积分因子法习题

合集下载

全微分方程与积分因子法

全微分方程与积分因子法

已构成全微分的项分出再把剩下的项凑成全微分.但这种方法
要求熟记一些简单二元函数的全微分,如
ydx+xdy=d(x,y)
ydx-xdy y2
=d(
x y

-ydx+xdy x2
=d(
x y

ydx-xdy =d(ιn| x |)
xy
y
ydx-xdy x2+y2
=d(arctg
x y

| | ydx-xdy x2-y2
的通解为
μ(x,y)=∫x0xP(x,y)dx+∫y0xQ(x,y)dy=C
(7)
其中点(x0,y0)可在与路径无关的单连通区域 G 内 任 意 取
得.很 多 情 况 下 都 选 (0,0)为 (x0,y0),只 有 当 点 (0,0)不 在 上 述
单连通区域 G 内,才考虑其他点作为曲线积分的始点.
坠p - 坠Q 坠y 坠x
-P
这里 φ 仅为 y 的函数.从而求得方程 (1)的一个积分因子 μ=
e 。 ∫φ(y)dy
例 4 试用公式法解线性微分方程(8)
解 : 将 (8)式 改 写 成 [Q(x)-P(X)Y]DX-DY=0
(10)
这时由公式,μ(x)=e∫p(x)dx.以 μ(x)=e∫p(x)dx 乘上(10)式得到
或 y=e-∫p(x)dx[∫Q(x)e∫p(x)dxdx+C]
2.公 式 法
由同一个方程
ydx-xdy=0
可以有不同的积分因子 1 y2

1 x2

1和 1 xy x2±y2
.可以证明,只要方程有解,则必有积分因子存在,
并且不是唯一的.因此,在具体解题过程中,由于求出的积分因

微分方程

微分方程

初始条件
解定解问题
dx k k + x= d t 5400 2500
x t = 0 = 0.12×54
得 k=?
0.06 ×5400 = 0.06×54 t = 30 时 x = 100 k =180ln 4 ≈ 250
m3 新鲜空气 . 因此每分钟应至少输入 250
MATLAB中微分方程的数值解 MATLAB中微分方程的数值解 s=dsolve(‘方程1’, ‘方程2’,…,’初始条件1’,’ 初始条件2’ …,’自变量’)(P257附录B4) 用字符串方程表示,自变量缺省值为t。 导数用D表示,2阶导数用D2表示。 S返回解析解。 dx k k 例: + x=
−∫ P( x) dx
三、微分方程应用问题
例5. 已知某车间的容积为 的新鲜空气 输入 , 问每分钟应输入多少才能在 30 分钟后使车间空 的含量不超过 0.06 % ? ( 假定输入的新鲜空气 与原有空气很快混合均匀后, 以相同的流量排出 ) 5400 , 提示: 提示 设每分钟应输入 t 时刻车间空气中含 的改变量为 则在 [ t , t + ∆t ]内车间内 0.04 x ∆t − k ⋅ ∆t ∆x = k ⋅ 两端除以 ∆t , 100 5400 并令 ∆t → 0 得微分方程
一阶线性方程
dy + P( x) y = Q( x) dx
∫ 令µ = e
令µ = y e
P ( x ) dx
全微分方程
M ( x, y )dx + N ( x, y )dy = 0 ∂M ∂N = ∂y ∂x
x = X + h 令 y = Y + k ∆=0 ∆≠0
∆= a b
− n ( n −1) P ( x ) dx

求解积分因子的方法整理

求解积分因子的方法整理

求解积分因子的方法整理求解积分因子的方法整理一、恰当微分方程与积分因子1、对于一阶微分方程M(x,y)dx+N(x,y)dy=0 (1) 其左端恰好是某个二元函数u(x,y)的全微分,即 P(x,y)dx+Q(x,y)dy=du(x,y)则称方程(1)为恰当微分方程。

容易得到方程(1)的通解为u(x,y)=c (这里的c 为任意常数)。

可是若(1)不是恰当微分方程,如果存在连续可微的函数u=u(x,y)≠0,使得u(x,y)M(x,y)dx+u(x,y)N(x,y)dy=0为恰当微分方程,则称u(x,y)为方程(1)的积分因子。

2、恰当微分方程的判定 对于一阶微分方程M(x,y)dx+N(x,y)dy=0 它为恰当微分方程的必要条件为: 二、几种常见的积分因子的类型及求法1、存在只与x 有关的积分因子 (1)充要条件:()M N yxx Nψ∂∂∂∂-= (2)形式:u=()x dx e ψ⎰ 2、存在只与y 有关的积分因子(1)充要条件:()M N yxy Mϕ∂∂∂∂-=-(2)形式:()y dy e ϕ⎰这里的().()x y ψϕ分别是只关于x 、y 的函数。

3、方程(1)有形如u(x,y)=F(x,y)的积分因子,充要条件:4、方程(1)有形如u[p(x)+f(x)g(y)+q(y)]的积分因子,充要条件:它的积分因子为:5、方程(1)有形如u[f(x)g(y)+q(y)]的积分因子,充要条件:它的积分因子为:6、方程(1)有形如的积分因子,充要条件:其中7、方程(1)有形如的积分因子,充要条件:它的积分因子为:8、方程有形如的积分因子,充要条件:它的积分因子为:其中这里的结束语:对于一阶微分方程,不同的形式有不同的积分因子,积分银子一般不会太容易求得,很多时候需要根据方程的特点进行判断,以上的一些情况是参考了一些文献后,整理而得到的一些特殊情况,对求解一些特殊方程有很大的帮助。

参考文献:1、张新丽、王建新.一类积分因子存在的充要条件.科学与技术工程.第11卷.第16期.2011.62、陈星海等.三类复合型积分因子的充要条件及其应用.湖南师范学院学报.第32卷.第2期.2010.43、高正晖.一阶微分方程三类积分因子的计算.衡阳师范学院学报.2002。

积分因子的求法及简单应用[1].doc

积分因子的求法及简单应用[1].doc

积分因子的求法及简单应用数学科学学院摘 要:积分因子是常微分方程中一个很基本但却又非常重要的概念,本文在介绍了恰当微分方程与积分因子的概念以及相关定理的基础上,归纳总结了求解微分方程积分因子的几种方法,并利用积分因子理论证明了初等数学体系中的对数公式与指数公式,提供了一种新的解决中学数学问题的途径,体现了积分因子的简单应用价值。

关键词:恰当微分方程;积分因子;对数公式;指数公式1. 恰当微分方程的概念及判定1.1 恰当微分方程的概念 我们可以将一阶方程(),dyf x y dx =写成微分形式(),0f x y dx dy -=或把x,y 平等看待,写成下面具有对称形式的一阶微分方程()(),,0M x y dx N x y dy += ⑴这里假设M(x,y),N(x,y)在某矩形域内是x ,y 的连续函数,且具有连续的一阶偏导数,如果方程⑴的左端恰好是某个二元函数u(x,y)的全微分. 即()()(),,,u uM x y dx N x y dy du x y dx dy x y ∂∂+==+∂∂则称方程⑴为恰当微分方程. []11.2 恰当微分方程的判定定理1[]2 假设函数M(x,y)和N(x,y)在某矩形域内是x ,y 的连续函数且具有连续的一阶偏导数,则方程⑴是恰当微分方程的充分必要条件是在此区域内恒有M Nyx ∂∂=∂∂. 利用定理1我们就可以判定出一个微分方程是否是恰当微分方程.2. 积分因子如果对于方程⑴在某矩形域内M Nyx ∂∂≠∂∂,此时方程⑴就称为非恰当微分方程。

