2012高中数学 模块质量检测A课时同步练习 新人教A版选修2-1

合集下载

高中数学人教A版选修2-1高 二 教 学 质 量 监 测.docx

高中数学人教A版选修2-1高 二 教 学 质 量 监 测.docx

高 二 教 学 质 量 监 测数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟. 注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损. 之后务必用黑色签字笔在答题卡指定位置填写自己的学校、班级、姓名及座位号,在信息栏填写自己的考号,并用2B 铅笔填涂相应的信息点.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

3.非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

4.考生必须保持答题卡的整洁,不折叠,不破损,考试结束后,将答题卡交回。

5.考试不可以使用计算器.第I 卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个....选项符合题意)1.“21x >”是“1x >”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要2016.01.202.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是 A .钝角三角 B .直角三角形 C .锐角三角形D .不能确定3.下列双曲线中,渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2212y x -= D .2212x y -= 4.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =A .1B .2C .12D .185. 若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=A .3B .23C .38 D .32 6. 若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于 A .2 B .3 C .4 D .57.已知命题p :|x -1|≥2,命题q :x ∈Z ,若“p 且q ”与“非q ”同时为假命题,则满足条件的x 为A .{x|x ≥3或x ≤-1,x ∈Z}B .{x|-1≤x ≤3,x ∈Z}C .{0,1,2}D .{-1,0,1,2,3}8.在C ∆AB 中,三个内角A ,B ,C 所对的边为a ,b ,c ,若C 23S ∆AB =,6a b +=,cos cos 2cos C a b cB +A=,则c =A .27B .23C .4D .339. 设z x y =+,其中实数x ,y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为6,则z 的最小值为A .3-B .2-C .1-D .010. 斜率为1的直线经过抛物线24y x =的焦点,且与抛物线相交于A,B 两点,则 AB =A. 8B. 6C. 12D. 7311. 数列{}n a 满足11a =,且11()n n a a n n N ++-=+∈,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为A.25B.2011C.1120 D. 5712. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是 A. 3(0,]2 B. 3(0,]4 C. 3[,1)2 D. 3[,1)4PABCDE第II 卷 非选择题(满分90分)二、填空题(本题共4小题,每小题5分,共20分)13. 已知点A (1,2,-1),点B 与点A 关于平面xoy 对称,则线段AB 的长为__________. 14. 若对任意0x >,231xa x x ≤++恒成立,则a 的取值范围是 .15. 已知()(0)1xf x x x=≥+,数列{}n a 满足1(1)a f =,且1()n n a f a +=()n N +∈, 则2015a = __________.16. 设椭圆的两个焦点分别为12,F F ,过 2F 作椭圆长轴的垂线与椭圆相交,其中的一个交点为P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是__________.三、解答题(本题共6小题,共70分)17.(本题10分)设p :实数x 满足22430x ax a -+<,其中0a >,命题q :实数x满足31x -<.(1)若1a =,且p q ∧为真,求实数x 的取值范围. (2)若q 是p 的充分不必要条件,求实数a 的取值范围.18.(本题12分)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,cos cos 2cos a C c A b A +=.(1)求A . (2)若7,2a b ==求ABC ∆的面积.19.(本题12分)右图为一简单组合体,其底面ABCD 为边长2正方形,PD ⊥平面A B C D ,//EC PD ,且22,2P D C E ==.(1)若N 为线段PB 的中点,求证:EN ⊥平面PDB . (2)求平面PBE 与平面ABCD 所成的二面角的大小.20.(本题12分)在平面直角坐标系xoy 中,设点F (1,0),直线l :1x =-,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,,RQ FP PQ l ⊥⊥.(1)求动点Q 的轨迹的方程.(2)记Q 的轨迹的方程为E ,曲线E 与直线2-=kx y 相交于不同的两点A ,B ,且弦AB 中点的纵坐标为2,求k 的值.21.(本题12分)已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式.(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.22. (本题12分) 如图,已知椭圆222:1(1)x C y a a+=>的上顶点为A ,右焦点为F ,直线AF 与圆M :22(3)(1)3x y -+-=相切. (1)求椭圆C 的方程.(2)若不过点A 的动直线l 与椭圆C 相交于P ,Q 两点,且0AP AQ ⋅=.求证:直线l 过定点,并求出该定点N 的坐标.高二数学(理科)参考答案2016.01.20二、填空题(本题共4小题,每小题5分,共20分) 13.26 14.15a ≥15.1201616.21- 三、解答题(本题共6小题,共70分) 17. (本题10分)解:(1)由x 2-4ax +3a 2<0,得(x -3a)(x -a)<0,又a >0,所以a <x <3a. ------2分当a =1时,1<x <3,------3分又31x -<得24x <<------4分 由p∧q 为真. ∴x 满足1324x x <<⎧⎨<<⎩即2<x <3.则实数x 的取值范围是2<x <3. ------5分(2)q 是p 的充分不必要条件,记A ={x|a <x <3a ,a >0},B ={x|2<x <4},则B 是A 的真子集,------7分 ∴a ≤2且4≤3a. ------9分则实数a 的取值范围是423a ≤≤. ------10分18. (本题12分) 解:(1)cos cos 2cos a C c A b A += ∴sin cos sin cos 2sin cos A C C A B A +=即sin()2sin cos A C B A +=------3分又sin()sin A C B +=,------4分则1cos 2A =,------5分 又0A π<<,∴3A π=------6分(2) 由余弦定理,得2222cos a b c bc A =+-,而7,2a b ==,3A π=,------7分得2742c c =+-,即2230c c --=------9分 因为0c >,所以3c =,------10分 故ABC ∆面积为133sin 22bc A =.------12分 19. (本题12分)解析:(1)证法1:连结AC 与BD 交于点F, 连结NF , ∵F 为BD 的中点,∴//NF PD 且12NF PD = 又//EC PD 且12EC PD =则//NF EC 且NF EC = ∴四边形NFCE 为平行四边形∴//NE FC ------2分∵,DB AC PD ABCD ⊥⊥平面,AC ABCD ⊂平面 ∴AC PD ⊥, 又PD BD D ⋂=,∴AC PBD ⊥面------4分 ∴NE PDB ⊥面------5分证法2:如图以点D 为坐标原点,以AD 所在的直线为x 轴建立空间直角坐标系如图示:则222B (2,2,0),C (0,2,0),P (0,0,2),E (0,2,),N (1,1,)则2EN PB DB ===(1,-1,0),(2,2,-2),(2,2,0) ------2分∵121202EN PB ⋅=⨯-⨯+⨯(-2)=0,1212000EN DB ⋅=⨯-⨯+⨯= ∴EN PB EN DB ⊥⊥, ------4分 ∵PB DB PDB ⊂,面,且PB DB B ⋂= ∴NE PDB ⊥面------5分(2)连结DN ,由(1)知NE PDB ⊥面∴DN NE ⊥, ∵22PD DB ==,∴DN PB ⊥∴DN 为平面PBE 的法向量,且2DN =(1,1,)------8分 ∵DP 为平面ABCD 的法向量,2DP =(0,0,2),------9分设平面PBE 与平面ABCD 所成的二面角为,则2cos 2DN DP DN DPθ⋅==------11分 ∴045θ=, 即平面PBE 与平面ABCD 所成的二面角为45°------12分 20. (本题12分)(1)依题意知,直线l 的方程为:1x =-.点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线 -----1分 ∴PQ 是点Q 到直线l 的距离.∵点Q 在线段FP 的垂直平分线,∴PQ QF = -----3分故动点Q 的轨迹E 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)y x x => -----5分(2) (法一)设1122(,),(,),A x y B x y 依题意知,0,k ≠由224y kx y x =-⎧⎨=⎩有,224y y k =- 即2480ky y --=,-----7分 ∴124y y k+=,-----8分 又122,2y y +=∴1k =-----10分 又当1k =时,16320k ∆=+>,所以1k =满足题意,-----11分 ∴k 的值是1-----12分(法二)设1122(,),(,),A x y B x y 则21122244y x y x ⎧=⎨=⎩,-----6分两式相减有2212124()y y x x -=-,∴1212124y y x x y y -=-+ ,-----9分又121212,22y y y y k x x -+==-,-----11分则1k =-----12分21. (本题12分)(I)当1n =时,111a S ==; ----1分当2n ≥时,()()22111,22n n n n n n n a S S n --+-+=-=-= ----4分 故数列{}n a 的通项公式为n a n =.----5分 (II ))由(1)可得()21nnn b n =+-,----6分记数列{}n b 的前2n 项和为2n T ,则()()122212222212342.222,12342,n n nT n A B n =++++-+-+-+=++⋅⋅⋅+=-+-+-⋅⋅⋅+记则----8分[]2n 212(12)2212(12)(34)(21)2.n A B n n n +-==-==-++-++⋅⋅⋅+--+=----11分 故数列{}n b 的前2n 项和2n 1222n T A B n +=+=+-.----12分 22. (本题12分)(1) 由A(0,1),F(c,0)得直线AF 的方程为xc+y =1,即x +cy -c =0,又圆M 的圆心为M(3,1),半径r = 3.由直线AF 与圆M 相切,得|3+c -c|c2+1=3,---2分解得c =2或c =-2(舍去). 当c =2时,2213a c =+=,故椭圆C 的方程为2213x y +=.---4分 (Ⅱ)(解法1) 以线段PQ 为直径的圆过点A 知AP AQ ⊥,从而直线AP 与坐标轴不垂直,由(0,1)A 可设直线AP 的方程为1y kx =+,直线AQ 的方程为11(0)y x k k=-+≠.---5分将1y kx =+代入椭圆C 的方程2213x y +=并整理得: 22(13)60k x kx ++=---6分解得0x =或2613k x k =-+,因此P 的坐标为22266(,1)1313k k k k--+++, 即222613(,)1313k k k k --++ ……8分将上式中的k 换成1k -,得Q 22263(,)33k k k k -++. ……9分直线l 的方程为22222222231363313()6633313k k k k k k y x k k k k k k ----++=-++++++ 化简得直线l 的方程为21142k y x k -=-, ………11分 因此直线l 过定点1(0,)2N -. ……12分 (解法2)由题直线l 的斜率存在,则可设直线l 的方程为:(y kx m =+(0,1),A l ∉∴)1m ≠,代入椭圆C 的方程2213x y +=并整理得: 222(13)63(1)0k x mkx m +++-=,……5分设直线l 与椭圆C 相交于11(,)P x kx m +、22(,)Q x kx m +两点,则,12x x 是上述关于x 的方程两个不相等的实数解,从而22222(6)4(13)3(1)12(31)0mk k m k m ∆=-+⨯-=+-> ……6分212122263(1),1313mk m x x x x k k-+=-=++ ……7分 由0,AP AQ ⋅=得2212121212(1)(1)(1)(1)()(1)0x x kx m kx m k x x k m x x m ++-+-=++-++-=,222223(1)6(1)(1)()(1)01313m mkk k m m k k-+⋅+-⋅-+-=++ ……9分 整理得:2210,m m --= (21)(1)0,m m +-=由1m ≠知12m =-. ……11分—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 此时29(41)0k ∆=+>, 因此直线l 过定点1(0,)2N -.……………12分。

