与名师对话2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练57

合集下载

近年高考数学一轮复习第十一章统计第二节用样本估计总体作业本理(2021年整理)

近年高考数学一轮复习第十一章统计第二节用样本估计总体作业本理(2021年整理)

(北京专用)2019版高考数学一轮复习第十一章统计第二节用样本估计总体作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第十一章统计第二节用样本估计总体作业本理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第十一章统计第二节用样本估计总体作业本理的全部内容。

第二节用样本估计总体A组基础题组1。

某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,中位数为b,众数为c,则有( )A。

a〉b〉c B。

b>c〉aC.c>a>bD.c〉b〉a2。

一个样本a,3,5,7的平均数是b,且a、b是方程x2—5x+4=0的两根,则这个样本的方差是()A.3B.4C.5 D 。

63。

在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的,且样本容量为160,则中间一组的频数为.4。

已知一组数据4.7,4.8,5.1,5。

4,5.5,则该组数据的方差是.5.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。

产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图(如图),则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是.6.某学校为了解初一年级学生数学成绩的情况,进行了一次摸底考试。

与名师对话 高三文科数学第一轮复习 第十一章 概率 专题研究(八) 统计与概率

与名师对话 高三文科数学第一轮复习 第十一章 概率 专题研究(八) 统计与概率

条件可知试验的全部结果所构成的区域为:
课 后

a,baab+ >>00b,-8≤0,
踪 训 练
第23页
第11章 专题研究8
与名师对话·系列丛书
高考总复习·课标版·数学(文)
构成所求事件的区域为三角形BOC部分,
a+b-8=0, 由b=a2,
得交点坐标为136,83,
课 后 跟 踪

∴所求事件的概率为P=1212××88××838=13.
后 跟

件的概率:
训 练
(1)选取的2位学生都是男生;
(2)选取的2位学生一位是男生,另一位是女生.
第26页
第11章 专题研究8
与名师对话·系列丛书
高考总复习·课标版·数学(文)
[解] 设4位男生的编号分别为1,2,3,4;2位女生的编号
分别为5,6.从6位学生中任取2位学生的所有可能结果如下:
(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),
y=mx2+n 拟合体重与身高关系效果较好?(只需给出判断的
方法即可)
附:对于一组具有线性相关关系的数据(u1,v1),(u2,
课 后

v2),…,(un,vn),其回归直线v^=α^+β^u 的斜率和截距的最
踪 训 练
n uivi-n-u
- v
小二乘估计分别为β^=i=1
,α^=-v -β^-u .
n ui2-n-u 2
i=1
第15页
第11章 专题研究8
与名师对话·系列丛书
高考总复习·课标版·数学(文)
[解] (1)令 z=log2y,则 z=cx+d,-x =110×(60+75+