对于非恰当微分方程,如果存在某个连续可微的函数u(x,y)≠0,使得()()()(),,,,0u x y M x y dx u x y N x y dy +=为恰当微分方程,则称u(x,y)为方程⑴的1个积分因子.注[]1 可以证明,只要方程有解存在,则必有积分因子存在,并且不是唯一的.定理2[]2 函数u(x,y)是方程⑴的积分因子的充要条件是u u M N NM u x y y x ⎛⎫∂∂∂∂-=- ⎪∂∂∂∂⎝⎭3. 积分因子求法举例3.1 观察法对于一些简单的微分方程,用观察法就可以得出积分因子 如:⑴ 0ydx xdy +=有积分因子1xy⑵ 0ydx xdy -=有积分因子21x -,21y ,1xy ,221x y +,221x y -例1 找出微分方程()()110xy ydx xy xdy ++-=的一个积分因子. 解 将原方程各项重新组合可以写成()()0ydx xdy xy ydx xdy ++-=由于1xy 是ydx xdy +的积分因子,1xy 也是ydx xdy -的积分因子,从而原方程有积分因子()21xy.观察法只运用于求解简单的微分方程的积分因子,有的可以直接看出,有的需要先将原方程重新组合,再运用观察法得出. 3.2 公式法引理1[]3 微分方程⑴存在形如:()u x ,()u y ,()u x y ±,()u xy ,()22u x y ±,y u x ⎛⎫⎪⎝⎭的积分因子的充要条件有:① 方程⑴存在仅与x 有关的积分因子的充要条件:()1M N x N y x ⎛⎫∂∂ψ=- ⎪∂∂⎝⎭,()x ψ是仅与x 有关的函数;② 方程⑴存在仅与y 有关的积分因子的充要条件:()1M N y M y x ⎛⎫∂∂ψ=-- ⎪∂∂⎝⎭,()y ψ是仅与y 有关的函数;③ 方程⑴有形如()u x y ±的积分因子的充要条件:()M Ny xx y N M ∂∂-∂∂ψ+=-,()x y ψ+是仅与x+y 有关的函数,()M N y xx y N M ∂∂-∂∂ψ-=+,()x y ψ-是仅与x-y 有关的函数; ④ 方程⑴有形如()u xy 的积分因子的充要条件:()M N y xxy Ny Mx ∂∂-∂∂ψ=-,()xy ψ是仅与xy 有关的函数; ⑤ 方程⑴有形如()22u x y ±的积分因子的充要条件:()2222M Ny xx y Nx My ∂∂-∂∂ψ+=-,()22x y ψ+是仅与22x y +有关的函数, ()2222M Ny xx y Nx My ∂∂-∂∂ψ-=+,()22x y ψ-是仅与22x y -有关的函数; ⑥ 方程⑴有形如y u x ⎛⎫⎪⎝⎭的积分因子的充要条件:211M Ny y x x Ny Mx x ∂∂-∂∂⎛⎫ψ=-⎪⎝⎭+,y x ⎛⎫ψ ⎪⎝⎭是仅与yx 有关的函数。

