1
x2 -3 4/3 1/3
x3 3 1/3 -2/3 x3 15/4 1/4 -3/4
x4 0 1 0 x4 9/4 3/4 -1/4
两阶段
min a s.t. 2 x1 2 x2 x3 x4 2, 3 x1 x2 2 x3 x5 a 2, xi 0, i 1, ,5, a 0.
第一阶段 k=1
基变量
-f
x4 a
x1 -3 0 2 3
x2 -1 0 2 1
x3 2 0 -1 -2
1
无穷多个最优解:cN
且其中有一个检验数=0 无最优解(无有界解):
cN cB B N
1
有一个变量是负数,且该变量所在列向量是非正的.
4(1)用单纯形法求下列线性规划问题.
max 5 x1 6 x2 4 x3 s.t. 2 x1 2 x2 5, 5 x1 3x2 4 x3 15, x1 x2 10,
T
T
max b y s.t. A yc y0
s.t.
单纯形法

四、单纯形法的实现——单纯形表
例1:煤电油例 Max Z=7 x1 +12x2 9 x1 +4x2≤360 化为标准型 s.t. 4x1 +5x2 ≤200 3 x1 +10x2 ≤300 x1 , x2≥0 s.t. Max Z=7 x1 +12x2 9 x1 +4x2 +x3 4x1 +5x2 3 x1 +10x2 x1 ,…,x5≥0 +x4 =360 = 200
•
“≥”型约束,减松弛变量;
练习1.3 请将例1.1的约束化为标准型
Maxz = 7 x1 + 12 x 2 ⎧9 x1 + 4 x 2 ≤ 360 ⎪4 x1 + 5 x 2 ≤ 200 s.t.⎨ 3x1 + 10 x 2 ≤ 300 ⎪x , x ≥ 0 ⎩ 1 2
则约束化为
= 360 ⎧9 x1 + 4 x 2 + x3 ⎪4 x + 5 x 2 + x4 = 200 s.t.⎨ 1 3 x1 + 10 x 2 + x5 = 300 ⎪x , x , x , x , x ≥ 0 ⎩ 1 2 3 4 5
例4 下面为某线性规划的约束
=1 ⎧ x1 + 2 x2 + x3 ⎪ + x4 = 3 ⎨2 x1 − x2 ⎪ x1 , , x4 ≥ 0 ⎩ 请例举出其基矩阵和相应的基向量、基变量。
解:
本例中, A = ⎡1 2 1 0⎤,A中的2阶可逆子阵有 ⎢ 2 − 1 0 1⎥ ⎦ ⎣
问题:本例的A中一共有几个基?—— 6个。
易见,增加的松弛变量的系数恰构成一个单位阵I。
一般地,记松弛变量的向量为 X s,则
3.1单纯形法的矩阵描述

故所有检验数可表示 C C B B1 A与 C B B1
§3.1 单纯形法的矩阵描述
• (2)单纯形表与矩阵表示的关系
Page 8
由( 3 - 5)、( 3 - 6)式知 X B +B 1 NX N B 1b - z (C N C B B N ) X N -C B B b
Page 5
由(3 - 3)式知 BX B b NX N X B B 1b B 1 NX N 上式代入 (3 - 2)式得 z C B (B 1b B 1 NX N ) C N X N =C B B 1 b ( C N C B B 1 N ) X N (3 6 ) (3 5)
因为,不满足最优性条件,所以不是最优解
小结
学习要点:
Page 14
1. 掌握矩阵的运算; 2.理解基矩阵的作用; 3.了解矩阵运算与单纯表的关系。
The end,thank yoቤተ መጻሕፍቲ ባይዱ!