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。

高中数学新人教A版选修2-1课件:模块复习课第1课时常用逻辑用语

高中数学新人教A版选修2-1课件:模块复习课第1课时常用逻辑用语
则1-m≥0,即m≤1;
命题q:“不等式x2-4x+1-m≤0无解”,
则Δ=16-4(1-m)<0,即m<-3.
如果命题p∨q为真,命题p∧q为假,则命题p,q一真一假,
若p真,q假,则-3≤m≤1,
若p假,q真,则不存在满足条件的m值,
∴-3≤m≤1.
∴实数m的取值范围是[-3,1].
课堂篇专题整合
④已知p,q为两个命题,若“p∨q”为假命题,则“( p)∧( q)”为真命
题.
其中所有真命题的序号是
.
思路分析对于②③要注意四种命题及其关系,对于④涉及含逻辑
联结词的命题,要根据真值表与逻辑联结词的含义判断.
课堂篇专题整合
专题归纳
高考体验
自主解答①∵x-3=0⇒x-3≤0,∴为真命题.
②逆命题:“若a⊥b,则a·b=0”为真命题.
的必要不充分条件.
答案B
课堂篇专题整合
专题归纳
高考体验
4.(2019 北京高考)设点 A,B,C 不共线,则“与的夹角为锐角”是
“| + |>||”的(
)
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析∵A,B,C 三点不共线,∴| + |>||⇔| + |>| −
当a>1时,由(x-1)(x-a)≤0得1≤x≤a,
若p是q的必要不充分条件,则a>3,
即实数a的取值范围是(3,+∞).
答案(3,+∞)
课堂篇专题整合
专题归纳
高考体验
专题三 全称命题与特称命题
例3 判断下列命题是特称命题还是全称命题,用符号写出其否定