高等数学 第11章 微分方程习题详解

高等数学 第11章 微分方程习题详解

第十一章 微分方程习题详解第十一章 微分方程 习 题 11—11.判断下列方程是几阶微分方程?(1)23d tan 3sin 1;d y y t t t t ⎛⎫=++ ⎪⎝⎭(2)(76)d ()d 0;x y x x y y -++=(3)2()20;x y yy x ''''-+= (4)422()0'''''++=xy y x y .解 微分方程中所出现的未知函数导数(或微分)的最高阶数,叫做微分方程的阶.所以有:(1)一阶微分方程; (2)一阶微分方程; (3)三阶微分方程; (4)三阶微分方程. 2.指出下列各题中的函数是否为所给微分方程的解: (1)2'=xy y ,25=y x ;(2)0''+=y y ,3sin 4cos =-y x x ; (3)20'''-+=y y y ,2e =x y x ;(4)2()()20'''''-++-=xy x y x y yy y ,ln()=y xy .解 (1)将10'=y x 代入所给微分方程的左边,得左边210=x 22()5x ==右边,故25=y x 是微分方程2'=xy y 的解.(2)将3cos 4sin '=+y x x ,3sin 4cos ''=-+y x x 代入所给微分方程的左边,得左边(3sin 4cos )(3sin 4cos )0=-++-==x x x x 右边,故3sin 4cos =-y x x 是微分方程0''+=y y 的解.(3)将2e =x y x ,22e e '=+x x y x x ,22e 4e e ''=++x x x y x x 代入微分方程的左边,得左边222(2e 4e e )2(2e e )e 2e 0=++-++=≠x x x x x x x x x x x x (右边),故2e =x y x 不是所给微分方程20'''-+=y y y 的解.(4)对方程ln()=y xy 的两边关于x 求导,得 1''=+y y x y,即 ''=+xyy y xy .再对x 求导,得2()''''''''++=++yy x y xyy y y xy ,即2()()20'''''-++-=xy x y x y yy y ,故ln()=y xy 是所给微分方程的解.3.确定下列各函数关系式中所含参数,使函数满足所给的初始条件. (1)22-=x y C , 05==x y ;(2)2120()e ,0==+=x x y C C x y ,01='=x y .解 (1)将0=x ,5=y 代入微分方程,得220525=-=-C所以,所求函数为2225-=y x .(2)222212122e 2()e (22)e '=++=++x x x y C C C x C C C x ,将00==x y,01='=x y 分别代入212()e =+x y C C x 和2122(22)e '=++x y C C C x ,得10=C ,21=C ,所以,所求函数为2e =x y x .4.能否适当地选取常数λ,使函数e λ=x y 成为方程90''-=y y 的解.解 因为e λλ'=x y ,2e λλ''=x y ,所以为使函数e λ=x y 成为方程 90''-=y y 的解,只须满足2e 9e 0λλλ-=x x ,即2(9)e 0λλ-=x .而e 0λ≠x ,因此必有290λ-=,即3λ=或3λ=-,从而当3λ=,或3λ=-时,函数33e ,e -==x x y y 均为方程90''-=y y 的解.5.消去下列各式中的任意常数12,,C C C ,写出相应的微分方程. (1)2;y Cx C =+ (2)()tan ;y x x C =+ (3)12e e ;x x xy C C -=+ (4)212()y C C x -=.解 注意到,含一个任意常数及两个变量的关系式对应于一阶微分方程;含两个独立常数的式子对应于二阶微分方程.(1)由2=+y Cx C 两边对x 求导,得'=y C ,代入原关系式2y Cx C =+,得所求的微分方程为2()''+=y xy y .(2)由tan()=+y x x C 两边对x 求导,得2tan()sec ()'=+++y x C x x C ,即 2tan()tan ()'=++++y x C x x x C .而tan()=+yx C x,故所求的微分方程为 2⎛⎫'=++ ⎪⎝⎭y y y x x x x ,化简得 22'=++xy y x y .(3)由12e e -=+x x xy C C 两边对x 求导,得 12e e -'+=-x x y xy C C ,两边再对x 求导,得12e e -''''++=+x x y y xy C C ,可得所求的微分方程为2'''+=xy y xy .(4)由212()-=y C C x 两边对x 求导,得122()'-⋅=y C y C ,将212()-=y C C x代,并化简得12'=-xy y C ,对上式两边再对x 求导,得22''''+=y xy y ,故第十一章 微分方程习题详解所求的微分方程为20'''+=xy y .习 题 11—21.求下列微分方程的通解或特解:(1)ln 0;xy y y '-= (2)cos sin d sin cos d 0;x y x x y y += (3)22();y xy y y '''-=+ (4)(1)d ()d 0;x y x y xy y ++-= (5)23yy xy x '=-,01;x y == (6)22sin d (3)cos d 0x y x x y y ++=,16x y=π=. 解 (1)分离变量,得11d d ln =y x y y x,两端积分,得 ln(ln )ln ln =+y x C ,即 ln =y Cx ,所以原方程的通解为 e C x y =.注 该等式中的x 与C 等本应写为||x 与||C 等,去绝对值符号时会出现±号;但这些±号可认为含于最后答案的任意常数C 中去了,这样书写比较简洁些,可避开绝对值与正负号的冗繁讨论,使注意力集中到解法方面,本书都做这样的处理.(2)原方程分离变量,得cos cos d d sin sin =-y xy x y x,两端积分,得 ln(sin )ln(sin )ln =-+y x C ,即 ln(sin sin )ln ⋅=y x C ,故原方程的通解为 sin sin ⋅=y x C .(3)原方程可化成 2d (1)2d -+=yx y x ,分离变量,得 212d d 1=-+y x y x ,两端积分,得 12ln(1)-=-+-x C y, 即 12ln(1)=++y x C是原方程的通解.(4)分离变量,得d d 11=+-y x y x y x ,两边积分,得 ln(1)ln(1)ln -+=+-+y y x x C ,即 e (1)(1)y x C y x -=+- 是原方程的通解.(5)分离变量,得2d d 31=-y y x x y ,两端积分,得2211ln(31)ln 62-=+y x C , 即 211262(31)ex y C -=.由定解条件01==x y,知16(31)-=C ,即162=C ,故所求特解为 21112662(31)2x y e-=,即223312e -=x y .(6)将方程两边同除以2(3)sin 0+≠x y ,得22cos d d 03sin +=+x yx y x y,两端积分,得 122cos d d 3sin +=+⎰⎰x yx y C x y ,积分后得 2ln(3)ln(sin )ln ++=x y C (其中1ln =C C ),从而有2(3)sin +=x y C ,代入初始条件16=π=x y,得 4sin 26π==C .因此,所求方程满足初始条件的特解为 2(3)sin 2+=x y ,即 2arcsi 3n2y x =+. 2.一曲线过点0(2,3)M 在两坐标轴间任意点处的切线被切点所平分,求此曲线的方程. 解 设曲线的方程为()y y x =,过点(,)M x y 的切线与x 轴和y 轴的交点分别为(2,0)A x 及(0,2)B y ,则点(,)M x y 就是该切线AB 的中点.于是有22'=-yy x ,即xy y '=-,且(2)3=y , 分离变量后,有11d d =-y x y x,积分得 ln ln ln =-y C x ,即 =C y x .由定解条件23==x y ,有6=C ,故 6=y x为所求的曲线. 3.一粒质量为20克的子弹以速度0200v =(米/秒)打进一块厚度为10厘米的木板,然后穿过木板以速度180v =(米/秒)离开木板.若该木板对子弹的阻力与运动速度的平方成正比(比例系数为k ),问子弹穿过木板的时间.解 依题意有2d d =-vmkv t,0200==t v , 即 21d d -=kv t v m,两端积分,得 10.02=+=+k kt C t C v m (其中20克=0.02千克), 代入定解条件0200==t v ,得1200=C ,故有200100001=+v kt .第十一章 微分方程习题详解设子弹穿过木板的时间为T 秒,则2000.1d 100001Tt kt =+⎰200ln(100001)10000=+Tkt k 1ln(100001)50=+kT k, 又已知=t T 时,180==v v 米/秒,于是20080100001=+kT ,从而,0.00015=kT ,为此有 0.1ln(1.51)500.00015=+⨯T,所以0.10.0075ln 2.5=⨯T 0.000750.00080.9162≈=(秒), 故子弹穿过木板运动持续了0.0008=T (秒).4.求下列齐次方程的通解或特解:(1)0;xy y '- (2)22()d d 0;x y x xy y +-= (3)332()d 3d 0;x y x xy y +-= (4)(12e )d 2e (1)d 0;x x yyxx y y++-=(5)22d d yx xy y x=-,11;x y == (6)22(3)d 2d 0y x y xy x -+=, 01x y==.解 (1)原方程变形,得'=+y y x ,令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为'+=u xu u分离变量,得1d =u x x ,两端积分得ln(ln ln +=+u x C ,即u Cx ,将=yu x代入上式并整理,得原方程的通解为2y Cx .(2)原方程变形,得22d d +=y x y x xy,即21d d x xy y x y ⎛⎫+ ⎪⎝⎭=. 令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为 21+'+=u u xu u, 即 1d d =u u x x ,两端积分,得 211ln 2=+u x C ,将=yu x代入并整理,得原方程的通解22(2ln )=+y x x C (其中12=C C ).(3)原方程变形,得332d d 3+=y x y x xy ,即32d 1()d 3()+=y y x x y x , 令=y ux ,有d d d d =+y uu x x x,则原方程可进一步化为 32d 1d 3++=u u u x x u , 即 3231d d 12u u x u x=-,两端积分,得311ln(12)ln ln 22--=-u x C , 即 23(12)-=x u C ,将=yu x代入上式并整理,得原方程的通解为 332-=x y Cx .(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以xy为变量的函数,故令=x u y ,即=x uy ,有d d d d =+x u u y y y,则原方程可化为 d ()(12e )2e (1)0d +++-=u u uu yu y, 整理并分离变量,得2e 11d d 2e +=-+u uu y u y, 两端积分,得ln(2e )ln ln +=-+u u y C ,第十一章 微分方程习题详解即 2e +=u C u y .将 =xu y代入并整理,得原方程的通解为 2e +=xy y x C .(5)原方程可化为2d d ⎛⎫=- ⎪⎝⎭y y y x x x . 令=yu x,有d d d d =+y u u x x x ,则原方程可进一步化为2d d +=-uu xu u x, 即 211d d -=u x u x ,两端积分,得 1ln =+x C u ,将=yu x代入,得 ln =+xx C y, 代入初始条件11==x y,得 1ln11=-=C .因此,所求方程满足初始条件的特解为1ln =+xy x.(6)原方程可写成22d 1320d -+=x x x y y y.令=x u y ,即=x uy ,有d d d d =+x uu y y y,则原方程成为 2d 132()0d -++=uu u u yy, 分离变量,得221d d 1=-u u y u y,两端积分,得 2ln(1)ln ln -=+u y C ,即 21-=u Cy ,代入=xu y并整理,得通解 223-=x y Cy .由初始条件01==x y,得1=-C .