目标函数和约束条件三部分组成

合集下载

工业系统工程线性规划模型

工业系统工程线性规划模型

资源分配问题
确定资源需求
通过线性规划模型,可以确定完成生 产任务所需的资源需求,如劳动力、 原材料、设备等。
优化资源分配
线性规划模型可以用于优化资源分配 ,包括确定各种资源的最佳组合和分 配方案,以满足生产需求并最小化资 源消耗。
考虑资源约束
资源分配过程中需要考虑各种资源约 束条件,如资源数量、可用时间等, 线性规划模型可以有效地处理这些约 束条件。
分析不同决策方案
通过构建多个线性规划模型,可以分 析不同的决策方案对系统性能的影响 ,从而为决策者提供参考。
预测未来趋势
基于历史数据和线性规划模型,可以 预测未来趋势,为决策者提供前瞻性 的建议。
制定合理决策方案
确定关键因素
通过线性规划模型,可以确定影响系统 性能的关键因素,从而有针对性地制定 决策方案。
1 2
确定目标变量
明确要优化的目标变量,如成本、利润、产量等 。
确定目标函数的数学形式
根据目标变量的性质和要求,选择适当的目标函 数形式,如最小化、最大化等。
3
确定目标函数的约束条件
明确目标函数的约束条件,如资源限制、时间限 制等。
确定决策变量
01
确定决策变量的类 型
根据问题实际情况,选择适当的 决策变量类型,如连续变量、离 散变量等。
生产计划制定
确定生产目标
通过线性规划模型,可以确定生 产计划的目标,如最大化产量、 最小化成本等。
优化生产流程
线性规划模型可以用于优化生产 流程,包括确定原材料采购、库 存管理、生产调度等方面的最佳 策略。
考虑约束条件
生产计划制定过程中需要考虑各 种约束条件,如设备能力、人员 数量、原材料供应等,线性规划 模型可以有效地处理这些约束条 件。

线性规划的应用及计算机求解

线性规划的应用及计算机求解

金融投资
在金融投资领域,如何合理配置资产以实现最大收益或最小风险是投资者关注的问题。线性规划可以用于制定最优的资产配 置方案,考虑风险和收益的平衡,以实现投资效益的最大化。
例如,一个养老基金可以使用线性规划来配置股票、债券和现金等资产,以实现长期稳定的收益并控制风险。
农业优化
在农业生产中,如何合理安排种植、养殖等 生产活动以达到最优的经济效益是农业经营 者关注的问题。线性规划可以用于解决农业 生产的优化问题,考虑土地、水资源、劳动 力等资源的限制,通过调整生产结构实现农 业生产的效益最大化。
其中,单纯形法是最常用的一种,它 通过迭代的方法逐步逼近最优解,直 到找到最优解或确定无解为止。
02
线性规划的应用领域
生产计划
生产计划是企业运营管理中的重要环节,线性规划可以用于制定最优的生产计划,以最小化生产成本 或最大化利润为目标,考虑生产能力、市场需求、产品组合等因素,通过调整生产资源的配置,实现 生产效益的最大化。
金融投ห้องสมุดไป่ตู้优化案例
总结词
金融投资优化
数学模型
目标函数通常是最大化预期收益或最小化 风险,约束条件包括投资限额、资产种类
限制等。
详细描述
线性规划在金融投资优化中具有实际应用 价值,通过合理配置投资组合,降低投资 风险,提高投资收益。
求解方法
使用计算机求解线性规划问题,常用的算 法有单纯形法、椭球法等。
资源分配优化案例
总结词 详细描述 数学模型 求解方法
资源分配优化
线性规划在资源分配优化中起到关键作用,通过合理分配有限 资源,实现资源利用的最大化,提高资源效益。
目标函数通常是最小化总成本或最大化总效益,约束条件包括 资源限制、需求约束等。

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

运筹学选择判断题答案

运筹学选择判断题答案

一、选择题(每小题3分)1. (线性规划问题的数学模型形式)线性规划问题的数学模型由目标函数、约束条件和( D )三个部分组成。

A. 非负条件B. 顶点集合C. 最优解D. 决策变量2.(线性规划问题的标准形式)在线性规划问题的标准形式中,不可能存在的变量是(D )。

A.决策变量B.松驰变量 C.剩余变量 D.人工变量3.(同上)将线性规划问题转化为标准形式时,下列说法不正确的是( D )。

A.如为求z的最小值,需转化为求-z的最大值B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量4.(同上)下列选项中不符合线性规划模型标准形式要求的有(B )。

