博弈论战略分析入门

合集下载

企业战略管理中的博弈论分析

企业战略管理中的博弈论分析

企业战略管理中的博弈论分析企业在制定战略时,除了考虑自身的利益、环境因素和市场需求等外,还需要考虑到其竞争对手的行为。

因此,运用博弈论对企业竞争策略进行分析成为了一种有力的工具。

博弈论理论中的博弈模型具备预测和预判对手行为的能力,可以帮助企业制定最优策略,同时也可以为实际应用提供决策参考。

一、博弈论基本概念博弈是一种交互行为,在这个过程中,双方(或多方)会根据自己的利益和目标做出决策,代价是对手的反应。

在博弈中,玩家可以选择不同的策略,但其决策与结果是有联系的。

博弈论研究的是这种决策与结果之间的关系,并为企业决策提供方法和工具。

博弈论通过建立博弈模型和求解博弈结果,为企业竞争决策提供指导思路。

博弈论中最基本的概念是博弈双方的策略和收益,而策略和收益的不同组合可以对应不同的博弈模型。

博弈模型的基本要素包括玩家、策略、收益和信息等。

玩家是决定事件的个体,决策后会获得一定的收益。

策略是决策者在一定的状态下的行动方案。

收益是表示关于决策的某种结果得到的利益。

信息是用来描述玩家之间的相互影响。

这些要素共同构成了博弈模型,模型的求解结果将指导实际应用。

二、博弈论在企业战略中的应用企业竞争是一种动态博弈过程,包括市场博弈、价格博弈、广告宣传博弈等。

在这个过程中,企业需要不断地优化其经营策略,以最大化自身利益。

博弈论为企业决策提供了理论和方法,包括最大化自身收益、最小化对手收益、稳定对抗等方面。

下面以三个例子分别说明博弈论在企业决策中的应用。

1.价格竞争模型在价格竞争模型中,企业需要决定自己的定价策略,以占有更多市场份额,并获得更高的利润。

同时,企业也需要考虑竞争对手的反应,以避免价格战的产生。

此时,博弈论就可以帮助企业进行分析。

以两家企业为例,设企业A和企业B的定价分别为$a$和$b$,消费者对于两家企业提供的产品有完全相同的需求,且价格是他们做购买决策的唯一考虑因素。

两家企业的成本相同,均为$c$元。

如果两家企业的定价相同,那么他们将平分市场份额,并获得利润$a-c$。

博弈论入门

博弈论入门

博弈论入门简而言之,博弈论研究的是策略形势。

那么你知道下列哪项属于策略形势吗?∙自由竞争企业∙垄断企业∙两者皆是∙两者皆不是自由竞争企业是价格接受者,不必担心他们竞争对手的行为;垄断企业没有竞争对手,他们虽然不是价格接受者,但要面对需求曲线。

而介于两者之间的就是策略形势。

博弈论研究策略形势,即不完全竞争的情况。

换句话说,行为影响结果,结果不但取决于你的行为,还取决于其他人的行为。

博弈论所分析的是两个或两个以上的竞争者或参与者选择能够共同影响每一参与者的行动或策略的方式。

下面我们通过一个有趣的案例,来体会博弈中将会遇到的进退得失智猪博弈(Pigs Payoffs)猪圈里有一头大猪,一头小猪。

猪圈的一边有一个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。

如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。

当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。

那么,这两只猪各会采取什么策略呢?答案是,小猪将选择“搭便车”策略,即舒舒服服地等在食槽边,而大猪则为这一点食物不知疲倦地奔波于踏板和食槽之间。

原因其实很简单,因为若小猪去踩踏板,它将一无所获,不踩踏板反而能吃上食物。

对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。

反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强,所以不得不亲力亲为。

但是如果我们换一种投食方案,结果将会大大不同。

单选题现在我们采取减量方案:投食量仅为原来的一半,其他条件保持不变。

那么依你推断,将会出现什么情况?∙大猪坐享其成,小猪疲于奔命。

∙两只猪均拼命争抢着去踩踏板。

∙两只猪都不愿去踩踏板。

∙以上皆不是单选题如果想让两只猪拼命争抢着去踩踏板才能得到食物,应该采取什么策略?∙投食量减少一半∙投食量增加一倍∙投食量减少一半,同时投食口移到踏板附近∙投食量增加一倍,同时投食口移到踏板附近单选题以下哪个现实生活中的案例,符合“智猪博弈”的最原始情况(小猪躺着大猪跑)?∙股市上等待庄家抬轿的散户∙等待市场中出现具有赢利能力的新产品,随即大举仿制牟利的游资∙公司中不创造效益但分享成果的人∙以上全部价格战现在我们来看另外一个例子:假设一家网上书店amazing公司,他们公司的口号是“我们的售价不会高于别人”。