(人教A版)高中数学选修1-2(全册)课时同步练习汇总

(人教A版)高中数学选修1-2(全册)课时同步练习汇总

(人教A版)高中数学选修1-2(全册)课时同步练习汇总[课时作业][A组基础巩固]1.观察下列各式:72=49,73=343,74=2401,…,则72 015的末两位数字为()A.01B.43C.07 D.49解析:因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又2 015=4×503+3,所以72 015的末两位数字与73的末两位数字相同,为43.答案:B2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( ) A .a 1a 2a 3…a 9=29 B .a 1+a 2+…+a 9=29 C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:等比数列中积――→类比等差数列中的和 ∴a 1+a 2+…+a 9=2×9. 答案:D4.定义A *B ,B *C ,C *D ,D *B 依次对应4个图形:那么4个图表中,可以表示A *D ,A *C 的分别是( ) A .(1),(2)B .(1),(3)C .(2),(4)D .(1),(4)解析:由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4). 答案:C5.n 个连续自然数按规律排列下表:根据规律,从2 015到2 017箭头的方向依次为( ) A .↓→ B .→↑ C .↑→D .→↓解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由可知从2015到2 017为→↓,故应选D. 答案:D6.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是________.解析:观察知第n 个三角形数为1+2+3+…+n =n (n +1)2,∴第7个三角形数为7×(7+1)2=28.答案:287.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18.答案:1∶88.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…可知f n (x )的分母中常数项为2n ,分母中x 的系数为2n -1,故f n (x )=x(2n -1)x +2n .答案:x(2n -1)x +2n9.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系, 给出正确结论.解析:由平面直角三角形类比空间三棱锥由边垂直――→类比侧面垂直.直角三角形的“直角边长、斜边长”类比“三棱锥的侧面积、底面积”,因此类比的结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ABD 两两相互垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD ”.10.已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n (n =1,2,…),试归纳出这个数列的通项公式.解析:当n =1时,a 1=1 当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为:a n =1n(n =1,2,…). [B 组 能力提升]1.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 100=-a ,S 100=2b -a B .a 100=-b ,S 100=2b -a C . a 100=-b ,S 100=b -a D .a 100=-a ,S 100=b -a解析:∵a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b . 且a 7=a 6-a 5=a ,a 8=b ,…,∴数列{a n }具有周期性,周期为6,且S 6=0 则a 100=a 4=-a ,S 100=S 4=2b -a . 答案:A2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任意两条棱的夹角相等; ②各个面是全等的正三角形,相邻的两个面所成的二面角相等; ③各个面是全等的正三角形,同一顶点上的任意两条棱的夹角相等; ④各棱长相等,相邻的两个面所成的二面角相等. A .①④ B .①② C .①③D .③④解析:类比推理的原则是:类比前后保持类比规则的一致性,而③④违背了这一原则,只有①②符合. 答案:B3.已知x >0,由不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…我们可以得出推广结论:x +axn ≥n +1(n ∈N *),则a =________.解析:由观察可得:x +a x n =n x xx n n n ++个式子+axn ≥(n +1)·n +1x n ·x n ·…x n ·a x n =(n +1)·n +1a n n =n +1,则a =n n . 答案:n n4.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________.解析:观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是:若m ,n ∈R +,则当m +n =20时,有m +n <210.答案:若m ,n ∈R +,则当m +n =20时,有m +n <210 5.观察下列等式:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想? 并证明你的猜想.解析:由①②知,两角相差30°,运算结果为34,猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+sin α⎝⎛⎭⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.6.已知椭圆具有以下性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似的性质,并加以证明.解析:类似的性质为:若M 、N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M 、P 的坐标为(m ,n )、(x ,y ),则 N (-m ,-n ).∵点M (m ,n )在已知双曲线上, ∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).[课时作业] [A 组 基础巩固]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数.以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:函数f (x )=sin(x 2+1)不是正弦函数,故小前提不正确. 答案:C2.已知△ABC 中,∠A =30°,∠B =60°,求证a <b .证明:∵∠A =30°,∠B =60°,∴∠A <∠B ,∴a <b ,画线部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提. 答案:B3.“因为四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 答案:B4.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由三角形的性质,推测四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出a n 的通项公式 解析:B 、C 、D 是合情推理,A 为演绎推理. 答案:A5.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( ) A .类比推理 B .归纳推理 C .演绎推理D .一次三段论解析:这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式. 答案:C6.下面几种推理:①两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°;②某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人; ③由平面三角形的性质,推测空间四面体的性质;④在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式其中是演绎推理的是________.解析:①是三段论,②④是归纳推理,③是类比推理. 答案:①7.若不等式ax 2+2ax +2<0的解集为空集,则实数a 的取值范围为________. 解析:①a =0时,有2<0,显然此不等式解集为∅.②a ≠0时需有⎩⎪⎨⎪⎧ a >0,Δ≤0,⇒⎩⎪⎨⎪⎧ a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2,所以0<a ≤2.综上可知实数a 的取值范围是[0,2]. 答案:[0,2]8.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义时,a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论方法知应为log2x-2≥0.答案:log2x-2≥09.如图所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥F A,求证:ED =AF.证明:同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以DF∥EA.结论两组对边分别平行的四边形是平行四边形,大前提DE∥F A,且DF∥EA,小前提所以四边形AFDE为平行四边形.结论平行四边形的对边相等,大前提ED和AF为平行四边形的一组对边,小前提所以ED=AF.结论10.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,求证:af(b)<bf(a).证明:构造函数F(x)=xf(x),则F′(x)=xf′(x)+f(x).由题设条件知F (x)=xf(x)在(0,+∞)上单调递减.若0<a<b,则F(a)>F(b),即af(a)>bf(b).又f(x)是定义在(0,+∞)上的非负可导函数,∴af(a)<bf(a),且bf(b)>af(b).所以bf(a)>af(b).[B组能力提升]1.设a >0,b >0,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( ) A .大前提 B .小前提 C .结论D .无错误解析:小前提中“x >0”条件不一定成立,不满足利用基本不等式的条件. 答案:B2.已知函数f (x )=|sin x |的图象与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,令A =12sin2α,B =1+α24α,则( )A .A >B B .A <BC .A =BD .A 与B 的大小不确定解析:作y =kx 及f (x )=|sin x |的图象依题意,设y =kx 与y =f (x )相切于点M 设M (α,|sin α|),α∈(π,32π).由导数的几何意义,f ′(α)=|sin α|α,则-cos α=-sin αα,∴α=tan α. 由A =12sin 2α=sin 2α+cos 2α4sin αcos α=tan 2α+14tan α∴A =1+α24α=B .答案:C3.由“(a 2+a +1)x >3,得x >3a 2+a +1”的推理过程中,其大前提是________.解析:写成三段论的形式:不等式两边同除以一个正数,不等号方向不变大前提 (a 2+a +1)x >3,a 2+a +1>0小前提 x >3a 2+a +1结论 答案:不等式两边同除以一个正数,不等号方向不变.4.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R),则f (2 016)=________.解析:令y =1得4f (x )·f (1)=f (x +1)+f (x -1),即f (x )=f (x +1)+f (x -1)① 令x 取x +1则f (x +1)=f (x +2)+f (x )②由①②得f (x )=f (x +2)+f (x )+f (x -1),即f (x -1)=-f (x +2) ∴f (x )=-f (x +3), ∴f (x +3)=-f (x +6),∴f (x )=f (x +6),即f (x )周期为6, ∴f (2 016)=f (6×336+0)=f (0)对4f (x )f (y )=f (x +y )+f (x -y ),令x =1,y =0,得4f (1)f (0)=2f (1), ∴f (0)=12,即f (2 016)=12.答案:125.已知y =f (x )在(0,+∞)上有意义,单调递增,且满足f (2)=1,f (xy )=f (x )+f (y ), (1)求证:f (x 2)=2f (x ). (2)求f (1)的值.(3)若f (x )+f (x +3)≤2,求x 的取值范围. 证明:(1)∵f (xy )=f (x )+f (y ),x 、y ∈(0,+∞). ∴f (x 2)=f (x ·x )=f (x )+f (x )=2f (x ). (2)令x =1,则f (1)=2f (1)∴f (1)=0. (3)∵f (x )+f (x +3)=f [x (x +3)],且f (4)=2. 又f (x )在(0,+∞)上单调递增.所以⎩⎪⎨⎪⎧x >0,x +3>0,x (x +3)≤4,解得0<x ≤1.6.在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n }是等比数列.(2)求数列{a n }的前n 项和S n .