2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练60含解析

2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练60含解析

课时跟踪训练(六十)[基础巩固]一、选择题1.如图所示,程序框图(算法流程图)的输出结果是( )A.-3 B.-2 C.-1 D.0[解析] 由条件,第一次运行后x=2,y=0;第二次运行后x=4,y=-1;第三次运行后x=8,y=-2;则输出结果是-2.选B.[答案] B2.阅读如图所示的程序框图,运行相应的程序,输出的结果是( )A.3 B.11 C.38 D.123[解析] a=1,a<10,a=12+2=3;a=3<10,a=32+2=11;a=11>10,∴输出a=11.[答案] B3.(2016·全国卷Ⅲ)执行如图所示的程序框图,如果输入的a=4,b=6,那么输出的n=( )A.3 B.4 C.5 D.6[解析] 由程序框图依次得①a=2,b=4,a=6,s=6,n=1;②a=-2,b=6,a=4,s=10,n=2;③a =2,b=4,a=6,s=16,n=3;④a=-2,b=6,a=4,s=20,n=4,此时s>16,输出n=4.[答案] B4.(2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C .17D .34[解析] 输入x =2,n =2.初始k =0,s =0.第一次输入a =2,s =0×2+2=2,k =0+1=1≤n ,进入循环;第二次输入a =2,s =2×2+2=6,k =1+1=2≤n ,再次进入循环;第三次输入a =5,s =6×2+5=17,k =2+1=3>n ,跳出循环,输出s =17.故选C.[答案] C5.如图给出的是计算+++…+的值的一个程序框图,则菱形判断121416130框内应填入的条件是( )A .i <15?B .i >15?C .i <16?D .i >16?[解析] 注意到+++…+是数列的前15项和,结合题意得,菱121416130{12n }形判断框内应填入的条件是“i >15?”,选B.[答案] B6.(2017·天津卷)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A .0 B .1 C .2 D .3[解析] 第一次循环,24能被3整除,N ==8>3;第二次循环,8不能243被3整除,N =8-1=7>3;第三次循环,7不能被3整除,N =7-1=6>3;第四次循环,6能被3整除,N ==2<3,结束循环,故输出N 的值为2.选择C.63[答案] C二、填空题7.运行如图所示的程序,输出的结果是__________.[解析] ∵a =4,b =5,∴a =a +b =9,b =a -b =9-5=4,∴输出的结果为4.[答案] 48.执行如图所示的程序框图,则输出0的概率为__________.[解析] 因为的长度为-1=,[1,3]的长度为3-1=2,所以输出0[1,74)7434的概率为=.34238[答案] 389.(2016·山东卷)执行如图所示的程序框图,若输入n 的值为3,则输出的S 的值为________.9题图 10题图[解析] i =1时,执行S =S +-,得S =-1;i =2时,执行i +1i 2S =S +-,得S =-1+-=-1;i =3时,执行S =S +-i +1i 2323i +1,得S =(-1)+-=1.由于i =3≥3成立,故输出S =1.i 343[答案] 1[能力提升]10.(2017·东北三省四市二模)运行如图所示的程序框图,则输出的a ,b ,c 满足( )A .c ≤b ≤aB .a ≤b ≤cC .a ≤c ≤bD .b ≤c ≤a[解析] 因为“t =a ,a =b ,b =t ”这三个语句的作用是借助新的变量t 将a 与b 的值进行互换,所以此框图的作用是将输入的a ,b ,c 的值按照从大到小的顺序进行排序,故选A.[答案] A11.(2018·天星大联考)执行如图所示的程序框图,则输出的结果为( )A .- B. C .- D.1818116116[解析] 已知S ,n 的初值均为1,则第一次运行循环时,S =cos ,由于π7n =1不满足条件n >2,执行n =n +1,即n =2,循环S =cos ·cos ,此时π72π7n =2,不满足条件n >2,继续执行n =n +1,即n =3,循环S =cos cos cos ,由于n =3满足条件n >2,则输出S ,即π72π73π7S =cos cos cos =cos cos cos=-cos cos cos =-π72π73π7π72π7(π-4π7)π72π74π7=-=.故选B.23sin π7cos π7·cos 2π7cos 4π723sin π7sin 8π78sinπ718[答案] B12.(2017·沈阳第一次质量监测)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”人们把此类题目称为“中国剩余定理”.若正整数N除以正整数m后的余数为n,则记为N≡n(mod m),例如11≡2(mod 3).现将该问题以程序框图给出,执行该程序框图,则输出的n等于( )A.21 B.22 C.23 D.24[解析] 当n=21时,21被3整除,执行否.当n=22时,22除以3余1,执行否;当n=23时,23除以3余2,执行是;又23除以5余3,执行是,输出的n=23.故选C.[答案] C13.阅读下面的程序框图,运行相应的程序,如果输入a=(1,-3),b=(4,-2),则输出的λ的值是________.[解析] 当λ=-4时,-4a+b=(0,10),b=(4,-2),λa+b与b既不平行也不垂直;当λ=-3时,-3a+b=(1,7),b=(4,-2),λa+b与b既不平行也不垂直;当λ=-2时,-2a+b=(2,4),b=(4,-2),λa+b与b垂直;循环结束,输出λ=-2.[答案] -214.设a是一个各位数字都不是0且没有重复数字的三位数,将组成a的3个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a) (例如a=815,则I(a)=158,D(a)=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a,输出的结果b=________.[解析] 当a=123时,b=321-123=198≠123;当a=198时,b=981-189=792≠198;当a=792时,b=972-279=693≠792;当a=693时,b=963-369=594≠693;当a=594时,b=954-459=495≠594;当a=495时,b=954-459=495=495=a,终止循环,输出b=495.[答案] 495[延伸拓展]1.(2017·湖南三湘名校联盟三模)给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入( )A.i≤30?;p=p+i-1B.i≤31?;p=p+i+1C.i≤31?;p=p+iD.i≤30?;p=p+i[解析] 由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30,即①处应填写i≤30?.由第1个数是1;第2个数比第1个数大1,即1+1=2;第3个数比第2个数大2,即2+2=4;第4个数比第3个数大3,即4+3=7……故②处应填写p=p+i.[答案] D2.(2017·四川内江模拟)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A .4B .5C .2D .3[解析] 执行程序框图,可得a =1,A =1,S =0,n =1,S =2,不满足条件S ≥10,执行循环体;n =2,a =,A =2,S =,不满1292足条件S ≥10,执行循环体;n =3,a =,A =4,S =,不满足条件S ≥10,14354执行循环体;n =4,a =,A =8,S =,满足条件S ≥10,退出循环,输出181358n 的值为4.故选A.[答案] A。