A.目标函数求最大值 B.右端常数无约束 C.变量非负 D.约束条件为等式5.(线性规划问题解的情况)线性规划问题若有最优解,则最优解( C )。

A.只有一个B.会有无穷多个C. 唯一或无穷多个D.其值为06.(图解法)用图解法求解一个关于最小成本的线性规划问题时,若其等值线与可行解区域的某一条边重合,则该线性规划问题( A )。

A.有无穷多个最优解 B.有有限个最优解C.有唯一的最优解D.无最优解7.(图解法)图解法通常用于求解有(B)个变量的线性规划问题A.1B.2C.4D.58.(单纯形法求解线性规划问题的几种特殊情况)若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零9.(同上)线性规划具有多重最优解是指( B )。

A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大于零10.(同上)线性规划具有唯一最优解是指( A )A.最优表中非基变量检验数全部非零B.不加入人工变量就可进行单纯形法计算C.最优表中存在非基变量的检验数为零D.可行解集合有界11.(单纯形法)单纯形法当中,入基变量的确定应选择检验数(C )A.绝对值最大B.绝对值最小C. 正值最大D. 负值最小12.(单纯形法)出基变量的含义是( D )A . 该变量取值不变 B.该变量取值增大 C. 由0值上升为某值 D.由某值下降为013.(单纯形法之人工变量)在约束方程中引入人工变量的目的是( D )A.体现变量的多样性B. 变不等式为等式C.使目标函数为最优D. 形成一个单位阵14. (单纯形法之大M法)求目标函数为最大的线性规划问题时,若全部非基变量的检验数小于等于零,且基变量中有人工变量时该问题有(B )A.无界解B.无可行解C. 唯一最优解D.无穷多最优解15(灵敏度分析)若线性规划问题最优基中某个基变量的目标系数发生变化,则(C )A.该基变量的检验数发生变化 B.其他基变量的检验数发生变化C.所有非基变量的检验数发生变化D.所有变量的检验数都发生变化16(灵敏度分析)线性规划灵敏度分析的主要功能是分析线性规划参数变化对(D )的影响。

优化模型的三要素

优化模型的三要素
定所有变量非负,也不区分大小写;约束条件中的“>=” 及“<=”可分别用“>”“<”代替;输入的多于空格和回车也 会被忽略;
④ 一行中“!”后面的文字将被认为是说明语句,不参与
模型的建立,主要目的是增加程序的可读性。
现在我们用Lindo软件来求解这个模型,单击工具栏中的
Lindo求解器运行状态窗口各项的含义

xij
0,1;
这是一个线性0-1 规划模型,它是一个特 殊的线性整数规划。
Lingo/Lindo软件介绍
➢ 这套软件包由美国芝加哥大学的Linus Scharge教
授于1980年前后开发,专门用于求解最优化问题,后 经不断完善和扩充,并成立LINDO公司进行商业化运 作,取得了巨大的成功。全球《财富》杂志500强的企 业中,一半以上使用该公司产品,其中前25强企业中 有23家使用该产品。
队员





蝶泳 66.8 57.2
78
70
67.4
仰泳 75.6
66
67.8
74.2
71
蛙泳
87
66.4 84.6
69.6
83.8
自由泳 58.6
53
59.4
57.2
62.4
线 性 规
·划
模 型
决策变量:引入0-1变量xij 若选择队员 i 参加泳姿 j
的比赛,记 xij=1,否则记 xij=0.这就是问题的决策变量, 共20个。
•松弛变量的值 【紧约束】
Lingo/Lindo软件介绍 ---Lindo
➢使用Lindo软件的一些注意事项:
① 变量以字母开头、不区分大小写,变量名可不超过8个字符;

机会约束规划

机会约束规划

机会约束规划
机会约束规划是指在给定的条件下,通过分析可能存在的机会,对已知及未知的因素进行约束,使最终的解决方案尽可能满足要求。

一般情况下,机会约束规划由三部分组成:目标函数、约束条件和机会约束。

目标函数是机会约束规划的核心,它代表了解决问题的最终目标,例如最小化总成本,最大化利润等。

约束条件是指满足解决问题的必要条件,它可以是来自于客观环境的硬性约束,也可以是来自于政策的软性约束。

机会约束指的是可以在不影响目标函数的前提下,尽可能充分地利用可能存在的机会,使最终的解决方案尽可能满足要求,如引入新技术,优化生产流程等。

优化设计的概念和原理

优化设计的概念和原理

优化设计的概念和原理概念1 前言对任何一位设计者来说,其目的是做出最优设计方案,使所设计的产品或工程设施,具有最好的使用性能和最低的材料消耗与制造成本,以便获得最佳的经济效益和社会效益。