博弈论战略分析入门

博弈论战略分析入门
➢ 冷酷触发: ➢ 豁免触发:针锋相对、一报还两报、两报还一报
❖ 冷酷触发的有效程度高于豁免触发。
整理课件
15
图:两轮熨衬衫博弈 A

B
2,2

B
A -1,3
熨 A
整理课件
B 0,0
4,4 1,5 1,5 -2,6
2,2 -1,3
16
16.3 连锁店悖论
2 1
-2,3
图 :单轮的进入博弈
-2,3 5,5
表:改进的囚徒困境
阿尔钦
合作 背叛
威廉姆森
合作 背叛 1/2,1 -1,2 1,-1 0,1/2
20.2 囚徒困境的结论
两种解释:
(1)现实中的人们不像 博弈论假设的那样理性, 不能完全领会博弈的设 置,因此达不到占优战 略均衡;
(2)人们并不总是按照 利己的原则来决定自己 的行动。
结论:
(1) 人类是有限理性
第15章 嵌套博弈
❖ 掌握的概念:
嵌套/嵌入博弈、前向/后向归纳、改变规则
整理课件
1
15.1 博士学习计划
N A
4,0
3,7
软件工程
0,0
A
0,0
7,3
图:安娜的博士学习计划
整理课件
2
表:博士学习博弈第2阶段的收益
诺拉
信息恢复 软件工程
信息恢复
安娜
软件工程
3,7 0,0
0,0 7,3
前向归纳法:诺拉根据对手在过去做过的选择进行推断,以此解
民主党 第1
第2
第3
49%
共和党 第2
第1
第3
48%
绿党 第2
第3

博弈论的基本原理和策略分析

博弈论的基本原理和策略分析

博弈论的基本原理和策略分析博弈论,是一门研究决策和策略选择的学科,它以不同参与者之间的相互作用为研究对象,通过模型建立和分析,来帮助人们在冲突和合作的情境中做出最优化的决策。

博弈论发展至今已广泛应用于经济学、政治学、社会学等领域,成为解决现实问题的重要工具。

博弈论的基本原理包括参与者、策略和收益。

参与者是参与博弈的个体或组织,他们在博弈中通过选择不同的策略来争取最大的收益。

策略是参与者可选择的行动方式,通过策略选择可以实现不同的收益结果。

收益是参与者从博弈中获得的结果,包括直接的经济利益、社会声誉等。

在博弈论中,有两种基本的博弈形式:合作博弈和非合作博弈。

合作博弈是指博弈参与者之间存在着一定程度的合作和沟通,他们可以通过协商、合作达成一致,并分享协作带来的收益。

非合作博弈则是指博弈参与者之间不存在合作和沟通的限制,他们通过自利行动来争取最大的收益。

针对不同的博弈形式,博弈论提供了一系列的策略分析方法。

在合作博弈中,常见的策略分析方法有纳什均衡理论、核心和分配规则等。

纳什均衡理论是指在博弈中,当参与者都选择了自己最优策略时,整体状态将达到一种均衡状态,没有参与者能够通过改变策略来获得更多的收益。

核心是指合作博弈中一组合理的分配方案,对于该方案,没有参与者能够通过组成联盟来获得更多的收益。

分配规则则是用于确定合作博弈中收益的分配方式,常见的规则包括沙普利分配规则和核心分配等。

在非合作博弈中,常见的策略分析方法有占优策略、均衡与稳定策略等。

占优策略是指参与者在博弈中通过选择最优策略来争取最大的收益。

均衡则是指在博弈中参与者的策略选择相互映衬,没有参与者能够通过改变策略来获得更多的收益。

稳定策略是指参与者在博弈中的策略选择对于其他参与者的策略选择是一个稳定的反应。

博弈论的应用领域广泛,其中最为典型的应用是经济学中的市场竞争分析。

在市场竞争中,供求双方为了追求最大的利润,会通过定价、广告等手段展开博弈。

博弈论提供了一种分析框架,可以帮助理解市场竞争中的策略选择与结果,并为决策者提供指导。

博弈论战略分析入门课后练习题含答案

博弈论战略分析入门课后练习题含答案

博弈论战略分析入门课后练习题含答案题目翻译:
1.两个人轮流选择从1到7之间的数字,不能重复选择,哪个人最后选
择7就赢了。

如果两个人都采用最优策略,第一个选择数字的人能否保证获胜?
2.有两个球队A和B,比赛规则为A队挑选一个数字k,B队猜测这个
数字是奇数还是偶数。

如果B队猜错了,A队获胜;反之,B队获胜。

如果A队更喜欢奇数,那么它们应该挑选多少奇数呢?
解答:
1.第一个选择数字的人不能保证获胜,因为第二个人可以选择数字4,
让第一个人面临两个选择:选择数字2或6。