2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练58含解析

2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练58含解析

课时跟踪训练(五十八)[基础巩固]一、选择题1.如图是一容量为100的样本质量的频率分布直方图,样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为( )A.10 B.20C.30 D.40[解析] 由题意得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,所以样本质量在[15,20]内的频率为1-0.3-0.5=0.2,频数为100×0.2=20,故选B.[答案] B2.(2015·重庆卷)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是( )A .19B .20C .21.5D .23[解析] 由茎叶图知,该组数据的中位数为=20,故选B.20+202[答案] B3.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )A .各月的平均最低气温都在0℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20℃的月份有5个[解析] 由图可知平均最高气温高于20℃的月份为六月、七月和八月,有3个,所以选项D 不正确.故选D.[答案] D4.(2015·安徽卷)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为( )A.8 B.15 C.16 D.32[解析] 令y i=2x i-1(i=1,2,3,…,10),则σ(y)=2σ(x)=16.[答案] C5.(2017·温州八校联考)如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为( )A.12.5 B.13C.13.5 D.14[解析] 中位数是把频率分布直方图分成两个面积相等部分的平行于纵轴的直线横坐标,第一个矩形的面积是0.2,第二个矩形的面积是0.5,第三个矩形的面积是0.3,故将第二个矩形分成3∶2即可,∴中位数是13.[答案] B6.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为( )A. B. C .36 D.1169367677[解析] 由题意知=91,解得x =4.所以87+94+90+91+90+90+x +917s 2=[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)172+(91-91)2]=(16+9+1+0+1+9+0)=.17367[答案] B二、填空题7.根据某市环境保护局公布2010~2015这六年每年的空气质量优良的天数,绘制折线图如图.根据图中信息可知,这六年每年的空气质量优良天数的中位数是________.[解析] 由折线图可知空气质量优良天数从小到大排列为290,300,310,320,320,340,故其中位数为=315.310+3202[答案] 3158.2017年端午节期间,为确保交通安全,某市交警大队调取市区某路口监控设备记录的18:00~20:00该路口220辆汽车通过的速度,其频率分布直方图如图所示,其中a ,c 的等差中项为b ,且a ,b 的等差中项为0.010.已知该路口限速90 km/h ,则这些车辆中超速行驶的约有__________辆.[解析] 由题意得,Error!解得Error!所以汽车行驶速度超过90 km/h 的频率为10a =0.05,故汽车行驶速度超过90 km/h 的大约有220×0.05=11(辆).[答案] 119.已知总体的各个个体的值由小到大依次为3,7,a ,b,17,20,且总体的中位数为12,若要使该总体的标准差最小,则a =________.[解析] 总体的中位数为=12,即a +b =24,数据是从小到大排列的,a +b 27≤a ≤b ≤17,又总体的标准差最小,∴a =b =12.[答案] 12三、解答题10.(2015·广东卷)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?[解] (1)由(0.002+0.0095+0.011+0.0125+x +0.005+0.0025)×20=1得x =0.0075,∴直方图中x 的值为0.0075.(2)月平均用电量的众数是=230.220+2402∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a ,则(0.002+0.0095+0.011)×20+0.0125×(a -220)=0.5,解得a =224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.0125×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别为15户、10户、5户,故抽取比例为=,1125+15+10+515∴从月平均用电量在[220,240)的用户中应抽取25×=5(户).15[能力提升]11.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差[解析] 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错误;甲、乙的成绩的方差分别为×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]15=2,×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=,C 对;甲、乙的成15125绩的极差均为4,D 错.[答案] C12.某参赛队准备在甲、乙两名球员中选一人参加比赛.如图所示的茎叶图记录了一段时间内甲、乙两人训练过程中的成绩,若甲、乙两名球员的平均成绩分别是x 1、x 2,则下列结论正确的是( )A.x1>x2,选甲参加更合适B.x1>x2,选乙参加更合适C.x1=x2,选甲参加更合适D.x1=x2,选乙参加更合适[解析] 根据茎叶图可得甲、乙两人的平均成绩分别为x1≈31.67,x2≈24.17,从茎叶图来看,甲的成绩比较集中,而乙的成绩比较分散,因此甲发挥得更稳定,选甲参加比赛更合适,故选A.[答案] A13.(2016·北京卷)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.[解] (1)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15,所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号12345678分组[2,4](4,6](6,8](8,10](10,12](12,17](17,22](22,27]频率0.10.150.20.250.150.050.050.05根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).14.2017年8月22日金乡县首届“诚信文艺奖”评选暨2017“百姓大舞台”第一季大型才艺大赛决赛在红星美凯龙举行.在比赛现场,12名专业人士和12名观众代表分别组成评判小组A,B,给参赛选手打分,如图是两个评判组对同一选手打分的茎叶图:(1)求A 组数据的众数和极差,B 组数据的中位数;(2)对每一组计算用于衡量相似性的数值,回答:小组A 与小组B 哪一个更像是由专业人士组成的?并说明理由.[解] (1)由茎叶图可得:A 组数据的众数为47,极差为55-42=13;B 组数据的中位数为=56.5.55+582(2)小组A 更像是由专业人士组成的.理由如下:小组A ,B 数据的平均数分别为A =×(42+42+44+45+46+47+47+47+49+50+50+55)x 112==47,56412B =×(36+42+46+47+49+55+58+62+66+68+70+73)x 112==56,67212所以小组A ,B 数据的方差分别为s =×[(42-47)2+(42-47)2+…+(55-47)2]2A112=×(25+25+9+4+1+4+9+9+64)=12.5,112s =×[(36-56)2+(42-56)2+…+(73-56)2]2B112=×(400+196+100+81+49+1+4+36+100+144+196+289)=133.112因为s <s ,所以小组A 的成员的相似程度高.由于专业裁判给分更符合2A2B 专业规则,相似程度应该更高,因此小组A 更像是由专业人士组成的.。