因此,在实际设计中,科技人员往往首先拿出几种不同的方案,通过对比分析以选取其中的最优方案。

但在现实中,往往由于经费限制,使所选择的候选方案数目受到很大的限制,因此急需一种科学有效的数学方法,于是诞生了“最优化设计”理论。

最优化设计是在计算机广泛应用的基础上发展起来的一项新技术,是根据最优化原理和方法综合各方面因素,以人机配合方式或“自动探索”方式,在计算机上进行的半自动或自动设计,以选出在现有工程条件下的最佳设计方案的一种现代设计方法。

其设计原则是最优设计:设计手段是电子计算机及计算程序;设计方法是采用最优化数学方法.本文将就最优化设计常用的概念如:设计变量、目标函数、约束条件等做简要介绍。

2设计变量设计变量是在设计过程中进行选择最终必须确定的各项独立参数。

在选择过程中它们是变量,但当变量一旦确定以后,设计对象也就完全确定。

最优化设计就是研究如何合理地优选这些设计变量值的一种现代设计方法。

在机械设计中常用的独立参数有结构的总体配置尺寸,元件的几何尺寸及材料的力学和物理特性等。

在这些参数中,凡是可以根据设计要求事先给定的,则不是设计变量,而称之为设计常量。

最简单的设计变量是元件尺寸,如杆元件的长度,横截面积,抗弯元件的惯性矩:板元件的厚度等。

3目标函数目标函数即设计中要达到的目标。

在最优化设计中,可将所追求的设计目标(最优指标)用设计变量的函数形式表示出来,这一过程称为建立目标函数,一般目标函数表达为f(x)=f(xl,xZ,…,x。

)此函数式代表设计的某项最重要的特征,例如所设计元件的性能、质量或体积以及成本等。

最常见的情况是以质量作为函数,因为质量的大小是对价值最易于定量的一种量度。

虽然,费用有更大的实际重要性,但通常需有足够的资料方能构成以费用做为目标函数。

运筹学考试复习题及参考答案

运筹学考试复习题及参考答案

《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。

1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。

( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。

( )4. 满足线性规划问题所有约束条件的解称为可行解。

( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。

( )6. 对偶问题的对偶是原问题。

( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。

( )#8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。

( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )二、单项选择题~1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。

A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。

A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。

A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、目标函数
1)目标函数的定义
目标函数是通过设计变量来表示的设计所追求目标 的数学表达式,又称为标量函数。
西 2)目标函数的意义
南 科
目标函数值的大小是衡量设计方案优劣的定量标准。
技 大
目标函数的值越小,对应的设计方案越好。
学 网
因此,目标函数的最小值及其对应的设计变量的
络 教
取值称为设计问题的最优解。
大 学 网
gu(x1,x2,…..,xn)≤0 (u=1,2,…m) 等式约束条件
络 教
hv(x1,x2,…..,xn)=0 (v=1,2,…p)





实例 2
某工厂生产甲、乙两种产品。生产每种产品所
需的材料、工时、电力和可获得的利润,以及能够
提供的材料、工时和电力见下表。试确定两种产品
西 每天的产量,以使每天可能获得的利润最大。
育 系
∵ x>0

课 程
∴ x=1 为所求解。
5.1.2 数学模型的一般形式
实例可以看出,优化设计的数学模型由设计
变量、目标函数和约束条件三部分组成,可写成
以下统一形式:
设计变量
求变量
x1,x2, …..,xn
目标函数
西 南
使极小化函数 f(x1,x2, …..,xn)
科 技
满足约束条件
不等式约束条件
f(x)=x(6-2x)2


于是5,.1上.1述优问题化可设描计述的为定义
变量 x—设计变量
f(x)=x(6-2x)2—目标函数
g(x)=x>0 —约束条件
西 南
使函数 f(x)=x(6-2x)2 极大化
科 技
即对 f(x)= 6x-2x3 求导

学 网
f’(x)=1-x2=0
络 教
得出:x=1, -1
5.1.1 优化设计的定义
一、优化设计的定义
最优化设计是借助最优化数值计算方法和 计算机技术,求取工程问题的最优设计方案。
西 即:进行最优化设计时,首先必须将实际问
南 科
题加以数学描述,形成一组由数学表达式组成
技 大
的数学模型,然后选择一种最优化数值计算方
学 网
法和计算机程序,在计算机上运算求解,得到
络 教
一组最佳的设计参数。