无论哪个数字,第二个人都可以接下来选择数字3,然后赢得游戏。

所以第一个人不能获胜。

2.如果A队总是选择奇数,那么B队的最优策略是选择奇数。

因为如果
A队选择奇数,B队就获胜,如果A队选择偶数,B队有50%的机会猜对,平局的概率为25%,B队的总胜率为75%。

因此A队最好选择所有奇数,这样B 队只有50%的机会获胜。

思路解析:
1.对于第一道题,我们需要根据规则分析游戏的局面,然后确定最优策
略。

在此基础上,我们可以找到第一个人的必胜策略,或者证明无论如何第一个人都不能获胜。

2.对于第二道题,我们需要考虑两个球队的思考方式,并且理解如何最
小化选手的期望获胜率。

这也需要一些概率的基础知识。

以上就是本次博弈论战略分析入门课后练习题答案。

希望这些题目能够帮助您加深对博弈论和战略分析的理解,进一步提升您的分析能力和决策能力!
1。

博弈论-入门

博弈论-入门

人接受了这五十万,其中的一个人说:“自己没有钱
,父母苦了一辈子了,临老了生病没钱医治,为了父
母,放弃了爱情吧。” ­

男人接着开出了第三个价格“500万!” ­

现场更静了,男人的第一个动作都是看身边的女
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有
点呆住了,一个女孩子站起来说:“如果一个男人肯
去年七八月间,陈某儿子与赖某离婚;同年9月17日,陈某也 与王某办理了事实婚姻的离婚手续。仅仅四天后,陈某就与原 儿媳赖某登记结婚。结婚当天,他就向高新区公安分局户籍管 理部门申请办理儿媳、孙女的户籍迁移,欲将她们的户口迁到 上王村。工作人员将陈某的申请材料退了回来,口头告知他说 ,要迁户口,需先取得所在村委会的同意,并开具证明。
博弈 game—— “下棋”、“玩牌”,赌博和其他许 多智力游戏在内的对抗性游戏、对抗性体育竞 赛。博弈就是策略性的互动决策,通俗的说就 基于交叉效应的有意识的行为互动 交叉效应 参与人意识到交叉效应
博弈论,英文为Game theory,是研究相互依 赖、相互影响的决策主体的理性决策行为以及 这些决策的均衡结果的理论。
以利交者,利尽则散!以色交者,色衰则疏! 以貌交者,久之则腻!唯有以心交者,方能永恒!
理性
每个参与人均以获取最大支付为目标 理性内涵:对自己利益完全了解并能完美计算出何种
行动可最大化其利益 理性不意味着:
参与人自私 着眼于短期利益 与其他参与人有相同价值体系
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
2
田忌策略:
结 果:
谋士孙膑 策略: 结 果:

博弈论入门PPT课件

博弈论入门PPT课件

基于对其他参与 者信息的了 解程度
完全信息博 弈
不完全信息 博弈
负和博弈
根据结果
零和博弈
正和博弈
特征 合作中如何分配利益,使大家都满意。 只考虑自己的利益,不考虑对方的利益。 做出策略虽然有先后,但每一方都不知
道对方的策略。 做出策略虽然有先后,但参与者对对方
做出的策略是知道。(例如下象棋) 博弈中对其他参与者的各方面信息、可
最理想的结局:双赢
一、正和博弈各方本着相互合作,公平公 正,互利互惠的原则分配利益,让每一 个人参与者都满意的博弈。
案例:鳄鱼鸟与鳄鱼和谐相处,生存搭档 的典型。凶恶的鳄鱼可以容忍鳄鱼鸟清 理它牙缝里的残肉,因为这样可以避免 滋生细菌,它的牙就不会生虫了。
二、博弈中发生冲突的时候,充公了解对 方、取长补短,各取所需,往往会使双 方走出负和博弈和零和博弈的误区,实 现合作共赢。
一年轻人在酒吧喝酒,中途去厕所。一美女尾随 他打劫,对他说:将钱和手机都交出来,否则 我说你非礼我。年轻人转念一想,计上心来, 用手指自己的嘴和耳朵。美女误以为他是聋哑 人,想放弃。年轻人掏出一支笔和一张纸在上 面写上:你说什么呀?
美女见状拿过笔来也在纸上写了:将钱和手机都 交出来,否则我说你非礼我。这时年轻人一把 抓住美女的手,大声喊道:我要送你去派出所 。
最坏的结果:两败俱伤
战争是典型的负和博弈:二战共有61个国 家卷入,涉及人口20亿以上。二战中军 民伤亡1.9亿,其中死亡6000万,受伤 1.3亿。其中死亡的平民有2730万。盟 军中苏联军队伤亡最为惨重,死亡890 万,中国军队死亡148万,英国与美国 各死亡38万。法西斯德国军队伤亡人数 1170万,军队死亡600万,日本军队伤 亡216万。

