高考数学专题复习:向量的数量积

合集下载

平面向量的数量积-高考数学复习

平面向量的数量积-高考数学复习
= + · - =- .
若两个向量的夹角为锐角,则3 k >0,即 k >0.
又 a + kb , b +2 ka 不共线,∴ k ≠
2
2
,∴ k >0且 k ≠ .
2
2
方法总结
1. 向量夹角问题的两个注意点
(1)切记向量夹角的范围是[0, π].
(2)非零向量 a 与 b 夹角为锐角⇔ a ·b >0且 a 与 b 不共线;非零向量 a 与 b
=4,则 − =( D
A. 5
B. 3
)
C. 2
D. 1
+ 2 = a 2+ b 2+2 a ·b =49⇒2 a ·b =49-9-16=24,∴ − 2 =
a 2+ b 2-2 a ·b =9+16-24=1,∴ − =1.
3. (2022·新高考Ⅱ卷)已知向量 a =(3,4), b =(1,0), c = a + tb .
1,| c |= 2 ,且 a + b + c =0,则 cos < a - c , b - c >=(
D )
(1)法一:∵ a + b + c =0,∴ a + b =- c ,∴ a 2+ b 2+2 a ·b = c 2.
∵| a |=| b |=1,| c |= 2 ,∴1+1+2 a ·b =2,解得 a ·b =0.
夹角为钝角⇔ a ·b <0且 a 与 b 不共线.
方法总结
2. 求向量夹角的两种方法
(1)定义法:当 a , b 是非坐标形式时,求 a 与 b 的夹角θ,需求出 a ·b 及
| a |,| b |或得出它们之间的关系,由 cos
·
θ=
求得.
||||
(2)坐标法:若已知 a =( x 1, y 1)与 b =( x 2, y 2),则 cos 〈 a , b 〉=

高考数学总复习专题28平面向量的数量积及应用理市赛课公开课一等奖省优质课获奖课件

高考数学总复习专题28平面向量的数量积及应用理市赛课公开课一等奖省优质课获奖课件

(C )
A.1
B.2
C. 2
2 D. 2
19/42
【解析】(1)设 a 与 b 的夹角为 θ,由(a+2b)·(a-
b)=-2 得|a|2+a·b-2|b|2=4+2×2×cos θ-2×4= -2,解得 cos θ=12,∴θ=π3 .故填π3 .
(2)由题意得,|α||β|sin θ=12,∵|α|=1,|β|≤1, ∴sin θ=21|β|≥12.又∵θ∈(0,π),∴θ∈π6 ,5π6 .
= 22,所以 θ=π4 ,故选 B.
4/42
2.若等边△ABC 的边长为 2 3,平面内一点 M 满
足:C→M=16C→B+23C→A,M→A·M→B=( B ) A.-1 B.-2 C.2 D.3
【 解 析 】 因 为 M→A ·M→B = C→A-C→M ·C→B-C→M =
13C→A-16C→B
(2) 因 为
a·b

(e1

2e2)·(ke1

e2)

ke
2 1

(1

2k)(e1·e2)-2e22,且|e1|=|e2|=1,e1·e2=-12,所以 k
+(1-2k)·-12-2=0,解得 k=54.故填54.
14/42
(3)∵向量A→B与A→C的夹角为 120°, 且|A→B|=3,|A→C|=2, ∴A→B·A→C=|A→B|·|A→C|cos 120°=2×3×-12=-3, ∵ A→P = λ A→B + A→C , 且 A→P ⊥ B→C , ∴ A→P ·B→C = λA→B+A→C·B→C=λA→B+A→C·A→C-A→B=0, 即 λA→B·A→C-A→B·A→C+|A→C|2-λ|A→B|2=0, ∴-3λ+3+4-9λ=0,解得 λ=172, 故答案为172.

2024全国高考真题数学汇编:向量的数量积

2024全国高考真题数学汇编:向量的数量积

2024全国高考真题数学汇编向量的数量积一、单选题1.(2024全国高考真题)已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( ) A .2- B .1- C .1 D .22.(2024全国高考真题)已知向量,a b 满足1,22a a b =+=,且()2b a b -⊥,则b =( )A .12 B 2 C D .13.(2024全国高考真题)设向量()()1,,,2a x x b x =+=,则( )A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“1x =-是“//a b ”的充分条件 4.(2024北京高考真题)设 a ,b 是向量,则“()()·0a b a b +-=”是“a b =-或a b =”的( ). A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 二、填空题5.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+λμ,则λμ+= ;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为 .参考答案1.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥-,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.2.B【分析】由()2b a b -⊥得22b a b =⋅,结合1,22a a b =+=,得22144164a b b b +⋅+=+=,由此即可得解.【详解】因为()2b a b -⊥,所以()20b a b -⋅=,即22b a b =⋅, 又因为1,22a a b =+=,所以22144164a b b b +⋅+=+=, 从而22=b . 故选:B.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =B 错误;对D ,当1x =-+22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误. 故选:C.4.B 【分析】根据向量数量积分析可知()()0a b a b +⋅-=等价于a b =,结合充分、必要条件分析判断.【详解】因为()()220a b a b a b +⋅-=-=,可得22a b =,即a b =, 可知()()0a b a b +⋅-=等价于a b =,若a b =或a b =-,可得a b =,即()()0a b a b +⋅-=,可知必要性成立; 若()()0a b a b +⋅-=,即a b =,无法得出a b =或a b =-, 例如()()1,0,0,1a b ==,满足a b =,但a b ≠且a b ≠-,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠且a b ≠-”的必要不充分条件. 故选:B.5. 43 518- 【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE ,即可得λμ+,设BF BE k =,求,AF DG ,结合数量积的运算律求AF DG ⋅的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG ,结合数量积的坐标运算求AF DG ⋅的最小值. 【详解】解法一:因为12CE DE =,即13CE BA =,则13BE BC CE BA BC =+=+, 可得1,13λμ==,所以43λμ+=; 由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈, 则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭, 又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭, 可得11111113232AF DG k BA kBC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅取到最小值518-; 解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭, 可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=-,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=; 因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦, 且G 为AF 中点,则13,22a G a -⎛⎫- ⎪⎝⎭, 可得()131,3,,122a AF a a DG a +⎛⎫=+-=-- ⎪⎝⎭, 则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭, 且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅取到最小值为518-; 故答案为:43;518-.。