于是所求特解为322=-y y x .5.设有连结原点O 和(1,1)A 的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围成图形的面积为2x ,求曲线弧OA 的方程.解 设曲线弧的方程为()=y y x ,依题意有201()d ()2-=⎰xy x x xy x x ,上式两端对x 求导,11()()()222'--=y x y x xy x x ,即得微分方程4'=-yy x, 令=yu x,有d d d d =+y u u x x x ,则微分方程可化为d 4d +=-u u xu x ,即d 4d =-u x x, 积分得4ln =-+u x C ,因=yu x,故有 (4ln )=-+y x x C .又因曲线过点(1,1)A ,故1=C .于是得曲线弧的方程是(14ln )=+y x x .6.化下列方程为齐次方程,并求出通解:(1)(1)d (41)d 0--++-=x y x y x y ; (2)()d (334)d 0+++-=x y x x y y . 解 (1)原方程可写成d 1d 41-++=+-y x y x y x , 令10410x y y x --=+-=⎧⎨⎩,解得交点为1=x ,0=y .作坐标平移变换1=+x X ,=y Y ,有d d d d d(1)d ==+y Y Yx X X, 所以原方程可进一步化为d d 4-=+Y Y XX Y X(※) 这是齐次方程.设=Y u X ,则=Y uX ,d d d d =+Y u u X X X,于是(※)式可化为 1d d 41YY X Y X X-=⋅+, 即第十一章 微分方程习题详解d 1d 41-+=+u u u XX u , 变量分离,得2411d d 41+=-+u u X u X, 两端积分,得2111ln(41)arctan(2)ln 22++=-+u u X C , 即 22ln (41)arctan(2)⎡⎤++=⎣⎦X u u C 1(2)=C C ,将1==-Y y u X x 代入,得原方程的通解为 222ln 4(1)arctan1⎡⎤+-+=⎣⎦-yy x C x . (2)原方程可写成d d 43()+=-+y x yx x y , 该方程属于d ()d =++yf ax by c x类型,一般可令=++u ax by c . 令=+u x y ,有d d 1d d =-y u x x,则原方程可化为 d 1d 43-=-u ux u, 即34d 2d 2-=-u u x u ,积分得 32ln 22+-=+u u x C ,将=+u x y 代入上式,得原方程的通解为32ln 2+++-=x y x y C .习 题 11—31.求下列微分方程的通解:(1)22e -'+=x y xy x ; (2)23'-=xy y x ; (3)d tan 5d yx y x-=; (4)1ln '+=y y x x ; (5)2(6)d 2d 0-+=y x y y x ; (6)d 32d ρρθ+=. 解 (1) ()d ()d e ()e d -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰p x x p x x y q x x C ()222d 2d e e e d e d x x x xx x x x C x x C ---⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰2221e e 2x x C x --=+. (2)原方程可化为3'-=y y x x, 故通解为33d d 3321e e d ---⎡⎤⎛⎫⎰⎰=+=-=-⎢⎥ ⎪⎝⎭⎣⎦⎰x x x x y x x C x C Cx x x .(3)原方程可化为d cos 5cos d sin sin -=y x x y x x x, 故通解为cos cos d d sin sin 5cos e e d sin ⎛⎫- ⎪⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x x y x C x 25cos sin d sin 5sin x x x C C x x ⎡⎤=+=-⎢⎥⎣⎦⎰. (4)所给方程的通解为()11d d ln ln 1e ed ln d ln -⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰x xx x x x y x C x x C x1(ln )ln ln -=-+=+C xx x x C x x x. (5)方程可化为 2d 6d 2x x y y y -=,即 d 31d 2x x y y y -=-,故通解为 33d d 1e e d 2-⎡⎤⎰⎰=-+⎢⎥⎢⎥⎣⎦⎰y yy y x y y C3211d 2y y C y ⎛⎫=-+ ⎪⎝⎭⎰312⎛⎫=+ ⎪⎝⎭y C y . (6)()3d 3d 33e 2e d e 2e d θθθθρθθ--⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰C C 33322e e e 33C C θθθ--⎛⎫=+=+ ⎪⎝⎭.2.求下列微分方程的特解: (1)d tan sec d yy x x x -=,00x y ==; (2)cos d cot 5e d x y y x x +=,24π==-x y ; (3)23d 231d y x y x x -+=,10x y ==.第十一章 微分方程习题详解解 (1)tan d tan d e sec e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x xx x y x x C ()lncos lncos e sec ed -=+⎰x xx x C()1sec cos d cos x x x C x=⋅+⎰cos +=x Cx, 代入初始条件0,0==x y ,得0=C .故所求特解为 cos =xy x. (2) cot d cot d cos e 5e e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x x x x x y x C ()cos 15esin d sin xx x C x=⋅+⎰()cos 15e sin =-+x C x, 代入初始条件,42π==-x y ,得1C =,故所求特解为cos 15e sin -=xy x, 即 cos sin 5e 1+=x y x .(3) 332323d d ee d ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x y x C 22113ln 3ln e e d ⎛⎫-++ ⎪⎝⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎰x x xx x C 222211113332e 11e d ee d 2x x x x x x C x C x x --⎛⎫⎡⎤⎛⎫⎪=+=-+⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎣⎦⎪⎝⎭⎰⎰ 2221133311e e e 22x x x x x C Cx -⎛⎫=+=+ ⎪ ⎪⎝⎭,代入初始条件1,0==x y ,得12e=-C ,故所求特解为 21311e 2-⎛⎫=- ⎪ ⎪⎝⎭x x y . 3.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2+x y . 解 设曲线方程为()=y y x ,依题意有2'=+y x y ,即2'-=y y x .从而有()d de 2e d e2ed --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰x x xxy x x C x x Ce (2e 2e )22e x x x x x C x C --=--+=--+. 由0=x ,0=y ,得2=C .故所求曲线的方程为2(e 1)=--x y x .4.设曲线积分2()d [2()]d +-⎰Lyf x x xf x x y 在右半平面(0>x )内与路径无关,其中()f x 可导,且(1)1=f ,求()f x .解 依题意及曲线积分与路径无关的条件,有2[2()][()]0∂-∂-=∂∂xf x x yf x x y,即 2()2()2()0'+--=f x xf x x f x .记()=y f x ,即得微分方程及初始条件为112'+=y y x,11==x y . 于是,)11d d22e e d -⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰x xx x y x C x C23⎫=⎪⎭C x 代入初始条件 1,1==x y ,得13=C ,从而有 2()3=f x x5.求下列伯努利方程的通解:(1)2d ;d yx y xy x+= (2)42323;y y x y x '+=(3)4d 11(12);d 33y y x y x +=- (4)3d [(1ln )]d 0-++=x y y xy x x . 解 (1)方程可以化为21d 11d --+=y y y x x. 令1-=z y ,则2d d d d -=-z y y x x ,即2d d d d -=-y z y x x .代入方程,得d 11d -+=z z x x,即 d 11d -=-z z x x, 其通解为11d de (e )d ln -⎛⎫⎰⎰=-+=- ⎪⎝⎭⎰x xx x z x C Cx x x ,所以原方程的通解为1ln =-Cx x x y. (2)原方程化为41233d 23d --+=y yy x x x. 令13-=z y ,则43d 1d d 3d -=-z y y x x ,即43d d 3d d -=-y z y x x .代入方程,得2d 233d -+=z z x x x,即2d 2d 3-=-z z x x x,第十一章 微分方程习题详解其通解为22d d 233e (e )d -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰x x x xz x x C2433()d ⎡⎤=-+⎢⎥⎣⎦⎰x x x C273337⎛⎫=- ⎪⎝⎭x C x .所以原方程的通解为 12733337-=-yCx x .(3)原方程化为4311(12)33--'+=-y y y x .令3-=z y ,则43-''=-z y y ,于是原方程化为21z x z '-=-,其通解为d d 21e ()e d e ()e 21d x x x x z x C x x x C --⎡⎤⎰⎰⎡⎤=+=+⎢⎥⎣⎦⎣--⎦⎰⎰ e (21)e 21e x x xx C x C -⎡⎤=--+=--+⎣⎦,所以原方程的通解为 321e -=--+x y x C .(4)原方程化为31(1ln )'-=+y y x y x ,即3211ln --'-=+y y y x x. 令2-=z y ,则32-''=-z y y ,则原方程化为22(1ln )'+=-+z z x x,其通解为 22d de 2(1ln )e d -⎡⎤⎰⎰=-++⎢⎥⎣⎦⎰x xx x z x x C222(1ln )d x x x x C -⎡⎤=-++⎣⎦⎰233221(1ln )d 33x x x x x C x -⎡⎤=-++⋅+⎢⎥⎣⎦⎰23322(1ln )39x x x x C -⎡⎤=-+++⎢⎥⎣⎦222(1ln )39x x x Cx -=-+++,所以原方程的通解为 2222(1ln )39--=-+++y x x x Cx ,或写成233242ln 93=--+x x x x C y .习 题 11—41.求下列全微分方程的通解:(1)21d ()d 0;2xy x x y y ++= (2)3222(36)d (46)d 0;x xy x y x y y +++=(3)e d (e 2)d 0;y y x x y y +-= (4)(cos cos )sin sin 0x y x y y x y '+-+=. 解 (1)易知,=P xy ,21()2=+Q x y .因为∂∂==∂∂P Q x y x ,所以原给定的方程为全微分方程.而21(,)0d ()d 2x yu x y s x t t =++⎰⎰22221111()2224x y y x y y =+=+,于是,所求方程的通解为221124+=x y y C . (2)易知,2236=+P x xy ,3246=+Q y x y .因为12∂∂==∂∂P Qxy y x, 所以原给定的方程为全微分方程.而2320(,)3d (46)d xyu x y s s t x t t =++⎰⎰34223x y x y =++, 于是,所求方程的通解为 34223++=x y x y C .(3)易知,e y P =,e 2y Q x y =-.因为 e y P Qy x∂∂==∂∂,原方程为全微分方程.