运筹学
( Operations Research )
Chapter3 对偶理论和灵敏度分析
本章主要内容:
§3.1 单纯形法的矩阵描述 §3.2 单纯形法的矩阵计算
§3.3 对偶问题的提出
§3.4 线性规划的对偶理论
§3.5 影子价格
§3.6 对偶单纯形法
§3.7 灵敏度分析
( Duality Theory )
量是基变量, 从而确定基矩 阵; b.求基矩阵的 逆矩阵; c.求检验数。
N 1 3
1 / 2 0 2 1 1 4 1 3 0 4 0 1 1 1 2 0
1 3 0 4 2 2 3 1 2
2 由最终表反推出初始表 例2:设用单纯形法求解某个线性规划问题的最终表如下(目标max, 约束 Page 12 为≤形式,x3,x4,x5为松弛变量),试写出原始线性规划模型。
§3.1 单纯形法的矩阵描述
• (2)单纯形表与矩阵表示的关系
Page 8
由( 3 - 5)、( 3 - 6)式知 X B +B 1 NX N B 1b - z (C N C B B N ) X N -C B B b
Page 5
由(3 - 3)式知 BX B b NX N X B B 1b B 1 NX N 上式代入 (3 - 2)式得 z C B (B 1b B 1 NX N ) C N X N =C B B 1 b ( C N C B B 1 N ) X N (3 6 ) (3 5)
因为,不满足最优性条件,所以不是最优解
小结
学习要点:
Page 14
1. 掌握矩阵的运算; 2.理解基矩阵的作用; 3.了解矩阵运算与单纯表的关系。
The end,thank yoቤተ መጻሕፍቲ ባይዱ!
运筹学
( Operations Research )
Chapter3 对偶理论和灵敏度分析
本章主要内容:
§3.1 单纯形法的矩阵描述 §3.2 单纯形法的矩阵计算
§3.3 对偶问题的提出
§3.4 线性规划的对偶理论
§3.5 影子价格
§3.6 对偶单纯形法
§3.7 灵敏度分析
( Duality Theory )
量是基变量, 从而确定基矩 阵; b.求基矩阵的 逆矩阵; c.求检验数。
N 1 3
1 / 2 0 2 1 1 4 1 3 0 4 0 1 1 1 2 0
1 3 0 4 2 2 3 1 2
2 由最终表反推出初始表 例2:设用单纯形法求解某个线性规划问题的最终表如下(目标max, 约束 Page 12 为≤形式,x3,x4,x5为松弛变量),试写出原始线性规划模型。
第01-03章线性规划(2)

三、建立线性规划模型的步骤:
确定决策变量; 确定决策变量; 明确约束条件并用决策变量的线性等式或不等 式表示; 式表示; 用决策变量的线性函数表示目标, 用决策变量的线性函数表示目标,并确定是求 极大(Max)还是极小(Min) 极大(Max)还是极小(Min); 根据决策变量的物理性质研究变量是否有非负 性
方 案1 方 案2 方 案3 方 案4 方 案5 方 案6 方 案7 方 案8 2.9 m 1 2 0 1 0 1 0 0 2.1 m 0 0 2 2 1 1 3 0 1.5 m 3 1 2 0 3 1 0 4 7.4 7.3 7.2 7.1 6.6 6.5 6.3 6.0 合 计 0 0.1 0.2 0.3 0.8 0.9 1.1 1.4 剩 料 余 头
2.LP问题的典式 2.LP问题的典式 Z=CX → Z= CBXB+CNXN AX=b → BXB+NXN=b X≥0 XB=B-1b - B-1NXN Z= CB(B-1b- B-1NXN)+CNXN = CB B-1b+ (CN- CB B-1N)XN IXB + B-1NXN = B-1b
cj→ cB XB x2 x5 x6 cj - zj
。。。。
3 b 8/3 x1 2/3 -4/3 5/3 -1/3
5 x2 1 0 0 0
4 x3 0 5 4 4 ……….