博弈论 战略分析入门第一章课后题答案

博弈论 战略分析入门第一章课后题答案

Instructor’s Guide to Game Theory: A Nontechnical Introduction to theAnalysis of StrategyChapter 1. Conflict, Strategy, and Games1.Objectives and ConceptsThe major objective of this chapter is to introduce the student to the idea that “serious” interactions can be usefully treated as games – what I have called the “scientific metaphor” at the root of game theory. Secondary objectives are to introduce the concepts of best-response strategies and the representation of games in normal form. Thus, the chapter starts with an example from war, which most people without preparation in game theory would think of as a most natural field for thinking of strategy, and the chapter begins with an example presented in extensive form, because it seems to be a more intuitive and natural way of thinking about strategy. Interweaved with this are some discussions of the origins of game theory. The chapter also takes up an episode from the movie version of “A Beautiful Mind,” since it seems very likely that many students will have seen the movie and it may be a major source of whatever ideas they have about game theory. The Prisoner’s Dilemma is the one example they are most likely to have seen in one or more other classes, so it belongs here, too.Using the Karplus Learning Cycle as a major organizing principle, I open with an example – the Spanish Rebellion – and only then introduce the general ideas it illustrates, and then follow with another example, NIM. Again, the discussion of the game in normal form begins with an example, the familiar Prisoner’s Dilemma, then proceeds to the general principles and follows with two more examples, the one from the movie and an advertising dilemma. This procedure is “psycho-logical” rather than logical, and someinstructors may not be familiar with it. However, I think it works well with most students, who can understand the general principles better if they have an example already in mind.Accordingly, the key concepts areDefinition of Game TheoryHistory and emergence of Game TheoryGame Theory as applicable to more than what we ordinarily think of as games.Representation in extensive form (tree diagrams)Best ResponseRepresentation in Normal Form2. Common Study ProblemsThe most important study problem probably will not actually emerge for a few class periods, but the roots are here in the first chapter: the concept of best response is difficult for some students, including some very good ones. Confusion may show up later in the form of a real difficulty in answering questions about social dilemmas: “How can this be a best response if it makes everybody worse off?” At this point, it may be helpful to emphasize that “best response” means the best response to other strategies that other players might choose, NOT necessarily a best response to the situation as a whole.Some (often very good) students may want to dispute whether the analysis of the Spanish Rebellion is really right. They have a point. It could be more completely represented as follows:Good Chance for Piust i s m Sure win for Pius But a) it doesn’t make any difference, since Hirtuleius will never choose to stay at Laminium, and give Pius a sure win. (That would not be subgame perfect, a concept we will get into in Chapter 14). b) Therefore, at the first step Hirtuleius commits himself to meeting Pius at the River Baetis, and it is that commitment that is shown by the firstdecision node. c) All game theory examples are simplified and abstracted in some ways,and we always need to take care that we have a simplification that focuses on theimportant points, rather than missing them. So it really is a good point to make, and this is a good example of the ways we need to be careful about our simplifying assumption.3. For Business StudentsThe major bait for business students in this chapter is purposely given a highprofile as the last example, the advertising game.4. Class AgendaFirst hour1) Get organizeda)Class Detailsb)Assignments2)Introductory presentation: What is Game Theory?Second hour1)Discussion of assignments, homework, etc.2)Discussion on Game Theory as a Scientific MetaphorDiscussion question: One issue in environmental policy is the passage ofresources on to the next and following generation. For example, forests andunderground aquifers can be of use to each generation, if they are preserved.However, if one generation uses them so intensively that they are destroyed,then future generations are deprived of that benefit. How might we capturethis as a “game?” Who are the players? What are the rules? Payoffs? Is theplay sequential or simultaneous?3)Play “The Environment Game” in class. Handout follows on the next page forconvenience in printing and copying.An In-Class GameFrom time to time in this class we will conduct some experiments with games, playing the games in class and discussing the results. Payoffs will be in GameBucks, and you will accumulate GameBucks throughout the class. Students’ GameBucks accumulations will be public knowledge. At the end of the class, students with above-average accumulations of GameBucks will get grade bonus points in proportion to the difference between the student’s accumulation and the class average. (Those below average will not be penalized). Your mastery of the principles of game theory should enable you to be more competitive in accumulating GameBucks.An Environment GameThis chapter focuses on the idea that “real-world” problems and interactions can be thought of as games. Environmental problems are often studied in game theoretic terms. One issue in environmental problems is the passage of resources on to the next and following generation. For example, forests and underground aquifers can be of use to each generation, if they are preserved. However, if one generation uses them so intensively that they are destroyed, then future generations are deprived of that benefit.For this game, students play in order, for example, around a circle from left to right. The first student is given a certificate with “One GameBuck” written at each end. The student has the choices of passing the certificate on to the next student in order, or tearing it in half and returning it to the instructor in return for two GameBucks. Each student who receives the certificate has the same choices, except the last. Each student who passes the certificate gets one GameBuck on his record. The last student can only pass it back to the experimenter for one point.The succession of students represents the succession of generations, each of which has the potential to get one GameBuck of benefit from the resource if it is preserved. The maximum benefit is equal to the number of students. If a student early in the ordering takes the opportunity to get two GameBucks, the total number of GameBucks awarded may be considerably less than this.5. Answers to Exercises and Discussion Questions1. The Spanish Rebellion. In her story about the Spanish Rebellion, McCullough writes "There was only one thing Hirtuleius could do: march down onto the easy terrain ... and stop Metellus Pius before he crossed the Baetis." Is McCullough right? Discuss.Yes, McCoullough is right. Hirtuleius must assume that Pius will respond to Hirtuleius’choice, and anticipate that response. If Hirtuleius marches for New Carthage, Pius will respond by taking Laminium and breaking out, the worst outcome for Hirtuleius. If Hirtuleius waits and marches for the River Baetis, Pius will march for New Carthage, with a good chance of beating Hirtuleius – Hirtuleius’ second worst outcome. But these are the only two possibilities, and second worst is better than very worse, so that is what Hirtuleius must choose.2. Nim. Consider a game of Nim with three rows of coins, with one coin in the top row, two in the second row, and either one, two or three in the third row. A) Does it make any difference how many coins are in the last row? B) In each case, who wins?a)Suppose there are just 2 pennies in the last line. Then Anna can take the one fromthe top line. Barbara is left with one of two choices – take 1 from either line,leaving the same game we had in the chapter, which we know Anna can win, ortake two from line, in which case Anna immediately takes the other two and wins.Thus first player wins in this case.b)Suppose there is just one in the last line. Then Anna can take the two from themiddle, leaving Barbara to take one of the others so Anna takes the remaining one and wins. Here again the first player wins.c)However, try what you will, you will find there is no way that Anna can win ifthere are three coins in the last row. Here, second player wins, so it does make adifference.There is a mathematical trick to figure out more complex games, fortunately, since a tree diagram for a Nim game with 3 coins in the last row would start out with 6 options for Anna and have from 3 to 5 for Barbara at the next stage, it would get pretty unwieldy. Do a Google search on “Nim” if you are interested in the trick.3. Matching Pennies. Matching pennies is a school-yard game. One player is identified as "even" and the other as "odd." The two players each show a penny, with either the head or the tail showing upward. If both show the same side of the coin, then "even" keeps both pennies. If the two show different sides of the coin, then "odd" keeps both pennies. Draw a payoff table to represent the game of matching pennies in normal form.OddHeads Tails EvenHeads2,00,2Tails0,22,0The standard of reading is assumed with the first payoff to even and the second to odd. (Even then odd.) 0- means wins no pennies; 2- means wins 2 pennies. Payoffs 1, -1 for wins one, loses one would be equally correct.4. Happy Hour. Jim's Gin Mill and Tom's Turkey Tavern compete for pretty much the same crowd. Each can offer free snacks during happy hour, or not. The profits are 30 to each tavern if neither offers snacks, but 20 to each if they both offer snacks, since the taverns have to pay for the snacks they offer. However, if one offers snacks and the other does not, the one who offers snacks gets most of the business and a profit of 50, while the other loses 20. Discuss this example using concepts from this chapter. How is the competition between the two tavern owners like a game? What are the strategies? Represent this game in normal form.Jim'sGive Snacks No SnacksGive Snacks20,2050,-20No Snacks-20, 5030,30TOM'SThis situation resembles a game because:• There is more than one player• Strategy is important• There are outcomes that depend on each player’s choice of strategyConsider the strategies and payoffs involved here. The basic strategies are: offerfree snacks, do not offer free snacks. If both offer snacks, their payoff is lower than if both do not offer snacks. However, if one bar chooses not to offer free snacks and the other does offer them, the potential payoff is superior to all other options.6. Quiz questionPlaced on the next page for convenience in copying and printing.Student name ____________________________Quiz – Game TheoryIn Game Theory at Work, James Miller writes: “When … my sister and I … were young teenagers, … Our mother told us she was going out into the yard but was expecting an important call. She told us to be sure to answer the phone when it rang.”(This was before home answering machines.) Neither teenager wanted to take the call, but each knew that unless one of them did so, they would both be punished for disobedience. What are the strategies? Represent this game in normal form.Answer:The strategies are “answer” or “don’t answer.” At this stage, this particular game needs to be expressed in normal form, since there is a “trick” to putting it into extensive form that will only be covered in the next chapter.SisterAnswer Don’tAnswer-2,-2-1,1JamesDon’t1,-1-5,-5Or, with qualitative rather than number payoffs,SisterAnswer Don’tAnswer Some confusion, someconfusionembarrassment, noembarrassmentJamesDon’t no embarrassment,embarrassmentpunished, punished1.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当当网购买 货到付款 点击查看详情
市场价:¥42.00 当当价:¥36.30 点击查看
本书简介
本书主要针对经济学专业入门课程和非经济专业学生编写,是一本全面介绍博弈论的具有指导意义的入门教材。