(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立. 证明:(1)∵a n +1=4a n -3n +1 ∴a n +1-(n +1)=4a n -4n ,n ∈N *. 又a 1-1=1所以数列{a n -n }是首项为1,公比为4的等比数列. (2)由(1)可知,a n -n =4n -1,于是a n =4n -1+n 故S n =4n -13+n (n +1)2.(3)S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎡⎦⎤4n -13+n (n +1)2. =-12(3n 2+n -4)=-12(3n +4)(n -1)≤0,故S n +1≤4S n 对任意n ∈N *恒成立.[课时作业] [A 组 基础巩固]1.在证明命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的过程:“cos 4θ-sin 4θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)=cos 2θ-sin 2θ=cos 2θ”中应用了( ) A .分析法 B .综合法C .分析法和综合法综合使用D .间接证法 答案:B2.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1bD .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg(1-a 1+a )-1=-lg 1-a1+a =-f (a )=-b .答案:B3.分析法又叫执果索因法,若使用分析法证明:设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ,则证明的依据应是( ) A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔(a -c )·(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.在不等边△ABC 中,a 为最大边,要想得到 A 为钝角的结论,对三边a ,b ,c 应满足的条件,判断正确的是( ) A .a 2<b 2+c 2 B .a 2=b 2+c 2 C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:要想得到A 为钝角,只需cos A <0,因为cos A =b 2+c 2-a 22bc ,所以只需b 2+c 2-a 2<0,即b 2+c 2<a 2. 答案:C5.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( ) A .a >b B .a <b C .a =bD .a ≤b解析:a =lg 2+lg 5=1,b =e x ,当x <0时,0<b <1. ∴a >b . 答案:A 6.已知sin x =55,x ∈(π2,3π2),则tan(x -π4)=________. 解析:∵sin x =55,x ∈(π2,3π2),∴cos x =- 45, ∴tan x =-12,∴tan(x -π4)=tan x -11+tan x =-3.答案:-37.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b8.设a >0,b >0,则下面两式的大小关系为lg(1+ab )________12[lg(1+a )+lg(1+b )].解析:∵(1+ab )2-(1+a )(1+b )=1+2ab +ab -1-a -b -ab =2ab -(a +b )=-(a -b )2≤0,∴(1+ab )2≤(1+a )(1+b ),∴lg(1+ab )≤12[lg(1+a )+lg(1+b )].答案:≤9.设a ,b 大于0,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明:要证a 3+b 3>a 2b +ab 2成立, 即需证(a +b )(a 2-ab +b 2)>ab (a +b )成立. 又因a +b >0,故只需证a 2-ab +b 2>ab 成立, 即需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立. 故原不等式a 3+b 3>a 2b +ab 2成立.10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f (x +12)为偶函数.证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称. ∴f (x +1)=f (-x ) ,则y =f (x )的图象关于x =12对称,∴-b 2a =12,∴a =-b .则f (x )=ax 2-ax +c =a (x -12)2+c -a4,∴f (x +12)=ax 2+c -a4为偶函数.[B 组 能力提升]1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B2.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B3.如图,在直四棱柱A 1B 1C 1D 1-ABCD (侧棱与底面垂直)中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 解析:要证明A 1C ⊥B 1D 1, 只需证明B 1D 1⊥平面A 1C 1C , 因为CC 1⊥B 1D 1,只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1, 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)4.如果不等式|x -a |<1成立的充分非必要条件是12<x <32,则实数a 的取值范围是________.解析:|x -a |<1⇔a -1<x <a +1,由题意知(12,32)⊆(a -1,a +1),则有⎩⎨⎧a -1≤12a +1≥32(且等号不同时成立),解得12≤a ≤32.答案:12≤a ≤325.在△ABC 中,三个内角A ,B ,C 对应的边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 证明:由A ,B ,C 成等差数列,有2B =A +C . ① 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π. ② 由①②,得B =π3. ③由a ,b ,c 成等比数列,有b 2=ac . ④ 由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac . 再由④,得a 2+c 2-ac =ac , 即(a -c )2=0,因此a =c , 从而有A =C . ⑤由②③⑤,得A =B =C =π3,所以△ABC 为等边三角形.6.设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.解析:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即a n +1n +1-a n n=1,又a 22-a 11=1,故数列⎩⎨⎧⎭⎬⎫a n n 是首项为1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(3)证明:当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n 2<1(n -1)n =1n -1-1n,此时1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n =1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.[课时作业] [A 组 基础巩固]1.用反证法证明:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( ) A .a ,b ,c 都是偶数 B .a ,b ,c 都是奇数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.” 答案:D2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾∴a ,b ,c 中至少有一个不小于12.答案:D3.(1)已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2,(2)已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1,以下结论正确的是( ) A .(1)与(2)的假设都错误 B .(1)与(2)的假设都正确 C .(1)的假设正确;(2)的假设错误 D .(1)的假设错误;(2)的假设正确解析:(1)的假设应为p +q >2;(2)的假设正确. 答案:D4.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a 的值( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2解析:假设a +1b ,b +1c ,c +1a都小于2则a +1b <2,b +1c <2,c +1a <2∴a +1b +b +1c +c +1a <6,①又a ,b ,c 大于0所以a +1a ≥2,b +1b ≥2,c +1c ≥2.∴a +1b +b +1c +c +1a ≥6.②故①与②式矛盾,假设不成立所以a +1b ,b +1c ,c +1a 至少有一个不小于2.答案:D5.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是( ) A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至少有一个大于60° D .假设三内角至多有两个大于60°解析:三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°. 答案:B6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.解析:“至少有一个”的否定是“没有一个”. 答案:没有一个是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2. 其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).解析:显然①、②不能推出,③中a +b >2能推出“a ,b 中至少有一个大于1”否则a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾.④中取a =-2,b =0,推不出. 答案:③8.用反证法证明质数有无限多个的过程如下:假设________.设全体质数为p 1,p 2,…,p n ,令p =p 1p 2…p n +1.显然,p 不含因数p 1,p 2,…,p n .故p 要么是质数,要么含有________的质因数.这表明,除质数p 1,p 2,…,p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个. 解析:由反证法的步骤可得.答案:质数只有有限多个 除p 1,p 2,…,p n 之外9.用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行. 证明:由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行. 假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a .因为b ∥a ,由平行公理知b ′∥b .这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立. 10.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,由0<ax 0<1⇒0<-x 0-2x 0+1<1,解之得12<x 0<2,这与x 0<0矛盾,所以假设不成立.故方程f (x )=0没有负实根.[B 组 能力提升]1.已知直线a ,b 为异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线D .不可能是相交直线解析:假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线. 答案:C2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 解析:“a 、b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为03.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n . 答案:04.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14,证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为0<a <1,0<b <1,所以1-a >0.由基本不等式(1-a )+b 2≥(1-a )b >12同理(1-b )+c 2>12,(1-c )+a 2>12以上三个不等式相加(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32. 这是不可能的.故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.5.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明数列{c n }不是等比数列. 