0 x4 1/3 -2/3 -2/3 -5/3
0 x5 0 1 0 0
0 x6 0 0 1 0
14/3 20/3
x2 x3 x1 cj - zj
1 0 0 0
0 1 0 0
15/41 -6/41 -2/41 -45/41
8/41 5/41 -12/41 -24/41
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
当前检验数
其中
B Pj
1
当前 x j 对应的系数列
线性规划问题可以等价写成: 单纯形乘子
对 偶 问 题
max z CB B b (CN CB B N ) X N s.t. X B B NX N B b X B 0, X N 0
此形式为线性规划对应于基B的
1 1
1
1
上页 下页 返回
典则形式(典式)。
7
单纯形表
对 偶 问 题
-Z x1 基变量 x2 ... x X Bm 0 1 1B 0 基矩阵 ....... 1 0 1 c c ... c 1 C 2B m 0
xm 非基变量 X 1 .... x nN a1m 1 ...a1n a2 m 1 ...a2 n N
令
1 1 1
XN 0
得
1
当前基可行解
XB B b
单纯形法的矩阵描述
对 偶 问 题
目标函数
XB z (CB CN ) CB X B CN X N XN 1 1 CB B b (CN CB B N ) X N
令
XN 0
得
非基变量的 检验数
列初始单纯形表
11
上页 下页 返回
初始单纯形表
对 偶 问 题
价值系数
基变量 的价值 系数 基变量 等式 右边 RHS
CB
CN
0
I
0
上页 下页 返回
XB XN XS
B
CB
12
0
XS
检验数
b
N
CN
初始单纯形表
对 偶 问 题
迭代成基变量
价值系数
基变量 的价值 系数 基变量 等式 右边 RHS
CB
CN
0
对 偶 问 题
第一节 单纯形法的矩阵描述
单纯形法的矩阵描述 单纯形法计算的矩阵描述
上页 下页 返回
1
单纯形法的矩阵描述
对 偶 问 题
设线性规划问题
max z CX AX b s.t X 0
上页 下页
不妨设基为
则
返回
B P1 P2 Pm A ( P1 P2 Pn ) ( B N ) X (XB XN ) C (CB CN )
非基变量
2
基变量
单纯形表
对 偶 问 题
-Z x1 基变量 x2 ...X xBm 0 1 1B 0 基矩阵 ....... 1 0 1 c c ... c 1 C 2B m
xm 非基变量 XN 1 .... x n a1m 1 ...a1n a2 m 1 ... a 2n N
max z CX 0 X s AX IX s b s.t. X 0, X s 0
10
标准型
对 偶 问 题
max z CB X B C N X N 0 X S BX B NX N IX S b s.t. XB, XN , XS 0
1
z0 C B B b
当前目标值
单纯形法的矩阵描述
对 偶 问 题
检验数
N C N CB B N
1
(Cm1, ,Cn ) CB ( B Pm 1, ,B Pn )
1
1
m1 Cm1 CB B 1Pm1 n Cn CB B Pn
上页 下页 返回
0
XS
检验数
b
XB XN XS B N I CB C N 0
初始基变量 13
迭代后单纯形表
对 偶 问 题
价值系数
基变量 的价值 系数 基变量 等式 右边 RHS
CB
CN
0
上页 下页 返回
CB
XB XN XS 1 1 1 1 XB B b B B B N B I
0
14
检验数
CN CB B1N CB B1
XB B b 1 N B N 1 N CN CB B N z C B 1b B 0
1
9
单纯形法计算的矩阵描述
对 偶 问 题
线性规划问题
max z CX AX b s.t. X 0
上页 下页 返回
化为标准型,引入松弛变量 X s
1
B N B
z0检验数 CB B b
当前基可行解
CN CB B1N CB B1
当前检验数对 偶 问 题下一节 对偶问题的提出
——掌握如何写出对偶问题
上页 下页 返回
16
对 偶 问 题
B 1b 1 i min B P 0 迭代后单纯形表 j i B 1 Pj i
价值系数
基变量的 基变量 价值系数 等式 右边 RHS 1
CB
CN
1
0
1
上页 下页 返回
XB XN XS
I 0
15
CB
XB B b
非基阵 ......
b b1 b2 bm 0
上页 下页 返回
amm 1 ...amn cm 1 C
3
N
cn
单纯形法的矩阵描述
对 偶 问 题
约束方程组
XB AX b ( B N ) XN BX B NX N b X B B (b NX N ) B b B NX N
非基阵 ......