将原方程的左端重新组合,得2(e d e d )2d d(e )y y y x x y y y x y +-=-,于是,所求方程的通解为 2e y x y C -=.(4)原方程可化为(cos cos )d (sin sin )d 0x y x y y x y x ++-+=,易知,sin sin P y x y =-+,cos cos Q x y x =+.因为 sin cos P Qx y y x∂∂=-+=∂∂,原方程为全微分方程.方程的左端重新组合,得(cos d sin d )(cos d sin d )0x y y y x x y y x x ++-=, d(sin )d(cos )d(sin cos )0x y y x x y y x +=+=,于是,所求方程的通解为 sin cos x y y x C +=.第十一章 微分方程习题详解2.用观察法求出下列方程的积分因子,并求其通解:(1)2()d d 0;x y x x y =-+ (2)22(3)d (13)d 0y x y x xy y -+-=. 解 (1)用21x 乘方程,便得到了全微分方程 211d d 0⎛⎫+-= ⎪⎝⎭y x y x x ,将方程左端重新组合,得2d d d d 0-⎛⎫+=-= ⎪⎝⎭y x x y y x x x x . 于是,通解为 -=yx C x. (2)原方程可化为232d 3d d 3d 0xy x y x y xy y -+-=,即232d d 3(d d )0xy x y y x xy y +-+=,用21y 乘方程,便得到了全微分方程 21d d 3(d d )0+-+=x x y y x x y y , 221111d d 3d()d 3022x xy x xy y y ⎛⎫⎛⎫⎛⎫--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,原方程的通解为21132--=x xy C y. 3.用积分因子法解下列一阶线性方程:(1)24ln xy y x '+=; (2)tan y y x x '-=. 解 (1)将原方程写成24ln '+=xy y x x, 此方程两端乘以2d 2eμ⎰==xx x 后变成224ln '+=x y xy x x ,即 2()4ln '=x y x x ,两端积分,得2224ln d 2ln ==-+⎰x y x x x x x x C ,于是,原方程的通解为 22ln 1=-+C y x x . (2)方程两端乘以tan d e cos μ-⎰==x xx ,则方程变为cos sin cos '-=y x y x x x ,即 (cos )cos '=y x x x ,两端积分,得cos cos d sin cos ==++⎰y x x x x x x x C ,于是,原方程的通解为 tan 1cos =++Cy x x x.习 题 11—51.求下列微分方程的通解: (1)211y x ''=+; (2)e x y x '''=; (3)(5)(4)10y y x -=.解(1)1121d arctan 1'=+=++⎰y x C x C x , ()212121arctan d arctan ln(1)2y x C x C x x x C x C =++=-+++⎰.(2)11e d e e ''=+=-+⎰x x x y x x C x C ,1212(e e )d e 2e x x x x y x C x C x C x C '=-++=-++⎰, 2112323(e 2e )d e 3e 2x x x x C y x C x C x C x x C x C =-+++=-+++⎰. (作为最后的结果,这里12C 也可以直接写成1C ). (3)令(4)=z y ,则有d 10d -=z z x x,可知=z Cx ,从而有 44d d =yCx x , 再逐次积分,即得原方程的通解53212345=++++y C x C x C x C x C .2.求下列微分方程的通解:(1);y y x '''=+ (2)0;xy y '''+= (3)310;y y ''-= (4)()3y y y ''''=+. 解 (1)令'=y p ,则'''=y p ,且原方程化为'-=p p x .利用一阶线性方程的求解公式,得()d d 11e e d eed x x xxp x x C x x C --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰()11e e e 1e x x x x x C x C --=--+=--+.第十一章 微分方程习题详解即11e x p x C =--+,再积分,得通解21121(1e )d e 2x x y x C x x x C C =--+=--++⎰.(2)令'=y p ,则'''=y p ,且原方程化为0'+=xp p ,分离变量,得d d =-p xp x,积分得 11ln ln ln =+p C x,即 1=C p x,再积分,得通解 112d ln ==+⎰C y x C x C x .(3)令'=y p ,则d d ''=py py,且原方程化为 3d 10d -=py py, 分离变量,得 31d d =p p y y ,积分得 2121=-+p C y ,故'==y p , 再分离变量,得d =±x .由于||sgn()=y y y ,故上式两端积分,sgn()d =±⎰y x,即12sgn(=±+y C x C ,两边平方,得()221121-=+C y C x C .(4)令'=y p ,则d d ''=p y py ,且原方程化为3d d =+ppp p y,即 2d (1)0d ⎡⎤-+=⎢⎥⎣⎦p p p y . 若0≡p ,则≡y C .≡y C 是原方程的解,但不是通解. 若0≡p ,由于p 的连续性,必在x 的某区间有0≠p .于是2d (1)0d -+=pp y,分离变量,得2d d 1=+py p ,积分得 1arctan =-p y C ,即()1tan =-p y C ,亦即 ()1cot d d -=y C y x .积分得()12ln sin ln -=+y C x C .即 ()12sin e -=x y C C ,也可写成()21arcsin e =+x y C C .由于当20=C 时,1=y C ,故前面所得的解≡y C 也包含在这个通解之内.3.求下列初值问题的解:(1)sin ''=+y x x ,(0)1=y ,(0)2'=-y ; (2)2(1)2'''+=x y xy ,(0)1=y ,(0)3'=y ; (3)2e y y ''=,(0)0=y ,(0)0'=y ; (4)()21'''+=y y ,(0)0=y ,(0)0'=y .解 (1)易知,211cos 2'=-+y x x C ,3121sin 6=-++y x x C x C .由初值条件(0)2'=-y ,知1201-=-+C ,得11=-C ;由(0)1=y ,知21000=-++C ,得21=C .故特解为31sin 16=--+y x x x .(2)令'=y p ,则'''=y p ,且原方程化为2(1)2'+=x p xp ,变量分离,得212d d 1=+x p x p x,两端积分,得 21(1)'==+y p C x .再两端积分,得 3121()3=++y C x x C .由初值条件(0)3y '=,有213(10)=+C ,解得,13=C ,由初值条件(0)1y =,有22113(00)3=+⋅+C ,解得,21=C ,故所给初值条件的微分方程的特解为 331=++y x x .(3)令'=y p ,则d d py py ''=,且原方程化为 2d e d y ppy=,即2d e d y p p y =,第十一章 微分方程习题详解两端积分得22111e 22yp C =+. 代入初始条件(0)0=y ,(0)0y '=,得 112C =-,从而22111e 222y p =-,即22e 1y p =-,亦即 '=y .分离变量后积分d =±⎰x ,即d -=⎰y x ,得2arcsin(e )-=+y x C ,代入初始条件(0)0y =,得2π=2C .于是,符合所给初值条件的特解为 e sin -π⎛⎫=⎪2⎝⎭y x , 即 lncos lnsec =-=y x x .(4)令'=y p ,则d d py py''=,且原方程化为 2d 1d ppp y+=, 分离变量,得2d d 1pp y p =-,两端积分,得 211ln(1)2--=+p y C , 代入初始条件(0)0y =,(0)0y '=,得 10=C .从而,21ln(1)2=--y p ,即'==y p再分离变量,得d =±y x d =±y y x .两端积分,得2arch(e )=±+y x C ,代入初始条件(0)0=y ,得20=C ,从而有满足所给初始条件的特解为arch(e )=±y x ,即e ch()ch()=±=y x x ,或写成 ln ch()=y x .4.试求''=y x 的经过点(0,1)M 且在此点与直线112=+y x 相切的积分曲线. 解 由于直线112=+y x 在(0,1)M 处的切线斜率为12,依题设知,所求积分曲线是初值问题''=y x ,01==x y ,012='=x y 的解.由''=y x ,积分得2112'=+y x C ,再积分,得 21216=++y x C x C ,代入初始条件01==x y ,012='=x y ,解得 112=C ,21=C ,于是所求积分曲线的方程为 211162=++y x x .5.对任意的0>x ,曲线()=y f x 上的点(,())x f x 处的切线在y 轴上的截距等于1()d xf t t x ⎰, 且()=y f x 存在二阶导数,求()f x 的表达式.解 设曲线的方程为()=y f x ,其中()=y f x 有二阶导数,则在点(,())M x f x 处的切线方程为()()()'-=-Y f x f x X x ,令0=X ,知切线在y 轴上的截距为()()'=-Y f x xf x ,据题意,有1()d ()()'=-⎰x f t t f x xf x x ,即20()()()d '-=⎰x xf x x f x f t t . 两端求导,得2()()2()()()''''+--=f x xf x xf x x f x f x ,即[]()()0x f x xf x '''+=,已知0>x ,故有()()0f x xf x '''+=,令'=y p ,则'''=y p ,且原方程化为d 0d pp xx+=, 分离变量,得11d d =-p x p x,两端积分,得 1ln ln ln =-p C x ,即1'==C y p x.第十一章 微分方程习题详解再对两端积分,得12ln =+y C x C ,即12()ln =+f x C x C .习 题 11—61.下列函数组中,在定义的区间内,哪些是线性无关的. (1)e x ,e ;x - (2)23sin x ,21cos ;x - (3)cos2x ,sin 2;x (4)ln x x ,ln x . 解 (1)因为1e x y =,2e x y -=满足:212e e exx x y y -==≠常数, 所以函数组e x ,e x -是线性无关的.(2)因为213sin y x =,221cos y x =-满足:21223sin 31cos y x y x==-, 所以函数组23sin x ,21cos -x 是线性相关的.(3)因为1cos2y x =,2sin 2y x =满足:12cos2cot 2sin 2y x x y x==≠常数, 所以函数组cos2x ,sin 2x 是线性无关的.(4)因为1ln y x x =,2ln y x =满足:12ln ln y x x x y x==≠常数, 所以函数组ln x x ,ln x 是线性无关的.2.验证1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解,并写出该方程的通解. 证明 由1cos y x ω=,得1sin y x ωω'=-,21cos y x ωω''=-; 由2sin y x ω=,得1cos y x ωω'=,21sin y x ωω''=-. 可见,2sin 0i y x ωω''+= (1,2)i =,故1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解.又因为12cot y x y ω=≠常数,故1cos y x ω=与2sin y x ω=线性无关.于是所给方程的通解为 1212cos sin y y y C x C x ωω=+=+.3.验证21e x y =及22e x y x =都是微分方程24(42)0y xy x y '''-+-=的解,并写出该方程的通解.证明 由21e x y =,得212e x y x '=,221(24)e x y x ''=+; 由22e x y x =,得222(12)e x y x '=+,232(64)e x y x x ''=+. 