考点32平面向量的数量积(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)

考点32平面向量的数量积(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版)

考点32平面向量的数量积(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解平面向量数量积的含义及其几何意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题【知识点】1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA → =a ,OB →=b ,则 =θ(0≤θ≤π)叫做向量a 与b 的夹角.2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量 叫做向量a 与b 的数量积,记作.3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,AB → =a ,CD → =b ,过AB → 的起点A 和终点B ,分别作CD → 所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→ ,我们称上述变换为向量a 向向量b ,A 1B 1—→叫做向量a 在向量b 上的.记为.4.向量数量积的运算律(1)a ·b =.(2)(λa )·b = =.(3)(a +b )·c =.5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a±b )2=a 2±2a ·b +b 2.2.有关向量夹角的两个结论(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0.(2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π.【核心题型】题型一 平面向量数量积的基本运算计算平面向量数量积的主要方法(1)利用定义:a ·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)利用基底法求数量积.(4)灵活运用平面向量数量积的几何意义【例题1】(2024·陕西西安·模拟预测)已知平行四边形ABCD 中,4,3,60,(0),9AB AD BAD DP DC AP BP l l ==Ð=°=>×=uuu r uuu r uuu r uuu r,则l 的值为( )A .45B .34C .23D .12【变式1】(2024·浙江金华·三模)已知4a =r ,3b =r ,a b a b +=-r r r r ,则()a ab ×-=rr r ( )A .16-B .16C .9-D .9【变式2】(2024·陕西西安·模拟预测)已知向量,a b rr 的夹角为60°,若(4)8,||1a b b a -×=-=r r r r ,则||b =r.【变式3】(2024·辽宁丹东·一模)记ABC V 内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V面积为S ,且222a b c +-=.(1)求C ;(2)若a =6BA BC ×=uuu r uuu r,求S .题型二 平面向量数量积的应用(1)求平面向量的模的方法①公式法:利用|a |(a ±b )2=|a |2±2a ·b +|b |2;②几何法:利用向量的几何意义.(2)求平面向量的夹角的方法①定义法:cos θ=a ·b |a ||b |;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |(其中a ≠0,b ≠0)命题点1 向量的模【例题2】(2024·江苏扬州·模拟预测)已知向量a r ,b r 满足1a =ra r 与b r的夹角为5π6,则2a b -=r r ( )A .12BC .1D .13【变式1】(2024·河北·三模)已知非零向量a r ,b r 的夹角为π3,12a æö=ç÷ç÷èør ,1a b -=r r ,则a b +=r r( )A .1BCD【变式2】(2024·河南·三模)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,60C =°,7c =,若3,a b D -=为AB 中点,则CD =.【变式3】(2023·福建福州·模拟预测)在ABC V 中,角,,A B C 的对边分别是,,a b c ,且2sin sin ,3a C c B C p==.(1)求B ;(2)若ABC VBC 边上中线的长.命题点2 向量的夹角【例题3】(2024·北京·三模)若||1,||2,()a b a b a ==-^r r r r r,则向量a r 与b r 的夹角为( )A .30°B .60°C .120°D .150°【变式1】(2024·江苏南通·三模)已知三个单位向量,,a b c r r r 满足=+r r ra b c ,则向量,b c r r 的夹角为( )A .6pB .3pC .23pD .56p 【变式2】(2024·江西·模拟预测)已知平面内非零向量a r在向量b r 上的投影向量为12b -r ,且3a b =r r ,则a r 与b r夹角的余弦值为 .【变式3】(2024·江西·模拟预测)如图,在正三棱柱111ABC A B C -中,P 是棱11A B 的中点,Q是棱AC 上一点,且AQ AC =122AB BB ==.(1)求证:1BP B C ^;(2)求平面1PQB 与平面1BPB 的夹角的余弦值.命题点3 向量的垂直【例题4】(2024·江苏连云港·模拟预测)若向量m r,n r 满足1m =r ,2n =r ,且()m n m -^r r r ,则m n -=r r( )A .1BCD .2【变式1】(2024·重庆·模拟预测)已知||1,||2a b ==r r ,且a r 与b r 不共线,若向量k +r r a b 与-rr a kb 互相垂直,则实数k 的值为( )A .12-B .12C .12±D .2±【变式2】(2024·宁夏银川·三模)已知a r 是单位向量,且a r 与a b +r r 垂直,a r 与b r的夹角为135°,则a b +rr 在b r 上的投影数量为 .【变式3】(2023高三·全国·专题练习)四面体ABCD 中,2222AB CD AD BC +=+,求证:AC BD ^.题型三 平面向量的实际应用 用向量方法解决实际问题的步骤【例题5】(2024·广东梅州·二模)如图,两根绳子把物体M 吊在水平杆子AB 上.