阐释清晰:本书以基础性知识作为重点,以清晰的思路和简洁明了的方法阐述了博弈论知识及其应用,并覆盖了所涉及的各个学科。

全书讲解深入浅出,循序渐进,具有很强的逻辑性。

每章开头的“预备知识”介绍了学习该章之前应该经已掌握的内容,增加了章节安排的灵活性;同样位于各章开头的“本章主要概念”介绍了该章将会出现的关键概念,以使学生对整章内容有所准备。

案例生动:案例是本书的一种重要讲解工具,涉及商业、拍卖、军事、生物学和博彩等方面,不仅使概念的引出更加出动,而且能够激发读者的全面思考。

方便学生理解的应用实例及各章后面的“练习与讨论”,不仅进一步阐释了博弈理论,而且涉及不同的学科领域,既可以用来检验学生的
知识掌握程度,也可以作为教师的课堂问题。

结构科学:对一般的导论性教材中关未特别说明或不会涉及的概念、容易混淆的概念,本书也做了必要的解释。

书中没有涉及过多、过于复杂的数学计算,而是设置了部分选修章节,介绍一些与概率相关的概念,详细分析解读,对于只想简单了解博弈论的读者来说,略去选修章节,其中,不会影响全书逻辑的连贯性。

目录
译者序
前言
第一部分 基本原理
第1章 冲突、战略与博弈
第2章 护展式博弈与标准式博弈
第二部分 标准式博弈的非合作均衡
第3章 占优战略与社会两难
第4章 纳什均衡
第5章 博弈论中的经典例子
第6章 三人博弈
第7章 概率与博弈论
第8章 混合战略纳什均衡
第9章 非合作均衡的深入讨论
第10章 双寡头垄断的战略与定价
第11章 多人博弈
第三部分 博弈的合作解
第12章 合作博弈的要素
第13章 核在经济学中的应用
第四部分 序贯博弈
第14章 序贯博弈
第15章 嵌套博弈
第16章 重要博弈
第17章 无限重要博弈
第五部分 博弈论的应用
第18章 博弈论、法律与社会机制设计
第19章 投票博弈
第20章 博弈与实验
第21章 拍卖
第22章 演进和有限理性学习
术语表
当当网购买 货到付款 点击查看详情。

相关文档
最新文档