因为2222221114(42)(24)e 42e (42)e 0x x x y xy x y x x x x '''-+-=+-⋅+-=; 22223222224(42)(64)e 4(12)e (42)e 0x x x y xy x y x x x x x x '''-+-=+-⋅++-=, 所以21e x y =及22e x y x =都是方程24(42)0y xy x y '''-+-=的解.又因为21y x y =≠常数,故21e x y =与22e x y x =线性无关,于是所给方程的通解为 21212()e x y y y C C x =+=+.4.若13y =,223y x =+,22e 3x y x =++都是方程()()()y P x y Q x y f x '''++=(()0)f x ≠的特解,当()P x ,()Q x ,()f x 都是连续函数时,求此方程的通解.解 因为221y y x -=,32e x y y -=,所以2x 及e x 都是方程()()()y P x y Q x y f x '''++=对应齐次方程的特解.又因为32221e xy y y y x -=≠-常数,所以21y y -与32y y -线性无关.因此,所给方程()()()y P x y Q x y f x '''++=的通解为212e 3x y C x C =++.习 题 11—71.求下列微分方程的通解.(1)40;y y '''-= (2)3100;y y y '''--= (3)960;y y y '''++= (4)0;y y ''+=(5)6250;y y y '''-+= (6)(4)5360''+-=y y y .解 (1)所给方程对应的特征方程为240r r -=,解之,得10r =,24r =,所以原方程的通解为412e x y C C =+.(2)所给方程对应的特征方程为23100r r --=解之,得15r =,22r =-,所以原方程的通解为第十一章 微分方程习题详解5212e e x x y C C -=+.(3)所给方程对应的特征方程为29610r r ++=解之,得 1213r r ==-,所以原方程的通解为1312()ex y C C x -=+.(4)所给方程对应的特征方程为210r +=,解之,得 1i r =,2i r =-,所以原方程的通解为12cos sin y C x C x =+.(5)所给方程对应的特征方程为26250r r -+=,解之,得 134i r =-,234i r =+,所以原方程的通解为312e (cos 4sin 4)x y C x C x =+.(6)所给方程对应的特征方程为425360r r +-=,解之,得 1,22r =±,3,43i r =±,所以原方程的通解为221234e e cos3sin3x x y C C C x C x -=+++.2.求下列微分方程满足所给初始条件的特解: (1)00430,6,10==''''-+===x x y y y y y ; (2)00440,2,0==''''++===x x y y y y y ; (3)00250,2,5=='''+===x x y y y y ; (4)004130,0,3==''''-+===x x y y y y y .解 (1)所给方程对应的特征方程为2430r r -+=,解之,得 11r =,23r =,所以原方程的通解为312e e x x y C C =+,从而,312e 3e x x y C C '=+,代入初始条件006,10x x y y =='==,得12126,310,C C C C +=⎧⎨+=⎩ 解得124,2,C C =⎧⎨=⎩ 故所求特解为34e 2e x x y =+.(2)所给方程对应的特征方程为24410r r ++=,解之,得 1,212r =-,所以原方程的通解为1212()ex y C C x -=+,从而,12211221211e ee 22x x x C C C x y ----'=-, 代入初始条件002,0x x y y =='==,得1122,10,2C C C =⎧⎪⎨-+=⎪⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为12(2)ex y x -=+.(3)所给方程对应的特征方程为2250r +=,解之,得 1,25i r =±,所以原方程的通解为12cos5sin5y C x C x =+,从而,125sin55cos5y C x C x '=-+,代入初始条件002,5x x y y =='==,得122,55,C C =⎧⎨=⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为2cos5sin5y x x =+.(4)所给方程对应的特征方程为24130r r -+=,解之,得 1,223i r =±,所以原方程的通解为212e (cos3sin 3)x y C x C x =+,从而,21221e [(23)cos3(23)sin3]x y C C x C C x '=++-,代入初始条件000,3x x y y =='==,得1120,233,C C C =⎧⎨+=⎩ 解得120,1,C C =⎧⎨=⎩ 故所求特解为2e sin3x y x =.3.设圆柱形浮筒,直径为0.5米,铅直放在水中,当稍向下压后突然放开,浮筒在水第十一章 微分方程习题详解中上下振动的周期为2秒,求浮筒的质量.解 设x 轴的正向铅直向下,原点在水面处.平衡状态下浮筒上一点A 在水平面处,又设在时刻t ,点A 的位置为()x x t =,此时它受到的恢复力的大小为21000||gV g R x ρ=π排水(R 是浮筒的半径),恢复力的方向与位移方向相反,故有21000mx g R x ''=-π,其中m 是浮筒的质量.记221000g R mωπ=,则得微分方程20x x ω''+=.其对应的特征方程为220r ω+=,解得1,2i r ω=±,故12cos sin sin()x C t C t A t ωωωϕ=+=+,A 1sin C Aϕ=. 由于振动周期22T ωπ==,故ω=π,即221000g R m π=π,从中解出浮筒的质量为 21000195gR m =≈π(千克).习 题 11—81.求下列微分方程的特解*y 的形式(不必求出待定系数). (1)2331;y y x ''-=+ (2);y y x '''+= (3)2e ;x y y y '''-+= (4)23e ;x y y y -'''--= (5)32e ;x y y y x '''-+= (6)22(3)e ;x y y x x '''-=+- (7)276e sin ;x y y y x '''++= (8)245e sin ;x y y y x '''-+= (9)2222e cos ;x y y y x x '''-+= (10)22e sin x y y y x x '''-+=.解 (1)2()31f x x =+属于e ()λx m P x 型(其中,2()31m P x x =+,0λ=),对应齐次方程的特征方程为230r -=.易知,0λ=不是特征方程的根,所以特解*y 的形式为*2y Ax Bx C =++ (这里A 、B 和C 为待定系数).(2)()f x x =属于e ()λx m P x 型(其中,()m P x x =,0λ=),对应齐次方程的特征方程为20r r +=.易知,0λ=是特征方程的一个单根,所以特解*y 的形式为*2()y x Ax B Ax Bx =+=+ (这里A 和B 为待定系数).(3)()e x f x =属于e ()λx m P x 型(其中,()1m P x =,1λ=),对应齐次方程的特征方程为2210r r -+=,易知,1λ=是特征方程的二重根,所以特解*y 的形式为*2e x y Ax = (其中A 为待定系数).(4)()e x f x -=属于e ()λx m P x 型(其中,()1m P x =,1λ=-),对应齐次方程的特征方程为2230r r --=,易知,1λ=-是特征方程的一个单根,所以特解*y 的形式为*e x y Ax -= (其中A 为待定系数).(5)()e x f x x =属于e ()λx m P x 型(其中,()m P x x =,1λ=),对应齐次方程的特征方程为2320r r -+=,易知,1λ=是特征方程的一个单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx =+=+ (其中A 和B 为待定系数).(6)2()(3)e x f x x x =+-是e ()λx m P x 型(其中,2()3m P x x x =+-,1λ=),对应齐次方程的特征方程为220r r -=,易知,1λ=是不是特征方程的根,所以特解*y 的形式为*2()e x y Ax Bx C =++ (其中A 、B 和C 为待定系数).(7)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2760r r ++=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e (cos sin )x y A x B x =+ (其中A 、B 为待定系数).(8)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2450r r -+=,易知,i 2i λω+=+是特征方程的根,所以应设其特解为*2e [cos sin )]x y x A x B x =+ (其中A 和B 为待定系数).(9)由2()2e cos xf x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()2l P x x =,()0n P x =),对应齐次方程的特征方程为2220r r -+=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e [()cos ()sin )]x y Ax B x Cx D x =+++ (其中A 、B 、C 和D 为待定系数).(10)()e sin x f x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中1λ=,1ω=,()0l P x =,()n P x x =).对应齐次方程的特征方程为2220r r -+=,易知,i 1i λω±=±是特征方程的根,所以应设其特解为[]*e ()cos ()sin )x y x Ax B x Cx D x =+++(其中A 、B 、C 和D 为待定系数).2.求下列各微分方程的通解.(1)22e ;x y y y '''+-= (2)323e ;x y y y x -'''++= (3)369(1)e ;x y y y x '''-+=+ (4)e cos ''+=+x y y x .解 (1)()2e x f x =是e ()λx m P x 型(其中,()2m P x =,1λ=),对应齐次方程的特征方第十一章 微分方程习题详解程为2210r r +-=,解得 112r =,21r =-,故对应齐次方程的通解为 1212e e x x Y C C -=+.因为1λ=不是特征方程的根,所以特解*y 的形式为*e x y A =,代入原方程得2e e e 2e x x x x A A A +-=.消去e x ,有1A =,即 *e x y =,故原方程的通解为1*212e e e x x x y Y y C C -=+=++.(2)()3e x f x x -=是e ()λx m P x 型(其中,()3m P x x =,1λ=-),对应齐次方程的特征方程为 2320r r ++=,解得 11r =-,22r =-,故对应齐次方程的通解为212e e x x Y C C --=+.因为1λ=-是特征方程的单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx --=+=+,代入原方程并消去e x -,得2(2)3Ax A B x ++=.比较系数,得32A =,3B =-,即 *233e 2x y x x -⎛⎫=- ⎪⎝⎭,故原方程的通解为 *22123e e 3e 2x x x y Y y C C x x ---⎛⎫=+=++- ⎪⎝⎭.(3)3()(1)e x f x x =+是e ()λx m P x 型(其中,()1m P x x =+,3λ=),对应齐次方程的特征方程为 2690r r -+=,解得 1,23r =,故对应齐次方程的通解为312()e x Y C C x =+.因为3λ=是特征方程的二重根,所以特解*y 的形式为*23323()e ()e x x y x Ax B Ax Bx =+=+,代入原方程并消去e x ,得621Ax B x +=+.比较系数,得16A =,12B =,即 *32311e 62x y x x ⎛⎫=+ ⎪⎝⎭,故原方程的通解为*33231211()e e 62x x y Y y C C x x x ⎛⎫=+=+++ ⎪⎝⎭.(4)原方程对应的齐次方程的特征方程为210r +=,解得1,2i r =±,故对应齐次方程的通解为。