已知物体M 的重力大小为20牛,且150AOM Ð=°,在下列角度中,当角q 取哪个值时,绳OB 承受的拉力最小.( )A .45°B .60°C .90°D .120°【变式1】(2020·宁夏中卫·二模)加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为400N ,则该学生的体重(单位:kg )约为( )(参考数据:取重力加速度大小为210/ 1.732g m s »=)A .63B .69C .75D .81【变式2】(2024·全国·模拟预测)如图,某物体作用于同一点O 的三个力123F F F ,,使物体处于平衡状态,已知11N F =,22N F =,1F 与2F 的夹角为120°,则3F 的大小为 .(牛顿N 是物理的力学单位)【变式3】(2022·内蒙古赤峰·三模)如图所示,把一个物体放在倾斜角为30o 的斜面上,物体处于平衡状态,且受到三个力的作用,即重力G u r,垂直斜面向上的弹力1F uu r ,沿着斜面向上的摩擦力2F uu r .已知:13N,160N F G ==u u r u r ,则2F uu r 的大小为.【课后强化】【基础保分练】一、单选题1.(2024·山西太原·模拟预测)已知单位向量a r ,b r 满足()12a b a -×=r r r ,则2a b -r r 与b r 的夹角为( )A .π6B .π3C .2π3D .5π62.(2024·四川眉山·三模)已知向量,,a b c r r r 0a b c ++=r r r ,则cos ,a c b c --=r r r r( )A .1314B C .D .1314-3.(2024·安徽合肥·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b =,cos cos cos B A Cb ac +=+,2AM MC =uuuu r uuu u r ,则BM uuuu r 可能是( )A .12B .23C .1D .24.(2024·重庆·模拟预测)如图,圆O 内接边长为1的正方形,ABCD P 是弧BC (包括端点)上一点,则AP AB ×uuu r uuu r的取值范围是( )A .éêëB .éêëC .éêëD .ùúû二、多选题5.(2024·江西宜春·模拟预测)已知向量(1,2)a =-r,(6,2)b =-r ,则( )A .(2)a b a +^r r rB .||a b -=r rC .a r 与b r 的夹角为π4D .a r 在b r 上的投影向量为14b -r6.(2024·浙江温州·模拟预测)已知单位向量,,a b c r rr 共面,则下列说法中正确的是( )A .若a b a b +=-r r r r ,则//a b r rB .若a b a b +=-r r r r ,则a b ^r rC .若0a b c ++=r r r r ,则π,3a c =r r D .若0a b c ++=r r r r ,则π3,2b c =r r 三、填空题7.(2024·辽宁丹东·二模)设向量a r ,b r 的夹角为60o,且1a =r ,2b =r ,则()2a b b +×=r r r.8.(2021·云南昆明·三模)两同学合提一捆书,提起后书保持静止,如图所示,则1F 与2F 大小之比为.9.(2024·重庆·模拟预测)已知非零向量a r 、b r 满足()2,a b a b b =+^r r r r r ,则向量a r 与b r的夹角为 .四、解答题10.(23-24高三下·山东菏泽·阶段练习)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,向量(),sin sin b A C m =+r,()sin sin ,v A B a c =+-r 且v m ^r r .(1)求角C 的大小;(2)若ABC V 3cos cos 4A B =,求c .11.(2024·江苏南通·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,2c BA BC =×-uuu r uuu r,其中S 为ABC V 的面积.(1)求角A 的大小;(2)设D 是边BC 的中点,若AB AD ^,求AD 的长.【综合提升练】一、单选题1.(2024·宁夏固原·一模)已知向量(1,1),(0,)a b t =-=r r,若()2a a b ^+r r r ,则b =r ( )A B .1C D .22.(2024·福建泉州·模拟预测)已知||2a =r ,b =r ,|2|2a b -=r r,则向量a r 与b r 的夹角为( )A .π6B .π3C .2π3D .5π63.(2024·吉林长春·模拟预测)已知两个向量,a b rr 满足1a b b ×==r r r ,a -r ,则a =r ( )A .1B C D .24.(2024·浙江绍兴·二模)已知1e u r ,2e u u r 是单位向量,且它们的夹角是60°,若122a e e =+r u r u u r,12b e e l =-r u r u u r ,且a b ^r r,则l =( )A .25B .45C .1D .25.(2024·河北衡水·模拟预测)在ABC V 中,60,6,3,2,BAC AB AC AM MB CN NM Ð=====o uuu r uuu r uuuu r uuu r uuu r uuuu r ,则AN CB ×=uuu r uuu r( )A .9-B .172C .9D .186.(2024·河南·模拟预测)已知向量,a b 满足2a b a b ==×=r rr r ,又非零向量c 满足c a c b×=×rr r r ,则b r 与c r 的夹角为( )A .π6B .π3C .π3或2π3D .π6或5π67.(2024·湖北黄冈·二模)已知e r为单位向量,向量a r 满足3,1a e e a l ×=-=r r r r ,则a r 的最大值为( )A .9B .3C D .108.(2024·云南曲靖·二模)已知O 是ABC V 的外心,2AB AC AO +=uuu r uuu r uuu r ,OA AB =uuu r uuu r ,则向量AC uuu r在向量BC uuu r上的投影向量为()A .14BC-uuur B .r C .34BCuuur D BC r 二、多选题9.(2024·全国·模拟预测)已知向量()()1,1,2,,,a b k a b c a tb =-=^=-r r r r r r r.若,,a c b c =r r r r ,则( )A .12a b=r r B .4b c ×=r rC .b r 在c r 方向上的投影向量为cr D .与b r反向的单位向量是10.