5.1.1 优化设计的定义
实例1:
有一块边长为6m的正方形铝板,四角各
裁去一个小的方块,做成一个无盖的盒子。
西 试确定裁去的四个小方块的边长,以使做成

科 技
的盒子具有最大的容积。
大 学 网
解:设裁去的四个小方块的边长为x,
络 教
则盒子的容积可表示成x的函数

系 列

科 技
产品 材料 /kg 工时/h 电力/(kw.h) 利润/元
大 学

9
3
4
60

络 教

4
10
5
120

系 列
供应量
360
300
200


这是一个生产计划问题,可归结为既满足各项生产
条件,又使每天所能获得的利润达到最大的优化设计
问题。
解:设每天生产甲产品x1件,乙产品x2件,每天
西 获得的利润可用函数f(x1,x2)表示,即
1)连续变量:可以在实数范围内连续取值 的变量。
注:大多数机械优化问题的设计变量都属于
西 南
这种变量。可用常规的优化方法进行求解。
科 技 大
2)离散变量:只能在给定数列或集合中取 值的变量。
学 网
注:少数的机械优化问题的设计变量是离散
络 教
变量,对于离散变量的优化问题,可先将其视为
育 系
连续变量,用常规的优化方法最优解。



5.1.3 设计变量与设计空间
❖3 设计空间
若n个设计变量x1,x2,…xn相互独立,则由它 们形成的向量X=[x1,x2,…xn]T的全体集合构成的 一个n维实欧氏空间,称为设计空间,记Rn。
西 南 科
一组设计变量可看作设计空间中的一个点, 称为设计点。
技 大
设计变量的个数n称为优化设计的维数。
学 网
1)如n=2就是二维设计问题,可用图5.1所示
络 教
的平面直角坐标来表示;
育 系
2)如n=3就是三维设计问题,可用图5.2所示
列 课
的直角空间坐标来表示。


5.1.3 设计变量与设计空间
西












图5.1 二维设计平面 图5.2 三维设计空间

返回
5.1.4 目标函数与等值线
课 非线性规划问题。

5.1.3 设计变量与设计空间
❖1 设计变量的定义
设计变量是指在设计过程中可以进行 调整和优选的独立参数。
西 南
设计变量的选择:

技 大
应该选择那些与目标函数和约束函数
学 网
密切相关的,能够表达设计对象特征的基
络 教
本参数。





5.1.3 设计变量与设计空间
❖2 设计变量的分类
育 系
3)目标函数的选择
列 课
必须针对具体问题,选择主要的技术指标作为设计
程 的目标函数,如:利润、体积、重量、功率等。
5.1.4 目标函数与等值线
2、等值面和等值线
对于简出极值 点的位置。
西
1)目标函数的等值面,其数学表达式为
南 科
南 科
f(x1,x2)=60 x1+120x2
技 大 学 网
每天实际消耗的材料、工时和电力可分别用函数 g1(x1,x2)、g2(x1,x2)和g3(x1,x2)表示,即







于是上述生产计划问题可归结为 求变量 使函数
西
满足条件













极大化
最优化问题的分类:
1、按是否包含有约束条件分:无约束优化问题和约 束优化问题。
2、按设计变量的多少可分:单变量优化和多变量优
化。
西 南
3、按目标函数和约束函数的性质可分:线性规划和
科 非线性规划。


当数学模型中的目标函数和约束函数均为设计变
学 网
量的线性函数时,称此设计问题为线性优化问题或线
络 性规划问题。


当数学模型中的目标函数和约束函数中至少一个
系 列
为非线性函数时,称此设计问题为非线性优化问题或
3)当n=3时,该点集是设计空间中的一个
平面或曲面;例4。
西 南
4)当n大于3时,该点集是设计空间中的一
科 技
个超曲面。











5.1.4 目标函数与等值线
例3 目标函数f(x)=一60x1一120x2的等值线族。 这是一组相互平行的直线,函数值沿箭头所指方 间逐渐下降。如图所示。
f(x)=c。
技 大 学
在这种线或面上所有点的函数值均相等,因 此,这种线或面就称为函数的等值线或等值面。


当c取一系列不同的常数值时,可以得到一
教 育
组形态相似的等值线或等值面,称为函数的等
系 列
值线簇或等值面簇。



5.1.4 目标函数与等值线
2)当n=2时,该点集是设计平面中的一条 直线或曲线;例3。
相关文档
最新文档