证明:假设数列{c n }是等比数列,则 (a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q ,所以a 2n =a n -1a n +1,b 2n =b n -1b n +1.代入①并整理,得 2a n b n =a n +1b n -1+a n -1b n +1 =a n b n ⎝⎛⎭⎫p q +q p , 即2=p q +q p.②当p ,q 异号时,p q +qp <0,与②相矛盾;当p ,q 同号时,由于p ≠q , 所以p q +qp >2,与②相矛盾.故数列{c n }不是等比数列.章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R)是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R)是周期函数. A .①②③B .③②①C.②③①D.②①③解析:显然②是大前提,①是小前提,③是结论.答案:D2.用反证法证明命题“2+3是无理数”时,假设正确的是()A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数解析:假设应为“2+3不是无理数”,即“2+3是有理数”.答案:D3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32……得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列解析:A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.答案:D4.求证:3+7<2 5.证明:因为3+7和25都是正数,所以为了证明3+7<25,只需证明(3+7)2<(25)2,展开得10+221<20,即21<5,只需证明21<25.因为21<25成立,所以不等式3+7<25成立.上述证明过程应用了()A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:结合证明特征可知,上述证明过程用了分析法,其属于直接证明法.答案:B5.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1,2,3,4号位置上,第1次前后排动物互换位置,第2次左右列互换座位,…,这样交替进行下去,那么第2 014次互换座位后,小兔的位置对应的是()开始第1次第2次第3次A.编号1 B.编号2C.编号3 D.编号4解析:由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,所以第2 012次互换座位后的结果与最初的位置相同,故小兔坐在第3号座位上.答案:C6.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为m=(-1,-2,1)的平面的方程为()A.x+2y-z-2=0 B.x-2y-z-2=0C.x+2y+z-2=0 D.x+2y+z+2=0解析:所求的平面方程为-1×(x-1)+(-2)×(y-2)+1×(z-3)=0.化简得x+2y-z-2=0.答案:A7.用反证法证明命题“若a2+b2=0,则a,b全为0(a,b∈R)”,其反设正确的是() A.a,b至少有一个不为0B .a ,b 至少有一个为0C .a ,b 全不为0D .a ,b 中只有一个为0解析:“a ,b 全为0”的反设应为“a ,b 不全为0”,即“a ,b 至少有一个不为0”. 答案:A8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2解析:归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2. 答案:C9.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:在等比数列{a n }中,q =2≠1, 设首项为a 1≠0,则S 4=a 1(1-q 4)1-q =15a 1,又a 2=a 1q =2a 1, 故S 4a 2=15a 12a 1=152. 答案:C10.下列不等式中一定成立的是( ) A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z)C .x 2+1≥2|x |(x ∈R) D.1x 2+1>1(x ∈R) 解析:A 项中,因为x 2+14≥x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x ; B 项中sin x +1sin x≥2只有在sin x >0时才成立;C 项中由不等式a 2+b 2≥2ab 可知成立;D 项中因为x 2+1≥1,所以0<1x 2+1≤1.答案:C二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)11.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证:∠BAP <∠CAP ,用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP 12.2+23=2 23, 3+38=3 38, 4+415=4 415……若 6+a b=6 a b(a ,b 均为实数),猜想,a =________,b =________.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律,由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+ab中:a =6,b =62-1=35,即a =6,b =35. 答案:6 35 13.观察下列等式 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, ……照此规律,第n 个等式可为____________.解析:观察等号左边可知,左边的项数依次加1,故第n 个等式左边有n 项,每项所含的底数也增加1,依次为1,2,3,…,n ,指数都是2,符号正负交替出现,可以用(-1)n+1表示;等号的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为(-1)n +1·n (n +1)2,所以第n 个式子可为:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)214. 已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.若定义在区间D 上的函数f (x )对于 D 上的n 个值x 1,x 2,…,x n ,总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________. 解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:332三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解:由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.17.(12分)已知函数f (x )=xx +2(x >0).如下定义一列函数:f 1(x )=f (x ),f 2(x )=f (f 1(x )),f 3(x )=f (f 2(x )),…,f n (x )=f (f n -1(x )),…,n ∈N *,那么由归纳推理求函数f n (x )的解析式. 解析:依题意得,f 1(x )=xx +2,f 2(x )=x x +2x x +2+2=x 3x +4=x(22-1)x +22,f 3(x )=x 3x +4x 3x +4+2=x 7x +8=x (23-1)x +23,…,由此归纳可得f n(x )=x(2n -1)x +2n(x >0). 18.(12分)设函数f (x )=lg |x |,若0<a <b ,且f (a )>f (b ). 证明:0<ab <1. 证明:f (x )=lg |x |=⎩⎪⎨⎪⎧lg x ,(x ≥1),-lg x ,(0<x <1). ∵0<a <b ,f (a )>f (b ).∴a 、b 不能同时在区间[1,+∞)上, 又由于0<a <b ,故必有a ∈(0,1). 若b ∈(0,1),显然有0<ab <1; 若b ∈(1,+∞),由f (a )-f (b )>0, 有-lg a -lg b >0, ∴lg(ab )<0,∴0<ab <1.19.(12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c 成等差数列. (1)比较b a与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角. 解析:(1) b a< cb.证明如下: 要证b a< c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列, ∴2b =1a +1c≥2 1ac,∴b 2≤ac . 又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:解法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac >0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.解法二:假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c >1b >0,则1a +1c >1b +1b =2b ,这与1a +1c =2b 矛盾,故假设不成立. 所以角B 不可能是钝角.20.(13分)(2016·高考全国卷Ⅲ)设函数f (x )=αcos 2x +(α-1)·(cos x +1),其中α>0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)解:当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0).故A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1. 令g (t )=2αt 2+(α-1)t -1, 则A 是|g (t )|在[-1,1]上的最大值, g (-1)=α,g (1)=3α-2, 且当t =1-α4α时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-α4a =-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α>15.①当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|, 所以A =2-3α.②当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-α4α.又⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α-|g (-1)|=(1-α)(1+7α)8α>0.所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1, 所以|f ′(x )|≤1+α<2A .当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A . 所以|f ′(x )|≤2A .21.(14分)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.解析:(1)证明:当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1.又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1.(3)证明:1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1<12.[课时作业] [A 组 基础巩固]1.若复数2-b i(b ∈R)的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2解析:2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),∴b =2. 答案:D2.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:直接法.∵a +bi =a -b i 为纯虚数,∴必有a =0,b ≠0,而ab =0时有a =0或b =0,∴由a =0, b ≠0⇒ab =0,反之不成立.∴“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件.答案:B3.已知复数z =1a -1+(a 2-1)i 是实数,则实数a 的值为( )A .1或-1B .1C .-1D .0或-1解析:因为复数z =1a -1+(a 2-1)i 是实数,且a 为实数,则⎩⎪⎨⎪⎧a 2-1=0,a -1≠0,解得a =-1.答案:C4.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( ) A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3解析:由1+2i =(a -b )+(a +b )i 可得⎩⎪⎨⎪⎧a -b =1,a +b =2,解得a =32,b =12.答案:A5.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的为( ) A .4 B .-1 C .4或-1D .1或6解析:由题意⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 答案:B6.已知x 2-x -6x +1=(x 2-2x -3) i(x ∈R),则x =________.解析:∵x ∈R ,∴x 2-x -6x +1∈R ,。