《常微分方程》东师大第二版习题答案

《常微分方程》东师大第二版习题答案

(4) y′ = 2( y − 2 )2 x + y −1
解:令 u = x + 1, v = y − 2 则原方程变为 dv = 2( v )2 du u + v
再令 z = v ,则方程化为 z + u dz = 2( z )2
u
du 1 + z
分离变量 (1 + z)2 dz = − du (z ≠ 0)
ζ
dζ 1 + u
整理为
u + 1 du = − dζ (u ≠ 1,2)
(u −1)(u − 2)
ζ
积分,得 (u − 2)(u − 2)2 ζ = c u −1
5
代回变量,得通解 ( y − 2x)3 = c( y − x −1)2 , y = x + 1也是方程的解
(2) (2x + y + 1)dx − (4x + 2 y − 3)dy = 0
积分,得 ln ln y = x + c1, ln y = ±ec1 e x = ce x c ≠ 0 ,即 y = ecex (3) dy = e x−y
dx 解: 变形得 e y dy = e x dx 积分,得 e y − e x = c
(4) tan ydx − cot xdy = 0
解:变形得 dy = tan y , y = 0 为特解,当 y ≠ 0 时, cos y dy = sin x dx .
dy 2x + y + 1
解:方程改写为
=
dx 4x + 2y − 3

u = 2x + y ,有
du 5u − 5 =
dx 2u − 3

高等数学下试题

高等数学下试题

高等数学下试题 习题10—11.已知函数yxxy y x y x f tan),(22-+=,试求),(ty tx f 。

2.已知函数v u w w u w v u f ++=),,(。

试求),,(xy y x y x f -+。

3.求下列各函数的定义域:(1)z y x u 111++=; (2))0(122222222>>-+++---=r R rz y x z y x R u 。

4.函数xy x y z 2222-+=在何上是间断的?习题10—21.设函数y xy x z +-=2,(1)求函数在点),(00y x 处的偏增量z z y x ∆∆,和全增量x ∆;(2)当x 从2变到2.1,y 从2变到1.9时,求z z y x ∆∆,与z ∆的值各为多少? 2.设y xy z )1(+=,求11==∂∂y x xz及11==∂∂y x yz3.设22),(y x y x y x f +-+=,求)4,2(x f 。