b b1 b2 bm 0
上页 下页 返回
amm 1 ...amn cm 1 C
8
N
cn
对 偶 问 题
当已知一个线性规划的可行基B时,先求 矩阵描述时的常用公式 出 B 1 ,再用这些运算公式可得到单纯 形法所要求的结果。
上页 下页 返回
当前检验数
其中
B Pj
1
当前 x j 对应的系数列
线性规划问题可以等价写成: 单纯形乘子
对 偶 问 题
max z CB B b (CN CB B N ) X N s.t. X B B NX N B b X B 0, X N 0
此形式为线性规划对应于基B的
1 1
1
1
上页 下页 返回
典则形式(典式)。
7
单纯形表
对 偶 问 题
-Z x1 基变量 x2 ... x X Bm 0 1 1B 0 基矩阵 ....... 1 0 1 c c ... c 1 C 2B m 0
xm 非基变量 X 1 .... x nN a1m 1 ...a1n a2 m 1 ...a2 n N
令
1 1 1
XN 0
得
1
当前基可行解
XB B b
单纯形法的矩阵描述
对 偶 问 题
目标函数
XB z (CB CN ) CB X B CN X N XN 1 1 CB B b (CN CB B N ) X N
令
XN 0
得
非基变量的 检验数
列初始单纯形表
11
上页 下页 返回
初始单纯形表
对 偶 问 题
价值系数
基变量 的价值 系数 基变量 等式 右边 RHS
CB
CN
0
I
0
上页 下页 返回
XB XN XS
B
CB
12
0
XS
检验数
b
N
CN
初始单纯形表
对 偶 问 题
迭代成基变量
价值系数
基变量 的价值 系数 基变量 等式 右边 RHS
CB
CN
0
对 偶 问 题
第一节 单纯形法的矩阵描述
单纯形法的矩阵描述 单纯形法计算的矩阵描述
上页 下页 返回
1
单纯形法的矩阵描述
对 偶 问 题
设线性规划问题
max z CX AX b s.t X 0
上页 下页
不妨设基为
则
返回
B P1 P2 Pm A ( P1 P2 Pn ) ( B N ) X (XB XN ) C (CB CN )
非基变量
2
基变量
单纯形表
对 偶 问 题
-Z x1 基变量 x2 ...X xBm 0 1 1B 0 基矩阵 ....... 1 0 1 c c ... c 1 C 2B m
xm 非基变量 XN 1 .... x n a1m 1 ...a1n a2 m 1 ... a 2n N
max z CX 0 X s AX IX s b s.t. X 0, X s 0
10
标准型
对 偶 问 题
max z CB X B C N X N 0 X S BX B NX N IX S b s.t. XB, XN , XS 0
1
z0 C B B b
当前目标值
单纯形法的矩阵描述
对 偶 问 题
检验数
N C N CB B N
1
(Cm1, ,Cn ) CB ( B Pm 1, ,B Pn )
1
1
m1 Cm1 CB B 1Pm1 n Cn CB B Pn
上页 下页 返回
0
XS
检验数
b
XB XN XS B N I CB C N 0
初始基变量 13
迭代后单纯形表
对 偶 问 题
价值系数
基变量 的价值 系数 基变量 等式 右边 RHS
CB
CN
0
上页 下页 返回
CB
XB XN XS 1 1 1 1 XB B b B B B N B I
0
14
检验数
CN CB B1N CB B1
XB B b 1 N B N 1 N CN CB B N z C B 1b B 0
1
9
单纯形法计算的矩阵描述
对 偶 问 题
线性规划问题
max z CX AX b s.t. X 0
上页 下页 返回
化为标准型,引入松弛变量 X s
1
B N B
z0检验数 CB B b
当前基可行解
CN CB B1N CB B1
当前检验数对 偶 问 题下一节 对偶问题的提出
——掌握如何写出对偶问题
上页 下页 返回
16
对 偶 问 题
B 1b 1 i min B P 0 迭代后单纯形表 j i B 1 Pj i
价值系数
基变量的 基变量 价值系数 等式 右边 RHS 1
CB
CN
1
0
1
上页 下页 返回
XB XN XS
I 0
15
CB
XB B b
非基阵 ......
b b1 b2 bm 0
上页 下页 返回
amm 1 ...amn cm 1 C
3
N
cn
单纯形法的矩阵描述
对 偶 问 题
约束方程组
XB AX b ( B N ) XN BX B NX N b X B B (b NX N ) B b B NX N
非基阵 ......
b b1 b2 bm 0
上页 下页 返回
amm 1 ...amn cm 1 C
8
N
cn
对 偶 问 题
当已知一个线性规划的可行基B时,先求 矩阵描述时的常用公式 出 B 1 ,再用这些运算公式可得到单纯 形法所要求的结果。
上页 下页 返回