(23-24高三下·山东菏泽·开学考试)已知单位向量a r ,b r的夹角为q ,则下列结论正确的有( )A .()()a b a b +^-r rr r B .a r 在b r 方向上的投影向量为()a b b×r r r C .若||1a b +=rr ,则60q =oD .若()()a b a a b a +×=-×r r r r r r,则//a br r 11.(2024·贵州黔东南·二模)拋物线2:2(0)C y px p =->的焦点F 到准线的距离为1,经过点(),0P m 的直线l 与C 交于,A B 两点,则( )A .当1m =时,直线l 斜率的取值范围是æççèB .当点P 与点F 重合时,112FA FB+=C .当2m =-时,FA uuu r 与FB uuu r的夹角必为钝角D .当2m =-时,AOB Ð为定值(O 为坐标原点)三、填空题12.(2024·辽宁沈阳·三模)已知向量,a b rr 满足2=r a ,()44a b b +×=r r r ,则2a b +=r r.13.(2020·河北张家口·二模)如图,某班体重为70kg 的体育老师在做引体向上示范动作,两只胳膊的夹角为60°,拉力大小均为F ,若使身体能向上移动,则拉力F 的最小整数值为 N .(取重力加速度大小为2g 10m /s =1.732»)14.(2024·吉林长春·模拟预测)在ABC V 中,已知π,3A BC ==当边BC的中线AD =时,ABC V 的面积为 .四、解答题15.(2024·贵州·模拟预测)在ABC V中,AB =2AC =,π6C Ð=,N 为AB 的中点,A Ð的角平分线AM 交CN 于点O .(1)求CN 的长;(2)求AOC V 的面积.16.(22-23高三上·河南安阳·阶段练习)已知()1sin cos ,2cos ,2sin ,sin 2.2a x x b x q q æö=+=ç÷èør r (1)若),4(3c =-r 且 ()π,0,π4x q =Î时,a r 与c r 的夹角为钝角,求cos q 的取值范围;(2)若π3q =函数()f x a b =×r r ,求()f x 的最小值.17.(2024·全国·模拟预测)在ABC V 中,内角,,A B C 所对的边分别为,,,cos cos a b a b c c B A-=-.(1)试判断ABC V 的形状,并说明理由;(2)若a ,点P 在ABC V 内,0PA PC ×=uuu r uuu r ,3tan 4PCB Ð=,求tan APB Ð.18.(2024·福建宁德·三模)在ABC V 中,角,,A B C 的对边分别为,,a b c .已知2292cos a c ac B +=+,且sin sin B A C =.(1)若BD AC ^,垂足为D ,求BD 的长;(2)若3BA BC ×=u uuu r uu r ,求a c +的长.19.(2024·湖北·二模)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,()c a b <,2cos cos cos 2c a A B b A =-.(1)求A ;(2)者13BD BC =uuu r uuu r ,2AD =uuu r ,求b c +的取值范围.【拓展冲刺练】一、单选题1.(2024·江苏·模拟预测)已知向量a r ,b r 满足1a =r ,b =r ()218b a b ×-=-r r r ,则a r 与b r 的夹角等于( )A .30°B .60°C .120°D .150°2.(2024·浙江·三模)已知单位向量,a b r r 满足0a b ×=r r ,则cos 34,a b a b ++=r r r r ( )A .0BCD .13.(2024·陕西·模拟预测)已知两个向量(2,1),)a b m =-=r r ,且()()a b a b +^-r r r r ,则m 的值为( )A .1±B .C .2±D .±4.(2023高三·全国·专题练习)已知椭圆22196x y +=,12,F F 为两个焦点,O 为原点,P 为椭圆上一点,123cos 5F PF Ð=,则||PO =( )A .25B C .35D 二、多选题5.(2024·贵州·模拟预测)已知(3,1)a =-r ,(2,1)b =r ,则下列结论正确的是( )A .()a b b -^r r rB .2a b +=r rC .a r 与b r 的夹角为4pD .a r 在b r 6.(2022·湖北·模拟预测)已知向量()21a =-r ,,()1,b t =-r ,则下列说法正确的是( )A .若a b ^r r ,则t 的值为2-B .若//a b r r ,则t 的值为12C .若02t <<,则a r 与b r 的夹角为锐角D .若()()a b a b +^-r r r r ,则a b a b +=-r r r r 三、填空题7.(2024·四川绵阳·模拟预测)已知非零向量,a b r r 满足2a b =r r ,且()a ab ^-r r r ,则a b r r ,的夹角大小为 .8.(2024·安徽合肥·三模)在ABC V 中,若3BA BC CA CB AC AB ×=×=×uuu r uuu r uuu r uuu r uuu r uuu r ,则||||AB BC =uuu r uuu r .9.(2023·上海闵行·二模)平面上有一组互不相等的单位向量1OA ,2OA ,…,n OA ,若存在单位向量OP uuu r 满足12OP OA OP OA ×+×uuu r uuur uuu r uuuu r 0n OP OA ++×=L uuu r uuuu r ,则称OP uuu r 是向量组1OA ,2OA ,…,n OA 的平衡向量.已知12π,3OA OA =uuur uuuu r ,向量OP uuu r 是向量组1OA uuur ,2OA uuuu r ,3OA uuu u r 的平衡向量,当3OP OA ×uuu r uuu u r 取得最大值时,13OA OA ×uuur uuu u r 值为 .四、解答题10.(2024·山东枣庄·一模)在ABC V 中,角,,A B C 的对边分别为,,a b c ,且sin tan 22a C A c =.(1)求C ;(2)若8,5,a b CH ==是边AB 上的高,且CH mCA nCB =+uuu r uur uuu r ,求m n.11.(2023·河北衡水·模拟预测)已知ABC V ,D 为边AC 上一点,1AD =,2CD =.(1)若34BA BD ×=uuu r uuu r ,0BC BD ×=uuu r uuu r ,求ABC S V ;(2)若直线BD 平分ABC Ð,求ABD △与CBD △内切圆半径之比的取值范围.。