4.设⎪⎭⎫ ⎝⎛+=x y x z 2ln ,求1==∂∂y x y z 。

5.设)2sin(e ),(y x y x f x +=-,求⎪⎭⎫ ⎝⎛4,0πx f 及⎪⎭⎫⎝⎛4,0πy f 。

6.设)1ln(32z y x u +++=,当1===z y x 时,求z y x u u u ++。

7.求下列函数的偏导数(1)y xz tan ln =; (2))arcsin(x y z =;(3)xy y xz cos sin⋅=; (4)xy z /31-⎪⎭⎫⎝⎛=;(5)xy xy z πsin e =;(6))ln ln(y x z +=;(7)xyx z sin=; (8)t u t ++=-ϕϕρe e ; (9))cos(e ϕθθϕ-=+u 8.求曲线⎪⎩⎪⎨⎧=++=1122x y x z 在点)3,1,1(处的切线与纵轴正向所成的角度。

第十二章 微分方程习题课 (一)(二)

第十二章 微分方程习题课 (一)(二)

(3) y′ =
3x + y − 6x + 3 2x y − 2 y
2 2
d y 3( x − 1)2 + y2 = 化方程为 dx 2y( x − 1)
dy dy dt dy = = 令t=x–1,则 dx d t dx d t dy 3t 2 + y2 (齐次方程 齐次方程) 齐次方程 = dt 2t y 令y=ut
y 方法 1 这是一个齐次方程 . 令 u = x 方法 2 化为微分形式
( 6x3 + 3x y2 )dx + ( 3x2 y + 2y3 )dy = 0
∂P ∂Q ∵ = 6x y = ∂y ∂x
故这是一个全微分方程 故这是一个全微分方程 .
5
求下列方程的通解: 例2. 求下列方程的通解 (1) x y′ + y = y( ln x + ln y )
22
为通解的微分方程 .
提示: 提示 由通解式可知特征方程的根为
(7) y′′ + 2 y′ + 5y = sin2x
特征根: 特征根 齐次方程通解 通解: 齐次方程通解 Y = e−x (C1 cos 2x + C2 sin 2x ) 令非齐次方程特解为 令非齐次方程特解为 特解 代入方程可得 A题1,2,3(1), (2), (3), (4), (5), (9), (10) , ,
(题3只考虑方法及步骤 题 只考虑方法及步骤 只考虑方法及步骤)
P326 题2 求以 为通解的微分方程. 为通解的微分方程 ( x + C )2 + y2 = 1 消去 C 得 提示: 提示 2( x + C )+ 2 y y′ = 0 P327 题3 求下列微分方程的通解 求下列微分方程的通解: 提示: 提示 令 u = x y , 化成可分离变量方程 : 提示: 提示 这是一阶线性方程 , 其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题2—5
1. 求解下列微分方程:
(1)0)()23(2232=++++dy y x dx y xy y x ;
解 这里x x
Q y x x y P 2,32322=∂∂++=∂∂,因此原方程不是恰当方程,由于
3)(1=∂∂-∂∂x Q y P Q , 于是原方程有积分因子
x dx e e x 33)(=⎰=μ.
将它乘原方程两边,得到一个恰当方程
0)()23(223323=++++dy y x e dx y xy y x e x x ,
改写为
0)(])23([2333223=++++dy y dx y e dy e x ydx x x e x x x ,

0)3
1()(3332=+y e d y e x d x x . 由此可求得通积分
C y e y e x x x =+33323
1. (2)0)(22=++-dy x y x ydx ;
解 把方程改写为
0)()(22=+--dy y x xdy ydx . 容易观察出一个积分因子为2
21y x +=μ,将它乘原方程两边,得 022=-+-dy y
x xdy ydx . 即
0)(arctan =--dy x
y d .
从而原方程的通积分为 C y x
y =+arctan . (3)0)1(2223=-+dy y x dx xy ;
解 这里222,6xy x
Q xy y P =∂∂=∂∂,因此原方程不是恰当方程,由于
y
y P x Q P 2)(1-=∂∂-∂∂, 于是原方程有积分因子 2)2(1)(y
e
x dx y =⎰=-μ. 将它乘原方程两边,得 01)2(22=-
+dy y
dy x xydx , 从而原方程的通积分为 C y y x =+
12. (4)0)(2223=-+dy xy x dx y ;
解 把方程改写为
02)2(2
23=+-dy x dy xy dx y . 不难看出,前一组有积分因子y x 21和通积分C x y =2,因而它有更一般的积分因子)(12
12x y g y x ,前一组有积分因子21x 和通积分C y =,故它有更一般的积分因子)(122y g x
.为使关系式 )(1)(122212y g x
x y g y x = 成立,可取
1)(21=x y g ,y
y g 1)(2=. 从而得到原方程的积分因子y x 21
=μ,以它乘方程的两端,得到
02222=+-dy y x
xydy dx y . 从而原方程的通积分为
C x y y =-2
2
ln . 此外,原方程还有解0,0==y x .
2. 证明方程
0),(),(=+dy y x Q dx y x P ①
有形如)),((y x ϕμμ=的积分因子的充要条件是
)],([y x f y
P x Q x Q y P ϕϕϕ=∂∂-∂∂∂∂-∂∂ ② 并写出这个积分因子,然后将结果应用到下述各种情形,得出存在每一种类型积分因子的充要条件:
(1))(y x ±=μμ; (2))(22y x +=μμ;
(3))(xy μμ=; (4))(x
y μμ=;
(5))(βαμμy x =.
证明 方程有积分因子),(y x μ的充要条件是 )(y
P x Q x Q y P ∂∂-∂∂=∂∂-∂∂μμμ. 令)),((y x ϕμμ=,则有
)),(()(y x y
P x Q x d d Q y d d P ϕμϕϕμϕϕμ∂∂-∂∂=∂∂-∂∂, 即)),((y x ϕμμ=满足下列微分方程
x Q y P y x y P x Q d d ∂∂-∂∂∂∂-∂∂=ϕϕϕμϕμ)),(()(
③ 由于上式左端只与),(y x ϕ有关,所以右端亦然,因此微分方程①有形如)),((y x ϕμμ=的积分因子的充要条件是
)],([y x f y
P x Q x Q y P ϕϕϕ=∂∂-∂∂∂∂-∂∂. 求解③式得

=dy y x f e y x )],([)],([ϕϕμ. 将此结果应用到下列各种情形,有 (1)具有)(22
y x +=μμ形式的积分因子的充要条件:
)(y x f P
Q x Q y P ±=∂∂-∂∂ . (2)具有)(y x ±=μμ形式的积分因子的充要条件:
)(22y x f yP
xQ x Q y P +=-∂∂-∂∂. (3)具有)(xy μμ=形式的积分因子的充要条件:
)(xy f xP
yQ x Q y P =-∂∂-∂∂. (4)具有)(x
y
μμ=形式的积分因子的充要条件: )(2
x y f x P Q x y x Q y P =+∂∂-∂∂. (5)具有)(β
αμμy x =形式的积分因子的充要条件: )(βαβαy x f y
P x Q x Q y P =-∂∂-∂∂. 5. 设函数),(y x P ,),(y x Q ,),(1y x μ,),(2y x μ都是连续可微的,而且),(1y x μ,),(2y x μ是微分方程
0),(),(=+dy y x Q dx y x P ① 的两个积分因子,),(),(21y x y x μμ不恒为常数.试证明:C y x y x =)
,(),(21
μμ是方程①的一个通积分.证明 因为),(1y x μ,),(2y x μ是微分方程①的两个积分因子,所以
),(),(),(111y x dU dy y x Q dx y x P =+μμ,
),(),(),(222y x dU dy y x Q dx y x P =+μμ,
从而有 Q
P Q P y U x U ==∂∂∂∂1111:μμ,
Q
P Q P y U x U ==∂∂∂∂2222:μμ, 故0)
,(),(21≡y x D U U D ,则1U 与2U 函数相关,即)(12U U ϕ=.又2121μμ=dU dU 且21μμ不恒为常数.又)(1)(1'21'121U dU U dU dU dU ϕϕ==,令)()
(111'U U Φ=ϕ,所以)()(111'21U U Φ==ϕμμ, 而C U =Φ)(1是方程①的一个通积分.故
C =21μμ是方程①的一个通积分.。

相关文档
最新文档