2019版高考数学大一轮复习江苏专版文档:第十一章 统计11.2课时作业

2019版高考数学大一轮复习江苏专版文档:第十一章 统计11.2课时作业

1.(2015·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 答案 6解析 这组数据的平均数为16(4+6+5+8+7+6)=6.2.下面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为________.答案 5,8解析 由题意根据甲组数据的中位数为15,可得x =5; 乙组数据的平均数为16.8,则9+15+18+24+10+y 5=16.8,求得y =8.3.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.答案 0.4解析 10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为410=0.4.4.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为________.答案22.5解析产品的中位数出现在频率是0.5的地方.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x,则由0.1+0.2+0.08×(x-20)=0.5,得x=22.5.5.某学校从高三年级800名男生中随机抽取50名测量身高.被测学生身高全部介于155 cm 和195 cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195].按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生中身高在180 cm以上(含180 cm)的人数为________.答案144解析由题图得,身高在180 cm以上(含180 cm)的频率为1-5×(0.008+0.016+0.04×2+0.06)=0.18,则相应人数为800×0.18=144.6.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.答案16解析 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.7.(2017·苏州暑期测试)已知等差数列{a n }的公差为d ,若a 1,a 2,a 3,a 4,a 5的方差为8,则d 的值为________. 答案 ±2解析 因为{a n }为等差数列,所以a 1,a 2,a 3,a 4,a 5的平均数为a 3,所以方差为15[(-2d )2+(-d )2+0+d 2+(2d )2]=2d 2=8,解得d =±2.8.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案 24解析 底部周长在[80,90)的频率为0.015×10=0.15, 底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.9.某电子商务公司对10 000名网络购物者2016年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示:(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 答案 (1)3 (2)6 000解析 由频率分布直方图及频率和等于1,可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内的频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.10.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.答案 2解析 170+17×(1+2+x +4+5+10+11)=175,17×(33+x )=5,即33+x =35,解得x =2.11.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100],则(1)图中的x =________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿. 答案 (1)0.012 5 (2)72解析 (1)由频率分布直方图,知20x =1-20×(0.025+0.006 5+0.003+0.003),解得x =0.012 5.(2)上学时间不少于1小时的学生的频率为0.12,因此估计有0.12×600=72(人)可以申请住宿.12.(2017·南京模拟)如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为________.答案 6.8解析 因为x 甲=9+7+7+14+185=11,x 乙=8+9+10+13+155=11,所以s 2甲=16+16+4+9+495=945>s 2乙=9+4+1+4+165=345=6.8,故得分稳定的运动员的方差为6.8.13.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m的大小关系为________. 答案 n <m解析 由题意,得z =n x +m y n +m=n n +m x +m n +my , 则有α=n m +n ,又0<α<12,则0<n m +n <12,得n <m .14.某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图图①B 地区用户满意度评分的频数分布表(1)在图②中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解(1)作出频率分布直方图如图:通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.15.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为________.答案 6解析根据频率分布直方图得,第1,3,4组的频率之比为1∶4∶3,所以用分层抽样的方法抽取16人时,在第4组中应抽取的人数为16×31+4+3=6.16.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得到如下频数分布表:(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?解(1)样本数据的分布直方图如图所示:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.。

2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练57含解析

2019届高三数学(文)一轮复习课时跟踪训练:第十一章 统计与统计案例、算法 课时跟踪训练57含解析

课时跟踪训练(五十七)[基础巩固]一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1000名学生的考试成绩,从中随机抽取了100名学生的成绩,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.1000名学生的成绩是一个个体D.样本的容量是100[解析]1000名学生的成绩是总体,其容量是1000,100名学生的成绩组成样本,其容量是100.[答案] D2.(2015·四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法[解析]因为要了解三个年级之间的学生视力是否存在显著差异,所以采用分层抽样的方法最合理.[答案] C3.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13[解析] 间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.故选B.[答案] B4.FRM(Financial Risk Manager)——金融风险管理师,是全球金融风险管理领域的一种资格认证.某研究机构用随机数表法抽取了2017年参加FRM 考试的某市50名考生的成绩进行分析,先将50名考生按01,02,03,…,50进行编号,然后从随机数表第8行第11列的数开始向右读,则选出的第12个个体是(注:下面为随机数表的第8行和第9行)第8行:63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79第9行:33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54( )A .12B .21C .29D .34[解析] 由随机数表的读法可得,所读的读数依次为16,19,10,50,12,07,44,39,38,33,21,34,29,…,即选出的第12个个体是34.[答案] D5.某工厂在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800B .1000C .1200D .1500[解析] 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1200双皮靴.[答案] C6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样,同时将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样[解析]①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理③符合分层抽样的规律,可能是分层抽样,同时从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.[答案] D二、填空题7.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一m人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13,则m+n=________.[解析]由题知,35m+780+n×780=13,解得m+n=1320.[答案]13208.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为________.[解析]因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为恰当.[答案]简单随机抽样9.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为__________的学生.[解析]因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号.[答案]37三、解答题10.为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?[解](1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种采用的是简单随机抽样法;第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法.[能力提升]11.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481 C.482 D.483[解析]根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482,故选C.[答案] C12.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A 营区,从301到496在B 营区,从496到600在C 营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9[解析] 依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k-1)≤300,得k ≤1034,因此A 营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此B 营区被抽中的人数是42-25=17.结合各选项知,选B.[答案] B13.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .[解] 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6. 14.(2017.福州市高三质检)质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生的成绩中抽取100名学生的成绩进行统计分析.已知学生考号的后三位分别为000,001,002, (599)(1)若从随机数表的第4行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;(2)如果第(1)问中随机抽取到的7名同学的数学、物理成绩(单位:分)依次对应如下表:从这秀的概率(规定成绩不低于120分为优秀).附:(下面是摘自随机数表的第3行到第5行)……16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 1012 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 7655 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30……[解] (1)310,503,315,571,210,142,188.。