高中数学 2.4.2第2课时课时同步练习 新人教A版选修2-1

高中数学 2.4.2第2课时课时同步练习 新人教A版选修2-1

第2章 2.4.2 第2课时一、选择题(每小题5分,共20分)1.过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线( )A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在解析:由定义|AB|=5+2=7,∵|AB|min=4,∴这样的直线有且仅有两条.答案: B2.在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致为( )解析:方法一:将方程a2x2+b2y2=1与ax+by2=0转化为x2 1 a2+y21b2=1,y2=-abx.因为a>b>0,所以1b>1a>0.所以椭圆的焦点在y轴上;抛物线的焦点在x轴上,且开口向左.故选D.方法二:方程ax+by2=0中,将y换成-y,其结果不变,即ax+by2=0的图形关于x轴对称,排除B、C,又椭圆的焦点在y轴上,排除A.故选D.答案: D3.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=( )A.13B.223C.23D.23解析:过A、B作抛物线准线l的垂线,垂足分别为A1、B1,由抛物线定义可知,AA 1=AF ,BB 1=BF ,又∵2|BF |=|AF |,∴|AA 1|=2|BB 1|,即B 为AC 的中点.从而y A =2y B ,联立方程组⎩⎪⎨⎪⎧ y =k x +2,y 2=8x⇒消去x 得y 2-8ky +16=0, ∴⎩⎪⎨⎪⎧ y A +y B =8k ,y A ·y B =16⇒⎩⎪⎨⎪⎧ 3y B =8k ,2y 2B =16,,消去y B 得k =223.故选B. 答案: B 4.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.3716 解析: ∵直线l 2:x =-1恰为抛物线y 2=4x 准线,∴P 到l 2的距离d 2=|PF |(F (1,0)为抛物线焦点),所以P 到l 1、l 2距离之和最小值为F 到l 1距离 |4×1-3×0+6|32+42=2,故选A. 答案: A二、填空题(每小题5分,共10分)5.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________.解析: 由⎩⎪⎨⎪⎧ x -y -1=0y =ax 2,得ax 2-x +1=0, Δ=1-4a =0,得a =14.答案: 146.直线y =x +b 交抛物线y =12x 2于A 、B 两点,O 为抛物线的顶点,且OA ⊥OB ,则b 的值为________.解析: 由⎩⎪⎨⎪⎧ y =x +b y =12x 2,得x 2-2x -2b =0, Δ=(-2)2+8b >0,设直线与抛物线的两交点为A (x 1,y 1),B (x 2,y 2).由根与系数的关系,得x 1+x 2=2,x 1x 2=-2b ,于是y 1y 2=14(x 1x 2)2=b 2, 由OA ⊥OB 知x 1x 2+y 1y 2=0,故b 2-2b =0,解得b =2或b =0(不合题意,舍去). b =2适合Δ>0.答案: 2三、解答题(每小题10分,共20分)7.设过抛物线y 2=2px 的焦点且倾斜角为π4的直线交抛物线于A 、B 两点,若弦AB 的中垂线恰好过点Q (5,0),求抛物线的方程.解析: 弦AB 中点为M ,MQ 为AB 的中垂线,AB 的斜率为1,则l MQ :y =-x +5.设l AB :y =x -p2. 联立方程组⎩⎪⎨⎪⎧y =x -p 2,y 2=2px .得x 2-3px +p 24=0, ∴x 1+x 2=3p .① 联立方程组⎩⎪⎨⎪⎧ y =-x +5y =x -p 2, 得2x =5+p 2,则x 1+x 2=5+p2② 联立①②,解得p =2,∴抛物线方程为y 2=4x .8.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. 解析: (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,∴p =2,故所求的抛物线方程为y 2=4x ,其准线方程为x =-1; (2)假设存在符合题意的直线l ,其方程为y =-2x +t ,由⎩⎪⎨⎪⎧ y 2=4x y =-2x +t 得y 2+2y -2t =0, 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. 另一方面,由直线OA 与直线l 的距离等于55可得|t |5=55, ∴t =±1, 由于-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞, 所以符合题意的直线l 存在,其方程为y =-2x +1.尖子生题库☆☆☆9.(10分)已知抛物线C 1:y 2=4px (p >0),焦点为F 2,其准线与x 轴交于点F 1;椭圆C 2:分别以F 1、F 2为左、右焦点,其离心率e =12;且抛物线C 1和椭圆C 2的一个交点记为M .(1)当p =1时,求椭圆C 2的标准方程;(2)在(1)的条件下,若直线l 经过椭圆C 2的右焦点F 2,且与抛物线C 1相交于A ,B 两点,若弦长|AB |等于△MF 1F 2的周长,求直线l 的方程.解析: (1)x 24+y 23=1; (2)①若直线l 的斜率不存在,则l :x =1,且A (1,2),B (1,-2),∴|AB |=4又∵△MF 1F 2的周长等于|MF 1|+|MF 2|+|F 1F 2|=2a +2c =6≠|AB |.∴直线l 的斜率必存在.②设直线l 的斜率为k ,则l :y =k (x -1), 由⎩⎪⎨⎪⎧y 2=4x y =k x -1,得k 2x 2-(2k 2+4)x +k 2=0, ∵直线l 与抛物线C 1有两个交点A ,B , ∴Δ=[-(2k 2+4)]2-4k 4=16k 2+16>0,且k ≠0 设A (x 1,y 1),B (x 2,y 2), 则可得x 1+x 2=2k 2+4k2,x 1x 2=1 于是|AB |=1+k 2|x 1-x 2|=1+k 2[x 1+x 22-4x 1x 2] =1+k 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2+4k 22-4 =1+k 2⎝ ⎛⎭⎪⎫16k 2+16k 4=41+k 2k 2, ∵△MF 1F 2的周长等于|MF 1|+|MF 2|+|F 1F 2|=2a +2c =6,∴由41+k 2k 2=6,解得k =± 2.故所求直线l 的方程y =±2(x -1).。

人教a版高中数学选修2-1全册同步练习及单元检测含答案

人教a版高中数学选修2-1全册同步练习及单元检测含答案

⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。

人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。

高中数学 3.1.2课时同步练习 新人教A版选修2-1

第3章 3.1.2一、选择题(每小题5分,共20分)1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( )A .共面向量B .共线向量C .不共面向量D .既不共线也不共面向量答案: A2.当|a |=|b |≠0,且a ,b 不共线时,a +b 与a -b 的关系是( )A .共面B .不共面C .共线D .无法确定 解析: 由加法法则知:a +b 与a -b 可以是菱形的对角线.答案: A3.已知点M 在平面ABC 内,并且对空间任意一点O , OM →=xOA →+13OB →+13OC →,则x 的值为( ) A .3B .0 C.13 D .1解析: ∵OM →=xOA →+13OB →+13OC →,且M 、A 、B 、C 四点共面,∴x +13+13=1,x =13.故选C. 答案: C4.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( )A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能 解析: 当λ=0,μ≠0时,a =μe 2,则a ∥e 2;当λ≠0,μ=0时,a =λe 1,则a ∥e 1;当λ≠0,μ≠0时,a 与e 1,e 2共面.答案: D二、填空题(每小题5分,共10分)5.已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =________. 解析: ∵A 、B 、C 、D 共面,∴OA →=OB →+λB C →+μBD →=OB →+λ(O C →-OB →)+μ(O D →-OB →)=(1-λ-μ) OB →+λO C →+μOD →=(λ+μ-1) BO →-λCO →-μDO →=2xBO →+3yCO →+4zDO →,∴2x +3y +4z =(λ+μ-1)+(-λ)+(-μ)=-1.答案: -1 6.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC→=0,那么λ+m +n 的值为________.解析: ∵A ,B ,C 三点共线,∴存在唯一实数k 使AB →=kAC →, 即O B →-OA →=k (OC →-O A →),∴(k -1) OA →+OB -kOC →=0,又λOA →+mOB →+nOC →=0,令λ=k -1,m =1,n =-k ,则λ+m +n =0.答案: 0三、解答题(每小题10分,共20分)7.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,求满足M N →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.解析: MN →=MC →+CD →+DN →=12BC →+BA →+12DP → =12AD →-AB →+12(AP →-AD →) =-AB →+12AP →, ∴x =-1,y =0,z =12.中点,判断MN →与8.如图,平行六面体ABCD -A 1B 1C 1D 1中,M 是AD 1中点,N 是BD D 1C →是否共线?解析: ∵M ,N 分别是AD 1,BD 的中点,四边形ABCD 为平行四边形,连结AC ,则N 为AC 的中点.∴MN →=A N →-A M →=12A C →-12AD 1→=12(A C →-AD 1→)=12D 1C →∴MN →与D 1C →共线. 尖子生题库☆☆☆9.(10分)如图,若P 为平行四边形ABCD 所在平面外一点,点H 为PC 上的点, 且PH HC =12,点G 在AH 上,且AG AH=m .若G ,B ,P ,D 四点共面,求m 的值.解析: 连结BD ,BG ,∵AB →=PB →-PA →且AB →=DC →,∴DC →=PB →-PA →.∵PC →=PD →+DC →,∴PC →=PD →+PB →-PA →=-PA →+PB →+PD →.∵PHHC =12,∵PH →=13PC →=13(-PA →+PB →+PD →)=-13PA →+13PB →+13 PD →.又∵AH →=PH →-PA →,∴AH →=-43PA →+13PB →+13PD →.∵AGAH =m ,∴AG →=mAH →=-4m 3PA →+m 3 PB →+m 3PD →.∴BG →=-A B →+AG →=PA →-PB →+AG →,∴BG →=⎝ ⎛⎭⎪⎫1-4m3PA →+⎝ ⎛⎭⎪⎫m3-1PB →+m 3PD →.又∵B ,G ,P ,D 四点共面,∴1-4m3=0,∴m =34.。