高考数学考点专题:平面向量:平面向量的数量积及应用举例

高考数学考点专题:平面向量:平面向量的数量积及应用举例

平面向量的数量积及应用举例【考点梳理】1.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0. 2.平面向量数量积的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【教材改编】1.(必修4 P 104例1改编)已知|a |=5,|b |=4,a 与b 的夹角为120°,则a·b 为( ) A .10 3 B .-10 3 C .10 D .-10[答案] D[解析] a ·b =|a |·|b |cos 120°=5×4×cos 120°=20×⎝ ⎛⎭⎪⎫-12=-10.故选D.2.(必修4 P 107例6改编)设a =(5,-7),b =(-6,t ),若a ·b =-2,则t 的值为( )A .-4B .4 C.327 D .-327 [答案] A[解析] 由a ·b =-2,得5×(-6)+(-7)t =-2, -7t =28,∴t =-4,故选A.3.(必修4 P 108A 组T 6改编)已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( )A.π6B.π3C.2π3D.5π6[答案] D[解析] cos θ=a ·b |a|·|b |=-632×6=-32. 又∵0≤θ≤π,∴θ=5π6,故选D.4.(必修4 P 107练习T 2改编)设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( )A .-6 B.10 C. 5 D .10 [答案] D[解析] ∵a =(1,x ),b =(2,-4)且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10,故选D.5.(必修4 P 119A 组T 10改编)已知△ABC 的三个顶点A (1,2),B (2,3),C (-2,5),则最小角的余弦值为( )A.1010 B.31010C.13D.105 [答案] B[解析] 由图可知,显然C 为△ABC 的最小角,∵CA →=(3,-3),CB →=(4,-2),∴cos 〈CA →,CB →〉=CA →·CB →|CA →||CB →|=1832·25=31010.6.(必修4 P 105例3改编)已知|a |=3,|b |=2,(a +2b )·(a -3b )=-18,则a 与b 的夹角为( )A .30°B .60°C .120°D .150°[答案] B[解析] (a +2b )·(a -3b )=-18, ∴a 2-6b 2-a ·b =-18,∵|a |=3,|b |=2,∴9-24-a ·b =-18, ∴a ·b =3,∴cos 〈a ,b 〉=a ·b |a ||b |=36=12, ∴〈a ,b 〉=60°.7.(必修4 P 110例2改编)△ABC 中,∠BAC =2π3,AB =2,AC =1,DC→=2BD →,则AD →·BC→=________. [答案] -83[解析] 由DC →=2BD →得AD →=13()AC →+2AB →. ∴AD →·BC →=13()AC →+2AB →·(AC →-AB →)=13()AC →2+AC →·AB→-2AB →2=13⎣⎢⎡⎦⎥⎤12+1×2×⎝⎛⎭⎪⎫-12-2×22=-83.8.(必修4 P106练习T3改编)若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为________.[答案] 1[解析] 由(a-c)·(b-c)≤0,得a·b-a·c-b·c+c2≤0,又a·b=0,且a,b,c均为单位向量,得-a·c-b·c≤-1,|a+b-c|2=(a+b-c)2=a2+b2+c2+2(a·b-a·c-b·c)=3+2(-a·c-b·c)≤3-2=1,故|a+b-c|的最大值为1.9.(必修4 P108A组T3改编)已知|a|=2,|b|=5,|a+b|=7,则a·b=________.[答案] 10[解析] ∵|a+b|2=(a+b)2=a2+2a·b+b2=22+2a·b+52=29+2a·b∴29+2a·b=49,∴a·b=10.10.(必修4 P113A组T4改编)平面上三个力F1,F2,F3作用于一点且处于平衡状态,已知|F1|=1 N,|F2|= 2 N,F1与F2的夹角为45°,则F3的大小为________.[答案] 5 N[解析] 根据物理中力的平衡原理有F3+F1+F2=0,∴|F3|2=|F1|2+|F2|2+2F1·F2=12+(2)2+2×1×2×cos 45°=5.∴|F3|= 5.11.(必修4 P119B组T1(5)改编)若e1,e2是夹角为60°的两个单位向量,求a=2e 1+e 2,b =-3e 1+2e 2的夹角.[解析] ∵|e 1|=|e 2|=1,且夹角θ=60°, ∴|a |2=(2e 1+e 2)2=4e 21+4e 1·e 2+e 22 =4×12+4×1×1×cos 60°+12=7. ∴|a |=7.|b |2=(-3e 1+2e 2)2=9e 21-12e 1·e 2+4e 22 =9×12-12×1×1×cos 60°+4×12=7, ∴|b |=7.a ·b =(2e 1+e 2)·(-3e 1+2e 2) =-6e 21+e 1·e 2+2e 22=-6×12+1×1×cos 60°+2×12=-72, ∴cos θ=a ·b |a |·|b |=-727×7=-12. 又0≤θ≤π,∴θ=2π3.故a 与b 的夹角为23π.。

高三高考数学复习课件5-3平面向量的数量积

高三高考数学复习课件5-3平面向量的数量积

-2 5×2
=- 2
10 10 .
【答案】

10 10
题型二 平面向量数量积的应用 角度一 求向量的模
π 【例 2】(1)(2018·西安模拟)已知平面向量 a,b 的夹角为 6 , 且|a|= 3,|b|=2,在△ABC 中,A→B=2a+2b,A→C=2a-6b,D 为 BC 的中点,则|A→D|=________.
=2(x2+y2- 3y)
=2x2+y-
232-34≥2×-34=-32.
当且仅当 x=0,y= 23时,P→A·(P→B+P→C)取得最小值,最小
值为-23.
故选 B.
方法二 (几何法) 如图②所示,P→B+P→C=2 P→D(D 为 BC 的中点),则P→A·(P→B+ P→C)=2 P→A·P→D.
以 a·b=1,设向量 a 与向量 b 的夹角为 θ,由 cos
θ=|aa|··|bb|=
1 2

22,可得
π θ= 4 ,即向量
a

b
π 的夹角为 4 .
(2)由已知得,a·(a-2b)=0,∴cos〈a,b〉=2||aa|||2b|=12, π
∵0≤〈a,b〉≤π,∴〈a,b〉= 3 . ππ
π 【解析】 因为 a 在 b 方向上的投影为|a|cos〈a,b〉= 2cos 3

22.故填
2 2.
【答案】
2 2
题型一 平面向量数量积的运算
【例 1】 (2017·全国Ⅱ卷)已知△ABC 是边长为 2 的等边三角
形,P 为平面 ABC 内一点,则P→A·(P→B+P→C)的最小值是( )
A.-2
即 2a-3b 与 c 反向.