与名师对话2019届高三数学(文)一轮复习:第十一章 统计与统计案例、算法 11-4


[解析] 由程序框图知,y=29x-,xx,≥x2<,2. ∵输入 x 的值为 1,比 2 小,∴执行的程序要实现的功能为 9 -1=8,故输出 y 的值为 8.
[答案] C
2.(2017·陕西咸阳期末)下面的程序框图(如图所示)能判断任 意输入的数 x 的奇偶性.其中判断框内的条件是( )
②IF-THEN-ELSE 格式
(3)循环语句的格式及框图 ①UNTIL 语句
②WHILE 语句
[小题速练] 1.(2017·北京卷)执行如图所示的程序框图,输出的 s 值为 ()
A.2
3 B.2
5
8
C.3
D.5
[解析] 运行该程序,k=0,s=1,
k<3;
k=0+1=1,s=1+1 1=2,k<3; k=1+1=2,s=2+2 1=32,k<3;
角度 2:完善程序框图 (1)(2017·全国卷Ⅰ)下面程序框图是为了求出满足
3n-2n>1000 的最小偶数 n,那么在 和
两个空白框中,
可以分别填入( )
A.A>1000?和 n=n+1 B.A>1000?和 n=n+2
C.A≤1000?和 n=n+1 D.A≤1000?和 n=n+2
1题图
A.m=0? B.m=1? C.x=0? D.x=1?
[解析] 由程序框图所体现的算法可知判断一个数是奇数还 是偶数,是看这个数除以 2 的余数是 1 还是 0.
由图可知应该填 m=1?.故选 B.
[答案] B
考点二 循环结构——热考点 角度解读:以循环结构为载体,可以结合数列、函数、概率 与统计,甚至是各种新定义题等进行综合命题.考试说明中考查 要求的第一条就是“对数学基本知识的考查,既全面又突出重 点,注重学科的内在联系和知识的综合”.了解算法的含义、了 解算法的思想不需要单独命题考查,以框图为载体,里面就承载 了算法的含义和算法的思想.