2012高中数学2章整合课时同步练习新人教A版选修2-1

2章整合( 考试时间90 分钟,满分 120 分 )一、选择题 ( 本大题共10 小题,每题 5 分,共50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)x2y21.以4-12=- 1的焦点为极点,极点为焦点的椭圆方程为()x2y2x2y2A. += 1B.+=116121216x2y2x2y2C.16+4= 1D. 4+16=1x2y2分析:双曲线4-12=- 1 的焦点坐标为 (0 ,± 4) ,极点坐标为(0 ,±23) ,故所求椭圆的焦点在y 轴上, a=4, c=23,∴b2=4,所求方程为x2+y2=1,应选D.4 16答案:Dx2y22.设P是椭圆169+144= 1 上一点,F1、F2是椭圆的焦点,若 | PF1| 等于 4,则| PF2| 等于()A.22B. 21C.20D. 13分析:由椭圆的定义知,| PF1| + | PF2| =26,又∵ | PF| = 4,∴ | PF| =26- 4=22.12答案:A3.双曲线方程为x2-2y2=1,则它的右焦点坐标为()25A.2, 0B. 2, 0C.6D. (3, 0) 2, 0分析:将双曲线方程化为标准方程为x2-y2=1,12∴2212223a=1,b=,∴c= a +b=,226∴c=2,故右焦点坐标为6,0 .2答案:C4.若抛物线2x=2py的焦点与椭圆x2y23 +4 = 1 的下焦点重合,则p 的值为()A.4B. 2 C.- 4D.- 2x2y2分析:椭圆 3+ 4=1 的下焦点为(0,- 1),p∴2=- 1,即p=- 2.答案:D5.若k∈ R,则k>3 是方程x2-y2) k-=1 表示双曲线的 (3k+3A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足又不用要条件分析:x2y2k+3)>0,方程-= 1 表示双曲线的条件是 ( k- 3)( k-3k+3x2y2即 k>3或 k<-3.故 k>3是方程k-3-k+3=1表示双曲线的充足不用要条件.应选 A.答案:A6.已知1、 2是椭圆的两个焦点,知足→1·→2=0的点总在椭圆内部,则椭圆离心率F F MF MF M 的取值范围是 ()A.(0,1) B.1 0,2C. 0,2D.2, 122分析:→→可知点 M在以线段 F F 为直径的圆上,要使点M总在椭圆内部,由MF· MF= 01212只要 c<b,即 c2<b2, c2<a2- c2,2c2<a2,c2故离心率 e=a<2.2因为 0<e<1,所以 0<e< 2 .即椭圆离心率的取值范围是20,.应选 C.2答案:C7.已知抛物线C: y2=4x 的焦点为 F,直线 y=2x-4与 C交于 A, B 两点,则cos∠ AFB = ()43A. 5B. 534C.-5D.-5y=2x-4,x=1,x=4,分析方法一:由得或y2=4x,y=-2y=4.令 B(1,-2), A(4,4),又 F(1,0),∴由两点间距离公式得 | BF| = 2, | AF| =5, | AB|=3 5.∴cos ∠| BF| 2+| AF| 2-| AB| 24+ 25- 454===- . AFB2| BF| ·|AF|2×2×55方法二:由方法一得(4,4), (1 ,- 2) , (1,0) ,A B F→→∴FA=(3,4), FB=(0,-2),→=22→= 2.∴| FA| 3 + 4=5, | FB|→·→3×0+4× -4∴cos ∠AFB=FA FB==-5.→→5×2| FA|·|FB|答案:D12x2y21 2 1 28.F、F是椭圆9+7= 1 的两个焦点,A为椭圆上一点,且∠AFF=45°,则△AFF的面积为 ()A.77 B.2775C. D.24分析:| F1F2| = 22,| AF1| + | AF2| =6, | AF2| =6- | AF1 |. | 2| 2=|1|2+| 12|2-2|1|·|12|cos 45°AF AF F F AF F F121+12=| AF|-4| AF|8(6 - | AF|)121+17=| AF|-4| AF|8,∴ | AF|=2.1727S=2×2×22×2=2.答案:B9.已知点M( - 3,0)、N(3,0)、B(1,0),动圆 C与直线 MN切于点 B,过 M、 N与圆 C相切的两直线订交于点 P,则 P点的轨迹方程为()2y 2 2y 2 A .x - 8 = 1( x >1)B . x - 8 =1( x <- 1)2+ y 2= 1( x >0)2y 2C .x8D . x -= 1( x >1)10分析:设圆与直线 PM 、 PN 分别相切于 E 、 F ,则| PE | = | PF | ,| ME |=| MB |,| NB |=| NF |.∴ | PM |- | PN |=| PE | +| ME |-(| PF | +| NF |)= | MB |- | NB | = 4- 2= 2<| MN |.所以点P 的轨迹是以( - 3,0) , (3,0) 为焦点的双曲线的一支,且= 1,MNa∴c = 3, b 2= 8,2y 2∴所以双曲线方程是 x - 8 = 1( x >1) .答案: A10.设直线 l 过双曲线 C 的一个焦点,且与C 的一条对称轴垂直, l 与 C 交于 A ,B 两点,| AB | 为 C 的实轴长的 2 倍,则 C 的离心率为 () A. 2 B. 3 C .2D . 3x 2 y 2分析:设双曲线的标准方程为a 2-b 2=1(a >0,b >0),因为直线l 过双曲线的焦点且与x 2 y 22 2 c 2b 4 对称轴垂直,所以直线l 的方程为 l : x = c 或 x =- c ,代入 a 2- b 2=1 得 y = ba 2-1 =a 2,b 22b 2 2b 2 b 2∴y =± a ,故 | AB | = a ,依题意 a = 4a ,∴ a 2= 2,c 2-a 22∴ a 2 = e - 1=2.∴e = 3.答案:B二、填空题 ( 本大题共 4 小题,每题 5 分,共 20 分.请把正确答案填在题中横线上)111.若双曲线的渐近线方程为y =± 3x ,它的一个焦点是( 10, 0) ,则双曲线的标准方程是 ________.1b 1分析:由双曲线的渐近线方程为y =± 3x ,知 a = 3,它的一个焦点是 ( 10, 0) ,知 a 2+ b 2= 10,2x2所以 a = 3,b = 1,故双曲线的方程是- y = 1.92x2答案:- y =19x 2 y 212.若过椭圆 16+ 4 = 1 内一点 (2,1) 的弦被该点均分, 则该弦所在直线的方程是 ________. 分析:设直线方程为 y - 1= k ( x - 2) ,与双曲线方程联立得 (1 + 4k 2) x 2+( - 16k 2+ 8k ) x + 16k 2- 16k - 12=0,设交点 A ( x 1, y 1) , B ( x 2, y 2) ,16k 2-8k1则 x 1+x 2= 1+ 4k 2 = 4,解得 k =- 2,所以直线方程为 x + 2y - 4= 0.答案:x +2y - 4= 0x 2 y 213. 如图, F 1,F 2 分别为椭圆 a 2+ b 2= 1 的左、右焦点,点 P 在椭圆上,△ POF 2是面积为3的正三角形,则 b 2 的值是 ________. 分析:∵△2是面积为3的正三角形,POF∴1c 2sin 60 °=3,2∴c 2=4,∴P (1 , 3) ,13∴ a 2+ b 2= 1,解之得 b 2= 2 3.a 2=b 2+ 4,答案:2 314.已知抛物线 y 2= 4x ,过点 P (4,0)的直线与抛物线订交于A ( x 1, y 1) ,B ( x 2, y 2) 两点,则 y 12+ y 22的最小值是 ________.分析:22x ,明显 x , x ≥0,又 y + y = 4( x + x ) ≥8 x12121212当且仅当 x 1= x 2= 4 时取等,所以最小值为 32.答案:32三、解答题 ( 本大题共 4 小题,共 50 分.解答时应写出必需的文字说明、证明过程或演算步骤 )15. ( 本小题满分 12 分) 已知双曲线与椭圆x 2 y 214 += 1 共焦点,它们的离心率之和为,9 255求双曲线方程.分析:由椭圆方程可得椭圆的焦点为F (0 ,± 4) ,4 离心率 e = ,5所以双曲线的焦点为F (0 ,± 4) ,离心率为 2,进而 c = 4,a = 2, b =2 3.所以双曲线方程为y 2 x 2-= 1.4 1216.( 本小题满分 12 分 ) 设椭圆的中心在原点, 焦点在x 轴上,离心率 =3P 0, 3. 已知点e22到这个椭圆上的点的最远距离为7,求这个椭圆的方程.22c = 3得分析:设椭圆方程为 x 2+ y2= 1(> >0), (, ) 为椭圆上的点,由 a =2 .a ba bM x ya 2 b| PM | 2=x 2+ y -3 2=- 3y +1 2+2+3(- ≤ ≤ b ) ,224b b y若1=-时,| |2 最大,即32b < ,则当y bb += 7,2PM23 1则 b = 7-2>2,故舍去.112 2若 b ≥ 2时,则当 y =- 2时, |PM |最大,即 4b + 3= 7,解得 b 2= 1.x 22∴所求方程为 4 + y = 1.17. ( 本小题满分 12 分 ) 设 λ> 0,点 A 的坐标为 (1,1) ,点 B 在2上运动,点→ →抛物线 y = x Q 知足 BQ = λQA ,经过点 Q 与 x 轴垂直的直线交抛物线于点 M ,点 P →→知足 QM = λMP ,求点 P 的轨迹方程.分析: → →由QM = λ MP 知 Q 、 M 、P 三点在同一条垂直于 x 轴的直线上,故可设 P ( x ,y ) , Q ( x , y 0) , M ( x , x 2) ,则 x 2-y 0= λ ( y - x 2) ,即 y 0=(1 + λ ) x 2- λ y . ①→→再设 B ( x 1, y 1) ,由 BQ = λQA ,即( x - x 1, y 0- y 1) = λ (1 - x, 1- y 0) ,解得x 1= + λ y 1= + λx - λ ,y 0-λ .②将①式代入②式,消去y 0,x 1= + λ x - λ, 得+ λ2x 2- λ③y 1=+ λ y - λ .22又点 B在抛物线 y= x上,所以 y1=x1,2再将③式代入 y 1= x 1,得(1 + λ ) 2x 2- λ (1 + λ ) y - λ = [(1 + λ ) x -λ ] 2,(1 + λ ) 2x 2- λ (1 + λ ) y - λ = (1 + λ ) 2x 2- 2λ (1 + λ ) x +λ 2,2λ(1 + λ ) x - λ (1 +λ ) y - λ (1 + λ ) =0.因为 λ >0,两边同除以 λ (1 + λ ) ,得 2x - y - 1= 0.故所求点 P 的轨迹方程为 y = 2x - 1.18. ( 本小题满分14 分 ) 已知椭圆的长轴长为 2 ,焦点是1(-3,0) 、 2( 3, 0) ,点aFFa 23F 1 到直线 x =-3 的距离为3 ,过点 F 2 且倾斜角为锐角的直线l 与椭圆交于 A 、B 两点,使得| 2 |=3|2|.F BF A(1) 求椭圆的方程;(2) 求直线 l 的方程.(1) ∵ F 1 到直线 x =-a 23 分析: 3 的距离为3 ,∴-a 233+= .33∴ a 2=4.而 c = 3,∴ b 2=a 2- c 2= 1.∵椭圆的焦点在 x 轴上,2x2∴所求椭圆的方程为+y = 1.(2) 设 A ( x 1, y 1) 、 B ( x 2, y 2) .∵| F 2B | = 3| F 2A | ,x 2+3 13= 1+ 3 , x 2= 4 3- 3x 1,∴y 2 +3y 1 y 2=- 3 1.0= 1+3,yx 22∵A 、 B 在椭圆 4 + y = 1 上,2x 12 =1,14 + y∴3-3 122x+ - 3y 1= 1.410x1=,33∴2y1=取正当332-033∴l 的斜率为10= 2.- 33 3∴l的方程为 y=2( x-3),即2x-y- 6= 0.。