专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视

专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视

专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。

高中数学高考总复习----平面向量的数量积及应用知识讲解及考点梳理

高中数学高考总复习----平面向量的数量积及应用知识讲解及考点梳理

(C)1200
(D)1500
例 3.若 、 、 均为单位向量,且

的最大值为________
【答案】
【解析】因为 、 、 均为单位向量,且

5
设 =(1,0), =(0,1),
,
,

的最大值为
.
【总结升华】考查平面向量数量积和模的问题,考查我们运用知识分析解决问题的能力. 注意本题 是转换为代数运算求最值问题.
例 1.已知向量
的夹角为(

A.30° 【解析】∵
B.60°
C.120°
,∴ 是共线向量,
D.150°




∴向量 和 所成角为 ,又 与 共线且方向相反, ∴向量 和 所成角为 ,从而选项C正确.
【总结升华】 仍旧是一个向量,本题的关键之处就是注意到 , ,
是共线向量,从而将
和 的夹角问题进行有效的转化. 举一反三: 【变式 1】已知向量 与 的夹角为 120°, 【答案】7 【解析】
高中数学高考总复习----平面向量的数量积及应用知识讲解 及考点梳理
【考纲要求】 1.理解平面向量数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握数量
积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两 个平面向量的垂直关系.
2.会用向量方法解决某些简单的平面几何问题,会用向量方法解决简单的力学问题与其他一些实际 问题. 【知识网络】
【解析】(1)由题意得, = ( + );
故 •( + )=2 • ;
故 2=3 • ;
故 cosA=
=;
(2) • =| |•| |cosA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习:向量的数量积一、单选题1.已知向量()3,1a =-,()1,0b =,则a 在b 方向上的投影是( ) A .-1B .0C .1D .32.已知1a →=,2b →=,4c =,,a b →→的夹角3πθ=,则a c b c →→→→⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭的最大值为( )A .17+B .12+C .18-D .20-3.已知等腰直角ABC ,AB AC =P 为BC 边上一个动点,则()AB AC AP +⋅的值为( )A .1B .2C D 4.在直角三角形ABC 中,90A ∠=︒, 3AB =,4AC =,则 AB BC BC CA CA AB ⋅+⋅+⋅=( )A .35B . 35-C .25D .25- 5.已知()1,2a =,()1,7b =-,2c a b =+,则c b ⋅为( ) A .3B .24C .21D .46.已知2a =,()3,3b =,a 在b 上的投影向量为12b ,则a 与b 的夹角为( )A .56πB .3π C .6π 或56π D .6π7.已知向量(1)a m =,,()2b n =,,若2a =,a b ⊥,则mn =( ) A .3± B .3 C .6± D .6-8.已知向量()1,2AB =,()2,1BD =,()1,BC t =,t R ∈,若AD CD ⊥,则实数t 的值为( )A .0B .2C .8D .439.已知向量(3,1)a =-,(1,2)b =-,则向量a 与b 夹角的大小为( ) A .30B .45︒C .60︒D .135︒10.向量(,1)a x =,(2,1)b y =-,其中0x >,0y >且a b ⊥,则21x y +的最小值为( )A .9B .8C .7D .5+11.如图所示,ABC 中,3AB =,2AC =,60BAC ∠=,D 是BC 的中点,2BE EA =,则AD DE ⋅=( )A .114B .114-C .52D .52-12.设向量(),2AB a =,()1,21AC a =-+,则“2a <”是“6AB AC ⋅<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件二、填空题13.已知向量a 、b 满足:a 为单位向量且()()a b a b +⊥-,3a b +=,则向量a 、b 的夹角是________.14.已知向量a ,b 的夹角为60°,2a =,1b =,则2a b +=________. 15.已知菱形ABCD ,若1AB =,3A π=,则向量AB 在AC 上的数量投影为________ 16.已知()1,2a =,()2,2b =-,且()()ka a b b +⊥-,则k =________. 三、解答题17.已知()3,0A ,()0,3B ,()cos ,sin C αα,O 为原点,若13OA OC +=()0,απ∈,求OB 与OC 的夹角大小.18.已知平面向量a ,b 满足1a =,2b =,()()223a b a b +⋅-=-. (1)求a b -;(2)若向量b 与a b λ+的夹角为锐角,求实数λ的取值范围.19.已知向量1e →与2e →是夹角为3π的单位向量,且向量1234e e a →→→=+.(1)求a →;(2)若122b e e λ→→→=+,且a b →→⊥,求实数λ的值.20.已知a 、b 为平面向量,且()2,1a =-. (1)若//b a ,且25b =,求向量b 的坐标;(2)若()3,2b =,且ka b -与2a b +垂直,求实数k 的值.21.已知O 是坐标原点,向量()()2,3,6,1(,0)OA OB OP x ===,, (1)若PA PB ⊥,求实数x 的值;(2)当PA PB ⋅取最小值时,求ABP △的面积.22.