高三数学(文)一轮复习课时跟踪训练:第十一章统计与统计案例、算法课时跟踪训练59含解析

课时跟踪训练(五十九)[基础巩固]一、选择题1.下面哪些变量是相关关系()A.出租车车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.铁块的大小与质量[解析]A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.[答案] C2.工人工资y(元)与劳动生产率x(千元)的回归方程为y^=50+80x,下列判断正确的是()A.劳动生产率为1000元时,工资为130元B.劳动生产率提高1000元时,可估测工资提高80元C.劳动生产率提高1000元时,可估测工资提高130元D.当月工资为250元时,劳动生产率为2000元[解析]回归直线斜率为80,所以x每增加1,y^增加80,即劳动生产率提高1000元时,工资提高80元.故选B.[答案] B3.(2017·湖南长沙长郡中学期中)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y 与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1[解析] 由题意知变量X 与Y 正相关,变量U 与V 负相关,所以r 1>0,r 2<0.故选C.[答案] C4.两个变量y 与x 的回归模型中,分别选择了4个不同模型,对于样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y -)2来刻画回归的效果.已知模型1中R 2=0.95,模型2中R 2=0.81,模型3中R 2=0.65,模型4中R 2=0.52,其中拟合效果最好的模型是( )A .模型1B .模型2C .模型3D .模型4 [解析] R 2值越大,模型的拟合效果越好,故选A. [答案] A5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [解析] 根据独立性检验的思想方法,正确选项为C. [答案] C6.(2017·西宁检测)下列说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个线性回归方程y ^=3-5x ,变量x 增加1个单位时,y 平均增加5个单位;③设具有相关关系的两个变量x ,y 的相关系数为r ,则|r |越接近于0,x 和y 之间的线性相关程度越强;④在一个2×2列联表中,由计算得K 2的值,则K 2的值越大,判断两个变量间有关联的把握就越大.其中错误的个数是( ) A .0 B .1 C .2 D .3[解析] 方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;在回归方程y ^=3-5x 中,变量x 增加1个单位时,y 平均减小5个单位,故②不正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越强,故③不正确;对分类变量x 与y的随机变量的观测值K2来说,K2越大,“x与y有关系”的可信程度越大,故④正确.综上所述,错误结论的个数为2,故选C.[答案] C二、填空题7.已知由一组样本数据确定的回归直线方程为y^=1.5x+1,且x =2,发现有两组数据(2.2,2.9)与(1.8,5.1)误差较大,去掉这两组数据后,重新求得回归直线的斜率为1,那么当x=4时,y的估计值为__________.[解析]已知x=2,则y=1.5×2+1=4,由题意知去掉两组数据后中心没变,设重新求得的回归直线方程为y^=x+b,将样本点的中心(2, 4)代入得b=2,因而当x=4时,y的估计值为6.[答案] 68.柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.⎝⎛⎭⎪⎪⎪⎫相关公式:b^=∑i=1nx i y i-n x-y-∑i=1nx2i-n x-2,a^=y--b^x-[解](1)散点图如图所示.(2)∑i=14x i y i=4×2+5×3+7×5+8×6=106,x-=4+5+7+84=6,y-=2+3+5+64=4,∑i=14x2i=42+52+72+82=154,则b^=∑i=14x i y i-4x-y-∑i=14x2i-4x-2=106-4×6×4154-4×62=1,a^=y--b^x-=4-6=-2,故线性回归方程为y^=b^x+a^=x-2.(3)由回归直线方程可以预测,燃放烟花爆竹的天数为9的雾霾天数为7.[能力提升]9.(2015·福建卷)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8根据上表可得回归直线方程y=b x+a,其中b=0.76,a^=y-b^ x.据此估计,该社区一户年收入为15万元家庭的年支出为() A.11.4万元B.11.8万元C.12.0万元D.12.2万元[解析]∵x=10.0,y=8.0,b^=0.76,∴a^=8-0.76×10=0.4,∴回归方程为y^=0.76x+0.4,把x=15代入上式得,y^=0.76×15+0.4=11.8(万元),故选B.[答案] B10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,根据试验数据得到如下图所示的散点图,其中x 表示零件的个数,y表示加工时间,则y关于x的线性回归方程是________.[解析] x =2+3+4+54=3.5,y =2.5+3+4+4.54=3.5, 所以b^=∑i =14x i y i -4x -y -∑i =1nx 2i -4x 2=2×2.5+3×3+4×4+5×4.5-4×3.5222+32+42+52-4×3.52=3.55=0.7.a^=y -b ^x =3.5-0.7×3.5=1.05, 所以线性回归方程为y ^=0.7x +1.05. [答案] y ^=0.7x +1.0511.(2018·福建厦门三中模拟)某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革的关系,随机抽取了100名员工进行调查,其中支持企业改革的调查者中,工作积极的有46人,工作一般的有35人,而不太赞成企业改革的调查者中,工作积极的有4人,工作一般的有15人.(1)根据以上数据建立一个2×2列联表;(2)对于人力资源部的研究项目,根据以上数据可以认为企业的全体员工对待企业改革的态度与其工作积极性是否有关系?参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d )支持企业改革不太赞成企业改革总计工作积极46450 工作一般351550 总计8119100极性无关.根据(1)中的数据,可以求得k=100×(15×46-35×4)250×50×19×81≈7.862>6.635,所以有99%的把握说抽样员工对待企业改革的态度与工作积极性有关,从而认为企业的全体员工对待企业改革的态度与其工作积极性有关.12.(2017·四川遂宁三诊)某公司为了解广告投入对销售收益的影响,在若干地区共投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小矩形的宽度;(2)试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:(2)的结果填入空白栏,并求出y 关于x 的回归直线方程.附参考公式:b^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x-2,a ^=y --b ^x -.[解] (1)设各小矩形的宽度为m ,由频率分布直方图中各小矩形的面积和为1,可知(0.08+0.10+0.14+0.12+0.04+0.02)·m =1,解得m =2,故图中各小矩形的宽度为2.(2)由(1)知各分组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12],它们的中点的横坐标分别为1,3,5,7,9,11,各组对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04,故可估计销售收益的平均值为1×0.16+3×0.20+5×0.28+7×0.24+9×0.08+11×0.04=5.(3)由(2)可知空白栏中填5.由题意可知,x -=1+2+3+4+55=3,y -=2+3+2+5+75=3.8, ∑i =15x i y i =1×2+2×3+3×2+4×5+5×7=69,∑i =15x 2i =12+22+32+42+52=55,所以b^=69-5×3×3.855-5×32=1.2,a^=3.8-1.2×3=0.2,故所求的回归直线方程为y^=1.2x+0.2.合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。

高三数一轮复习课件:第十一章 统计. .ppt.F.