高中数学 模块综合检测A 新人教A版选修2-1(2021年整理)

2016-2017学年高中数学模块综合检测A 新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学模块综合检测A 新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学模块综合检测A 新人教A版选修2-1的全部内容。

模块综合检测A一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在实数x,使x>1”的否定是( )A.对任意实数x,都有x>1 B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1解析: 利用特称(存在性)命题的否定是全称命题求解.“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.故选C.答案:C2.在命题“若x∈R,f(x)=0,则函数f(x)是奇函数”的逆命题、否命题与逆否命题中,真命题的个数是()A.3 B.2C.1 D.0解析:原命题与逆否命题是假命题,逆命题与否命题是真命题.答案:B3.已知直线l⊥平面α,直线m⊂平面β,则“l∥m”是“α⊥β”的()A.充要条件B.必要条件C.充分条件D.既不充分也不必要条件解析: 错误!⇒错误!⇒α⊥β,∴“l∥m”是“α⊥β”的充分条件,错误!⇒/ l∥m。

答案:C4.已知命题p:若x2+y2=0(x,y∈R),则x,y全为0;命题q:若a〉b,则错误!<错误!.给出下列四个复合命题:①p且q;②p或q;③¬p;④¬q。

其中真命题的个数是()A.1 B.2C.3 D.4解析:命题p为真,命题q为假,故p或q真,¬q真.答案: B5.已知i,j,k是空间直角坐标系Oxyz中x轴、y轴、z轴正方向上的单位向量,且错误!=2k,错误!=-i+j-k,则点B的坐标为()A.(-1,1,-1) B.(-i,j,-k)C.(1,-1,-1) D.(-1,1,1)解析:设点B的坐标为(x,y,z),则有错误!=(x,y,z-2)=(-1,1,-1),∴错误!解得错误!故选D.答案:D6.如下图所示,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块质量检测(A)(考试时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“若a>-1,则a>-2”及其逆命题、否命题、逆否命题4个命题中,真命题的个数是( )A.0 B.1C.2 D.4解析:原命题为真命题,故逆否命题为真命题;逆命题为“若a>-2,则a>-1”为假命题,故否命题为假命题.故4个命题中有2个真命题.故选C.答案:C2.命题“任意的x∈R,2x4-x2+1<0”的否定是( )A.不存在x∈R,2x4-x2+1<0 B.存在x∈R,2x4-x2+1<0C.存在x∈R,2x4-x2+1≥0D.对任意的x∈R,2x4-x2+1≥0解析:全称命题的否定是特称命题,所以该命题的否定是:存在x∈R,2x4-x2+1≥0.答案:C3.椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为( )A.14B.12解析:由x2+my2=1,得x2+y21m=1,又∵椭圆的焦点在y轴上,且长轴长是短轴长的2倍,∴1m =4,即m=14.答案:A4.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( )A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件解析:∵甲⇒/乙,乙⇒甲∴甲是乙的必要不充分条件,故选B.答案:B5.下列结论正确的个数是( )①命题“所有的四边形都是矩形”是特称命题;②命题“∀x∈R,x2+2<0”是全称命题;③若p:∃x∈R,x2+4x+4≤0,则q:∀x∈R,x2+4x+4≤0是全称命题.A.0 B.1解析: 只有命题①正确. 答案: B6.设θ∈⎝ ⎛⎭⎪⎫3π4,π,则关于x ,y 的方程x 2sin θ-y 2cos θ=1所表示的曲线为( )A .实轴在y 轴上的双曲线B .实轴在x 轴上的双曲线C .长轴在y 轴上的椭圆D .长轴在x 轴上的椭圆解析: ∵θ∈⎝ ⎛⎭⎪⎫3π4,π, ∴cos θ<0,且|cos θ|>sin θ>0,∴原方程可化为x 2sin θ+y 2-cos θ=1, 即x 2sin θ+y 2|cos θ|=1,它表示长轴在y 轴上的椭圆.答案: C7.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( )A .(1,-4,2)B.⎝ ⎛⎭⎪⎫14,-1,12C.⎝ ⎛⎭⎪⎫-14,1,-12D .(0,-1,1)解析: PM →=(0,2,4),直线l 的方向向量为a =(2,1,1), 设平面α的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PM →=0n ·a =0,经检验,A ,B ,C 都是平面α的法向量.故选D.答案: D8.顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y解析: 采用排除法,选C. 答案: C9.正四面体ABCD 中,点E ,F ,G 分别是AB ,AD ,DC 的中点,给出向量的数量积如下:①AB →·CD →;②AC →·EF →;③EF →·FG →;④EG →·CD →.其中等于0的个数是( )A .1B .2C .3D .4 解析: ①②③④均为0. 答案: D10.过双曲线x 29-y 218=1的焦点作弦MN ,若|MN |=48,则此弦的倾斜角为( )A .30°B .60°C .30°或150°D .60°或120°解析: 用弦长公式1+k 2|x 1-x 2|求解,显然直线MN 的斜率存在,设直线斜率为k ,则直线方程为y =k (x -33),与双曲线方程联立,得(2-k 2)x 2+63k 2x -27k 2-18=0,所以|MN |=1+k 2⎝ ⎛⎭⎪⎫63k 22-k 22+427k 2+182-k 2=48, 解得k 2=3.即k =±3,故选D. 答案: D11.如图所示,正方体ABCD -A ′B ′C ′D 中,M 是AB 的中点,则sin 〈DB ′,CM →〉的值为( )A.12B.21015C.23D.1115解析: 以D 为原点,DA ,DC ,DD ′为x ,y ,z 轴建系, 设正方体的棱长为1,则DB ′→=(1,1,1),C (0,1,0),M ⎝⎛⎭⎪⎫1,12,0,CM →=⎝⎛⎭⎪⎫1,-12,0,故cos 〈DB ′→,CM →〉=1515,则sin 〈DB ′→,CM →〉=21015.答案: B12.已知a >0,b >0,且双曲线C 1:x 2a 2-y 2b 2=1与椭圆C 2:x 2a 2+y 2b 2=2有共同的焦点,则双曲线C 1的离心率为( )A. 2 B .2 C.233D.433解析: 由已知⎩⎨⎧a 2+b 2=c 2,2a 2-2b 2=c 2,所以4a 2=3c 2,所以e =c a=233,故选C.解析: C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.设命题p :|4x -3|≤1,命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要而不充分条件,则实数a 的取值范围是________.解析: 綈p: x >1或x <12;綈q :x >a +1或x <a ,若綈p ⇐綈q ,綈p ⇒/ 綈q ,则⎩⎨⎧a ≤12,a +1≥1,所以0≤a ≤12.答案: 0≤a ≤1214.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC →1上且AM →= 12MC 1→,N 为B 1B 的中点,则|MN →|为________. 解析:以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z )∵点M 在AC →1上且AM →=12MC →1, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN→|=⎝⎛⎭⎪⎫a -23a 2+⎝⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=21 a.答案:21 6a15.如图,设O为▱ABCD所在平面外任意一点,E为OC的中点.若AE→=12OD→+xOB→+yOA→,则x=________,y=________.解析:AE→=OE→-OA→=12OC→-OA→=12(OB→+BC→)-OA→=12(OB→+AD→)-OA→=12(OB→+OD→-OA→)-OA→=-32OA→+12OB→+12OD→.∴x=12,y=-32.答案:12-3216.若方程x24-t+y2t-1=1所表示的曲线为C,给出下列四个命题:①若C为椭圆,则1<t<4,且t≠5 2;②若C为双曲线,则t>4或t<1;③曲线C不可能是圆;④若C 表示椭圆,且长轴在x 轴上,则1<t <32.其中正确的命题是________.(把所有正确命题的序号都填在横线上)解析:若为椭圆⎩⎨⎧4-t >0,t -1>0,4-t ≠t -1,即1<t <4,且t ≠52,若为双曲线,则(4-t )(t -1)<0,即4<t 或t <1;当t =52时,表示圆,若C 表示长轴在x 轴上的椭圆,则1<t <52,故①②正确.答案: ①②三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤).17.(本小题满分12分)已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解析: 若方程x 2+mx +1=0有两不等的负根, 则⎩⎨⎧Δ=m 2-4>0,m >0,解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0, 解得1<m <3,即q :1<m <3.因p 或q 为真,所以p ,q 至少有一为真,又p 且q 为假,所以p 、q 至少有一为假,因此,p 、q 两命题应一真一假, 即p 为真,q 为假或p 为假,q 为真. ∴⎩⎨⎧m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3,解得m ≥3或1<m ≤2.18.(本小题满分12分)已知拋物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,拋物线与双曲线交于点P ⎝ ⎛⎭⎪⎫32,6,求拋物线方程和双曲线方程.解析: 依题意,设拋物线方程为y 2=2px (p >0), ∵点⎝ ⎛⎭⎪⎫32,6在拋物线上,∴6=2p ·32,∴p =2,∴所求拋物线方程为y 2=4x .∵双曲线左焦点在拋物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点⎝ ⎛⎭⎪⎫32,6在双曲线上,∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫322a 2- 6 2b 2=1a 2+b 2=1,解得⎩⎪⎨⎪⎧a 2=14b 2=34,∴所求双曲线方程为x 214-y 234=1.19.(本小题满分12分)已知p :2x 2-9x +a <0, q :⎩⎨⎧x 2-4x +3<0,x 2-6x +8<0,且綈p 是綈q 的充分条件,求实数a 的取值范围.解析: 由q :⎩⎨⎧x 2-4x +3<0,x 2-6x +8<0,解得⎩⎨⎧1<x <3,2<x <4,即2<x <3,∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A , ∴2<x <3满足不等式2x 2-9x +a <0, 令f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 只需⎩⎨⎧f 2≤0,f3≤0,即⎩⎨⎧8-18+a ≤0,18-27+a ≤0,∴a ≤9,故所求实数a 的取值范围是{a |a ≤9}.20.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,PA ⊥底面ABCD ,且PA =AD =DC =12AB =1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD . (2)求AC 与PB 所成角的余弦值.解析: 建立如图所示的空间直角坐标系,则各点的坐标为A (0,0,0)、B (0,2,0)、C (1,1,0)、D (1,0,0)、P (0,0,1)、M ⎝⎛⎭⎪⎫0,1,12.(1)证明:∵AP →=(0,0,1),DC →=(0,1,0),AP →·DC →=0. ∴AP ⊥DC ,∵AD ⊥DC ,∴DC ⊥面PAD .又DC 在平面PCD 上,故面PAD ⊥面PCD . (2)∵AC →=(1,1,0),PB →=(0,2,-1), 故|AC →|=2,|PB →|=5,AC →·PB →=2, ∴cos 〈AC →,PB →〉=AC →·PB →|AC →||PB →|=105.21.(本小题满分12分)已知椭圆G :x 24+y 2=1.过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.解析: (1)由已知得a =2,b =1,所以c =a 2-b 2= 3. 所以椭圆G 的焦点坐标为(-3,0),(3,0).离心率为e =c a =32. (2)由题意知,|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32. 此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎨⎧y =kx -m ,f(x 24+y 2=1)得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l与圆x2+y2=1相切,得|km| k2+1=1,即m2k2=k2+1.所以|AB|=x2-x12+y2-y12=1+k2[x1+x22-4x1x2]=错误!=43|m|m2+3.由于当m=±1时,|AB|=3,所以|AB|=43|m|m2+3,m∈(-∞,-1]∪[1,+∞).因为|AB|=43|m|m2+3=43|m|+3|m|≤2,且当m=±3时,|AB|=2,所以|AB|的最大值为2.22.(本小题满分14分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12PD.(1)证明:平面PQC⊥平面DCQ;(2)求二面角Q-BP-C的余弦值.解析:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz .(1)依题意有Q (1,1,0),C (0,0,1),P (0,2,0), 则DQ →=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). 所以PQ →·DQ →=0,PQ →·DC →=0, 即PQ ⊥DQ ,PQ ⊥DC . 又DQ ∩DC =D , 所以PQ ⊥平面DCQ . 又PQ ⊂平面PQC , 所以平面PQC ⊥平面DCQ .(2)依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则 ⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0,即⎩⎨⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos(m ,n )=-155. 故二面角Q -BP -C 的余弦值为-155.。

相关文档
最新文档