如图,在ABC 中,已知2AB =,1AC =,120BAC ∠=︒,13BD BC =,()1A E B AC A λλ=-+.(1)求AD ;(2)若1AD AE ⋅=,求λ的值.参考答案1.D 【分析】根据投影公式,代入计算,即可得答案. 【详解】a 在b 方向上的投影为31cos ,31a b a a b b⋅⨯<>===. 故选:D 2.A 【分析】设a b →→+,c →的夹角为α,进而由题知a b →→+17a c b c α→→→→⎛⎫⎛⎫-⋅-=- ⎪ ⎪⎝⎭⎝⎭,再结合三角函数性质求解即可. 【详解】解:设a b →→+,c →的夹角为α. 因为1a →=,2b →=,,a b →→的夹角3πθ=,所以2124522cos73a b a b π→→→→+=+⋅+=+⨯⨯=,即a b →→+=所以22cos cos 163a c b c a b a b c c a b c πα→→→→→→→→→→→→→⎛⎫⎛⎫⎛⎫-⋅-=⋅-+⋅+=⨯-+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1717α=-≤+当且仅当cos 1α=-时等号成立. 故选:A 3.B 【分析】由已知可得0AB AC ⋅=,由于P 为BC 边上一个动点,所以存在λ,使,[0,1]BP BC λλ=∈,从而可得(1)AP AB AC λλ=-+,然后代入()AB AC AP +⋅中化简可得结果 【详解】解:因为AB AC ⊥,所以0AB AC ⋅=,因为P 为BC 边上一个动点,所以存在λ,使,[0,1]BP BC λλ=∈,所以AP AB BP AB BC λ=+=+ ()AB AC AB λ=+-(1)AB AC λλ=-+,所以()()[(1)]AB AC AP AB AC AB AC λλ+⋅=+⋅-+22(1)(1)AB AB AC AB AC AC λλλλ=-+⋅+-⋅+ 22(1)AB AC λλ=-+2(1)22λλ=-+=,故选:B4.D【分析】以,AB AC 为x ,y 轴正方向建立直角坐标系,用坐标法计算即可. 【详解】直角三角形ABC 中,90A ∠=︒,3AB =,4AC =, 可以以,AB AC 为x ,y 轴正方向建立直角坐标系,则()()()0,0,3,0,0,4A B C ,所以()()()3,0,0,4,3,4AB CA BC ==-=-,所以()()()()()() 3,03,43,40,40,43,0916025AB BC BC CA CA AB⋅+⋅+⋅=-+--+-=--+=-故选:D 5.B 【分析】先求出c 的坐标,由向量数量积的坐标表示即可求解. 【详解】因为()1,2a =,()1,7b =-,所以()()()221,21,73,3c a b =+=+-=-, 所以()()313724c b ⋅=⨯+-⨯-=, 故选:B 6.D 【分析】设a 与b 的夹角为θ,由a 在b 上的投影向量为1cos 2ba b b θ⋅=即可求得cos θ的值,结合向量夹角的范围即可求解. 【详解】设a 与b 的夹角为θ,()23b ==则a 在b 上的投影向量为1cos 2ba b b θ⋅=,即12cos 2b θ=,所以3cos 2b b θ⋅=,所以cos θ, 因为[]0,θπ∈,所以6πθ=,故选:D. 7.D 【分析】由模的坐标表示和向量垂直的坐标表示求得,m n 的关系后可得mn 值.【详解】212a m =+=,23m =,20a b a b m n ⊥⇒⋅=+=,2n m =-,所以226mn m =-=-. 故选:D . 8.B 【分析】先根据已知向量坐标表示出,AD CD ,结合AD CD ⊥可求实数t . 【详解】因为()1,2AB =,()2,1BD =,()1,BC t =,所以()3,3AD AB BD =+=,()1,1CD BD BC t =-=-; 因为AD CD ⊥,所以333630AD CD t t ⋅=+-=-=,解得2t =. 故选:B. 9.D 【分析】利用向量数量积的坐标运算即可求解. 【详解】(3,1)a =-,(1,2)b =-,31cos ,10a b a b a b-⨯⋅=== 又因为0,a b π≤≤, 所以3,1354a b π==. 故选:D 10.A 【分析】首先由条件可知21x y +=,再利用“1”的变形,利用基本不等式求最小值. 【详解】a b ⊥,210x y ∴+-=,即21x y +=,()2121222559y x x y x y x y x y ⎛⎫+=++=++≥+ ⎪⎝⎭, 当且按仅当22y x x y=时,即x y =时,等号成立. 故选:A 11.B 【分析】计算出AB AC ⋅的值,将AD 、DE 用基底AB 、AC 加以表示,利用平面向量数量积的运算性质可求得AD DE ⋅的值. 【详解】由平面向量数量积的定义可得cos603AB AC AB AC ⋅=⋅=, ()()1122AD AB BD AB AC AB AB AC =+=+-=+, 因为2BE EA =,则13AE AB =,故1162DE AE AD AB AC =-=--, 因此,()()()22113431212AD DE AB AC AB AC ABAB AC AC⋅=-++=-+⋅+()2211134332124=-+⨯+⨯=-. 故选:B. 12.B 【分析】由向量坐标运算算出6AB AC ⋅<时a 满足的条件再与题中2a <比较即可. 【详解】因为4232AB AC a a a ⋅=-++=+, 所以当6AB AC ⋅<时,即43a <,又423<, 所以“2a <”是“6AB AC ⋅<”的必要不充分条件. 故选:B 13.π3【分析】由()()a b a b +⊥-,可得()()0a b a b +⋅-=,化简后可求出b ,再对3a b +=两边平方化简可求得答案 【详解】解:因为a 为单位向量且()()a b a b +⊥-,所以()()0a b a b +⋅-=,即220a b -=,所以1b =,设向量a 、b 的夹角为θ, 由3a b +=,得23a b +=,2223a a b b +⋅+=,所以12cos 13θ++=,得1cos 2θ=, 因为[0,]θπ∈,所以3πθ=,故答案为:π314.