s2=19[(44-40)2+(40-40)2+(36-40)2+ (43-40)2+(36-40)2+(37- 40)2+(44-40)2+(43-40)2+(37-40)2]=1090.
(3)s= s2= 1900=130,
x -s=3623,x +s=4313,在 x -s 与 x +s 之间的数据是 37,38,39,40,
__________的特征数,样本方差是样本标准差的__________.通常用样本
方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方
差.
2019年5月30日
你是我心中最美的云朵
3
自 查 自 纠:
1.(1)频率分布 分布 数字特征 数字特征
频率 (2)组距
各小长方形的面积
1
(3)折线图 组数 总体密度曲线 总体在各个范围内取值的百分比
(4)保留所有信息 随时记录
2.(1)最多 平均数 1n(x1+x2+…+xn) 相等
(2)样本数据的第 n 项 样本容量 平均数 波动大小 平方
2019年5月30日
你是我心中最美的云朵
4
(2016·山东)某高校调查了 200 名学生每周的自习时间(单位:小时),制 成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分 组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这 200 名学生中每周的自习时间不少于 22.5 小时的人数是
(Ⅰ)求直方图中 a 的值; (Ⅱ)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,并说明理由; (Ⅲ)估计居民月均用水量的中位数.
2019年5月30日

江苏专版2019版高考数学一轮复习第十一章统计与概率课时跟踪检测五十抽样方法用样本估计总体文5284

课时跟踪检测(五十) 抽样方法、用样本估计总体一抓基础,多练小题做到眼疾手快1.(2018·南通中学高三数学练习)一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A 轿车B 轿车C舒适型 100 150 z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆,则z 的值为________.解析:由题意知50100+300+150+450+z +600=10100+300,解得z =400.答案:4002.(2018·泰州调研)某校在高三年级的1 000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图如图所示,则估计该校高三学生中数学成绩在[110,140)之间的人数为________.解析:由样本频率分布直方图知该校高三学生中数学成绩在[110,140)之间的频率为(0.02+0.026+0.02)×10=0.66,所以估计该校高三学生中数学成绩在[110,140)之间的人数为1 000×0.66=660.答案:6603.(2018·淮安高三期中)某校高三年级500名学生中,血型为O 型的有200人,A 型的有125人,B 型的有125人,AB 型的有50人.为研究血型与色弱之间的关系,现用分层抽样的方法从这500名学生中抽取一个容量为60的样本,则应抽取________名血型为AB 的学生.解析:在整个抽样过程中,每个个体被抽到的概率为60500=325,所以血型为AB 的学生应抽取的人数为50×325=6.答案:64.(2018·徐州高三年级期中考试)已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为________.解析:由题意知15×(87+x +90+89+93)=90,解得x =91,所以方差s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4.答案:45.为了了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k 为________.解析:在系统抽样中,确定分段间隔k ,对编号进行分段,k =Nn(N 为总体的容量,n 为样本的容量),所以k =N n =1 20030=40.答案:406.(2018·苏州期末)若一组样本数据9,8,x,10,11的平均数为10,则该组样本数据的方差为________.解析:由9+8+x +10+115=10,得x =12,故方差s 2=-12+-22+22+02+125=2.答案:2二保高考,全练题型做到高考达标1.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m ,n 的比值m n=________.解析:由茎叶图可知甲的数据为27,30+m,39,乙的数据为20+n,32,34,38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也是33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.答案:382.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.解析:由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:763.(2018·南京学情调研)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有________辆.解析:根据频率分布直方图得,时速在区间[40,60)内的频率为(0.01+0.03)×10=0.4,故时速在区间[40,60)内的汽车有0.4×200=80(辆).答案:804.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为________双.解析:因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双皮靴.答案:1 2005.(2018·扬州期末)某学校从高三年级共800名男生中随机抽取50名测量身高.根据测量结果可知被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195].按上述分组方式得到的频率分布直方图的一部分如图所示,估计这所学校高三年级全体男生身高在180 cm以上(含180 cm)的人数为________.解析:这所学校高三年级全体男生身高在180 cm以上(含180 cm)的频率为1-(0.008+0.016+0.04+0.04+0.06)×5=1-0.82=0.18,所以全体男生身高在180 cm以上(含180 cm)的人数为0.18×800=144.答案:1446.一个样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是________.解析:由x 2-5x +4=0的两根分别为1,4,得⎩⎪⎨⎪⎧a =1,b =4或⎩⎪⎨⎪⎧a =4,b =1.又a,3,5,7的平均数是b . 即a +3+5+74=b ,所以⎩⎪⎨⎪⎧a =1,b =4符合题意,则方差s 2=14[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.答案:57.已知x 是1,2,3,x,5,6,7这七个数据的中位数且1,2,x 2,-y 这四个数据的平均数为1,则y -1x的最小值为________.解析:由题意1+2+x 2-y =4,所以y =x 2-1.由中位数定义知,3≤x ≤5,所以y -1x=x 2-1-1x .当x ∈[3,5]时,函数y =x 2-1与y =-1x 均为增函数,所以y =x 2-1-1x在[3,5]上为增函数,所以⎝ ⎛⎭⎪⎫y -1x min =8-13=233.答案:2338.(2018·南通调研)为了了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示,如图所示.据此可估计上学期该校400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为________.解析:由茎叶图可知,在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学的次数在[16,30)内的人数为400×820=160.答案:1609.某初级中学共有学生2 000名,各年级男、女生人数如下表:初一年级 初二年级 初三年级女生 373 xy 男生377370z(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解:(1)因为x2 000=0.19,所以x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12(名).10.某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值.(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,根据频率分布直方图,估计这100名学生语文成绩的平均分.(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5 解:(1)由频率分布直方图知(0.04+0.03+0.02+2a)×10=1,因此a=0.005.