【分析】利用向量数量积的运算律,有222244a b a a b b +=+⋅+,结合已知求2a b +即可. 【详解】由22224488cos6012a b a a b b +=+⋅+=+︒=. ∴223a b +=.故答案为:15【分析】根据菱形中向量关系,求得向量AB 在AC 的夹角为6π,再根据投影公式求投影即可 【详解】菱形ABCD 中,3A π=, 易知向量AB 在AC 的夹角为6π所以向量AB 在AC 上的数量投影为:cos 6AB π=16.2 【分析】由向量的数量积表示计算可得. 【详解】因为()()ka a b b +⊥-,所以()()22(1)52(1)80a b ka k a b k b k a b k -=+-⋅-=-⋅+-=+,解得2k =. 故答案为:2. 17.6π. 【分析】计算出OA OC +,由13OA OC +=cos α,求出α后再利用夹角公式可得答案. 【详解】因为()()3,0,cos ,sin OA OC αα==,所以()3cos ,sin OA OC αα+=+,(3OA OC+==1cos 2α=,因为()0,απ∈,所以3πα=,12C ⎛ ⎝⎭,所以12OC ⎛=⎝⎭,()0,3OB =, 设OB 与OC 的夹角为θ,0θπ≤≤,3cos cos ,1OC OB OC OB OC OBθ⋅====因为0θπ≤≤,所以6πθ=.故答案为:6π.18.(1(2)()()4,00,-+∞.【分析】(1)由给定条件求出a b ⋅,再根据向量模的计算公式即可得解; (2)根据向量夹角为锐角借助数量积列出不等关系即可作答. 【详解】(1)依题意,()()2222242363a b a b a a b a b b a b +⋅-=-⋅+⋅-=⋅-=-,得1a b ⋅=, ()222214a b a b a b a b -=-=+-⋅=+- 所以3a b -=;(2)由向量b 与a b λ+的夹角为锐角,可得()0b a b λ⋅+>,即有40λ+>,解得4λ>-, 而当向量b 与a b λ+同向时,可知0λ=,综上所述λ的取值范围为()()4,00,-+∞.19.(1(2)2011λ=-. 【分析】(1)由题知1212e e →→⋅=,进而根据向量的模的公式计算即可; (2)由题知0a b →→⋅=,进而利用向量数量积的运算律展开求解即可.【详解】 解:(1)12111cos 32e e π→→⋅=⨯⨯=,∴1234e e a →→→=+=(2)a b →→⊥,∴0a b →→⋅=, 又()12121122223426384e e e e e a b e e e λλλ→→→→→→→→→→⎛⎫⎛⎫⋅=+⋅+=++⋅+ ⎪ ⎪⎝⎭⎝⎭()11163841022λλλ=++⨯+=+, ∴111002λ+=,解得2011λ=-. 所以实数λ的值为2011-. 20.(1)()4,2-或()4,2-;(2)223k =-. 【分析】 (1)设(),b x y =,根据平面向量共线和平面向量的模长公式可得出关于x 、y 的方程组,解出这两个未知数的值,即可得出向量b 的坐标;(2)计算出向量ka b -与2a b +的坐标,由已知可得()()20ka b a b -⋅+=,利用平面向量数量积的坐标运算可求得k 的值.【详解】(1)设(),b x y =,因为//b a ,则2x y =-,因为2b x y =+22220x y x y =-⎧⎨+=⎩,解得42x y =⎧⎨=-⎩或42x y =-⎧⎨=⎩, 故向量b 的坐标为()4,2-或()4,2-;(2)因为()2,1a =-,()3,2b =,所以()23,2ka b k k -=---,()24,5a b +=,因为ka b -与2a b +垂直,所以()()20ka b a b -⋅+=,即()()423523220k k k --+-=--=,解得223k =-. 21.(1)3或5;(2)4.【分析】(1)利用向量垂直的坐标表示即可求解.(2)根据向量数量积的坐标表示得出当4x =时,PA PB ⋅取最小值1-,再由向量数量积的坐标表示求出向量夹角余弦值,根据同角三角函数的基本关系求出夹角的正弦值,由三角形的面积公式即可求解.【详解】(1)因为(2,3)OA =,(6,1)OB =,(,0)OP x =, 所以(2,3)PA x =-,(6,1)PB x =-, 又因为PA PB ⊥,所以0PA PB ⋅=,即(2)(6)30x x --+=也即28150x x -+=,解得3x =或5x =,则所求实数x 的值为3或5.(2)由(1)知PA PB ⋅=(2)(6)3x x --+=22815(4)1x x x -+=--,当4x =时,PA PB ⋅取最小值1-, 此时(2,3)PA =-,(2,1)PB =,则cos ,13PA PBPA PB PA PB ⋅<>===⨯,又在ABP △中,,(0,)PA PB π<>∈,则sin ,1PA PB <>=ABP △的面积为12S PA PB =⨯⨯⨯sin ,PA PB <>142== 22.(1)13AD =(2)12λ=. 【分析】 (1)根据题意将AD 用AB AC ,线性表示,再通过平方手段将其转化为数量关系即可解出AD ;(2)将AD 与AE 均用AB AC ,线性表示再运用向量运算法则运算,代入数据解出方程即可.【详解】(1)因为()121333AD AB BD AB AC AB AB AC =+=+-=+, 所以22222141433999AD AB AC AB AC AB AC ⎛⎫=+=++⋅ ⎪⎝⎭. 又因为12112AB AC ⎛⎫⋅=⨯⨯-=- ⎪⎝⎭, 所以()2414134119999AD =⨯+⨯+⨯-=,从而13AD = (2)因为()21133AD AE AB AC AB AC λλ⎛⎫⎡⎤⋅=+⋅-+ ⎪⎣⎦⎝⎭, 所以22221333AD AE AB AC AB AC -+⋅=++⋅λλλ, ()221784113333AD AE -+-⋅=⨯+⨯+⨯-=λλλλ, 由7813λ-=,解得12λ=. 所以12λ=。

相关文档
最新文档