(2)估计这次成绩的平均分x=55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100名学生语文成绩的平均分为73分.(3)分别求出语文成绩在分数段[50,60),[60,70),[70,80),[80,90)的人数依次为0.05×100=5,0.4×100=40,0.3×100=30,0.2×100=20.所以数学成绩分数段在[50,60),[60,70),[70,80),[80,90)的人数依次为5,20,40,25.所以数学成绩在[50,90)之外的人数有100-(5+20+40+25)=10(人).三上台阶,自主选做志在冲刺名校1.(2018·苏州测试)已知等差数列{a n}的公差为d,若a1,a2,a3,a4,a5的方差为8,则d=________.解析:因为数列{a n }为等差数列,所以a 1,a 2,a 3,a 4,a 5的平均数为a 3,所以方差为15[(-2d )2+(-d )2+0+d 2+(2d )2]=2d 2=8,解得d =±2.答案:±22.一组数据是19,20,x,43,已知这组数据的平均数是整数,且24<x <28,则这组数据的方差为________.解析:因为14(19+20+x +43)=82+x4为整数,且24<x <28,所以x =26,所以这组数据的平均数为82+264=27,方差为14[(19-27)2+(20-27)2+(26-27)2+(43-27)2]=14(64+49+1+256)=14×370=92.5.答案:92.53.(2017·北京高考)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,试估计总体中男生和女生人数的比例.解:(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4. (2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数估计为400×5100=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60, 所以样本中分数不小于70的男生人数为60×12=30.所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪训练(五十七)[基础巩固]一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1000名学生的考试成绩,从中随机抽取了100名学生的成绩,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.1000名学生的成绩是一个个体D.样本的容量是100[解析]1000名学生的成绩是总体,其容量是1000,100名学生的成绩组成样本,其容量是100.[答案] D2.(2015·四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是() A.抽签法B.系统抽样法C.分层抽样法D.随机数法[解析]因为要了解三个年级之间的学生视力是否存在显著差异,所以采用分层抽样的方法最合理.[答案] C3.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13[解析] 间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.故选B.[答案] B4.FRM(Financial Risk Manager)——金融风险管理师,是全球金融风险管理领域的一种资格认证.某研究机构用随机数表法抽取了2017年参加FRM 考试的某市50名考生的成绩进行分析,先将50名考生按01,02,03,…,50进行编号,然后从随机数表第8行第11列的数开始向右读,则选出的第12个个体是(注:下面为随机数表的第8行和第9行)第8行:63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79第9行:33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54( )A .12B .21C .29D .34[解析] 由随机数表的读法可得,所读的读数依次为16,19,10,50,12,07,44,39,38,33,21,34,29,…,即选出的第12个个体是34.[答案] D5.某工厂在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为()A.800 B.1000 C.1200 D.1500[解析]因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1200双皮靴.[答案] C6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样,同时将学生按一、二、三年级依次统一编号为1,2, (270)使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样[解析]①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理③符合分层抽样的规律,可能是分层抽样,同时从第二个数据起每个数据与其前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.[答案] D二、填空题7.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一m人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13,则m+n=________.[解析]由题知,35m+780+n×780=13,解得m+n=1320.[答案]13208.大、中、小三个盒子中分别装有同一种产品120个、60个、20个,现在需从这三个盒子中抽取一个样本容量为25的样本,较为恰当的抽样方法为________.[解析]因为三个盒子中装的是同一种产品,且按比例抽取每盒中抽取的不是整数,所以将三盒中产品放在一起搅匀按简单随机抽样法(抽签法)较为恰当.[答案]简单随机抽样9.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为__________的学生.[解析]因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号.[答案]37三、解答题10.为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?(2)上面三种抽取方式各自采用的是何种抽取样本的方法?[解](1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种采用的是简单随机抽样法;第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法.[能力提升]11.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480 B.481 C.482 D.483[解析]根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482,故选C.[答案] C12.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在A营区,从301到496在B营区,从496到600在C营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9[解析]依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此A 营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此B 营区被抽中的人数是42-25=17.结合各选项知,选B.[答案] B13.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .[解] 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6. 14.(2017.福州市高三质检)质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生的成绩中抽取100名学生的成绩进行统计分析.已知学生考号的后三位分别为000,001,002, (599)(1)若从随机数表的第4行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;(2)如果第(1)问中随机抽取到的7名同学的数学、物理成绩(单位:分)依次对应如下表:成绩均为优秀的概率(规定成绩不低于120分为优秀).附:(下面是摘自随机数表的第3行到第5行)……16 76 62 27 6656 50 26 71 0732 90 79 78 5313 55 38 58 59 88 97 54 14 1012 56 85 99 2696 96 68 27 3105 03 72 93 1557 12 10 14 21 88 26 49 81 7655 59 56 35 6438 54 82 46 2231 62 43 09 9006 18 44 32 53 23 83 01 30 30……[解](1)310,503,315,571,210,142,188.。

相关文档
最新文档