基本概念命题

合集下载

命题、联结词、命题公式与真值表

命题、联结词、命题公式与真值表
命题、联结词、命题公式与真值表
1、一些基本概念 逻辑、命题、真值
2、联结词 3、命题公式 4、真值表
问题?
一、命题的定义
命题P——不关心其具体涵义,只关心其值的 真值
命题变元——定义域:真、假 命题常元——T和F 命题公式(也称命题,合式公式)——含命题变元
的断言,由以下规则生成: (1)单个原子公式是命题。 (2)若A、B是命题公式,┐A、A∧B、A∨B、
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
Hale Waihona Puke 111回顾一下:五个联结词真值表
否定
等价(双条件)
合取
析取
蕴涵(条件)
几个相关概念
1、合式公式的层次:
0层
1层
2层
3层
pq
qp (qp) q (qp) qp
00
1
0
1
01
0
0
1
10
1
0
1
11
1
1
1
几个相关概念
A(BC) (D E)
1 01
10
p
2、什么情况下,下面论述为真:
q
说小王不会唱歌或小李不会跳舞是正确的,而
说如果小王会唱歌,小李会跳舞是不正确的。
(p q) (pq)
综合问题1
Key:
A→B、AB也是命题公式。 (3) 有限步应用条款(1)(2)生成的公式。
例:下列符号串都是命题公式
下列符号串是否为命题公式?
命题、联结词、命题公式与真值表

命题的概念

命题的概念

(1)若f(x)是正弦函数,(x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
思考一:命题(1)和命题(2)的条件和结论有什么内在联系?
1、命题的概念
一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.
2、命题的形式
命题的基本形式为“若p,则q”.
其中p叫做命题的条件,q叫做命题的结论
下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。其中一个命题叫做原命题,另一个叫做原命题的逆命题。
也就是说,把一个命题的条件和结论互换位置就是它的逆命题.
思考二:命题(1)和命题(3)的条件和结论有什么内在联系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;

命题的基本概念

命题的基本概念

命题的基本概念1. 概念的定义命题是逻辑学和数理逻辑中的一个基本概念,指的是能够陈述一个明确的陈述句或者陈述句的复合句。

一个命题要么是真的,要么是假的,不存在其他可能性。

命题可以用来表达事实、判断、推理等。

命题可以用符号来表示,常用的符号有大写字母P、Q、R等表示命题,命题的真值用T(true)表示真命题,用F(false)表示假命题。

2. 重要性命题是逻辑学和数理逻辑的基础,它的重要性体现在以下几个方面:2.1 逻辑推理命题是逻辑推理的基础,逻辑推理是通过对命题的合理组合和推理得出结论的过程。

在逻辑推理中,命题可以作为前提、假设或者结论,通过命题之间的逻辑关系进行推理和证明。

2.2 真值表命题的真值表是一种列举出命题在不同情况下的真值的表格。

通过真值表,可以清晰地展示出命题的真值情况,从而帮助我们理解命题之间的逻辑关系和推理规律。

2.3 谓词逻辑在谓词逻辑中,命题可以作为谓词的参数,通过对命题的量化和连接得出更复杂的命题。

谓词逻辑是现代逻辑的基础,广泛应用于数学、计算机科学等领域。

2.4 知识表示命题可以用来表示知识,通过对命题的组合和推理,可以构建出复杂的知识表示体系。

知识表示是人工智能、专家系统等领域的重要研究内容。

3. 应用命题的应用非常广泛,涉及到多个学科和领域,以下介绍几个常见的应用:3.1 数学推理在数学中,命题是数学推理的基础。

通过对命题的逻辑关系进行推理,可以得到数学定理和证明。

3.2 计算机科学在计算机科学中,命题逻辑是形式化方法的基础,用于描述和分析算法和程序的正确性。

命题逻辑在计算机科学中有着广泛的应用,包括程序验证、模型检测、人工智能等领域。

3.3 自然语言处理在自然语言处理中,命题可以用来表示句子的含义和逻辑关系,通过对命题的推理和计算,可以进行机器翻译、信息检索、问答系统等任务。

3.4 人工智能在人工智能领域,命题逻辑是知识表示和推理的基础。

通过对命题的组合和推理,可以构建出复杂的知识表示体系,用于解决问题和推理。

高中数学命题的基本概念

高中数学命题的基本概念

高中数学命题的基本概念一、命题的基本概念命题:可以判断真假的陈述句叫做命题。

也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件。

真命题:判断为真的语句叫做真命题。

假命题:判断为假的语句叫做假命题。

命题的否定:就是对命题的结论加以否定。

原命题逆命题否命题逆否命题若,则若,则若,则若,则另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题。

一般地,对于是互逆命题的两个命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆命题。

一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的的条件和结论的否定,那么我们把这样的两个命题叫做互否命题。

其中一个命题叫做原命题,另一个命题叫做原命题的否命题。

一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论和条件的否定,那么我们把这样的两个命题叫做互为逆否命题。

其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题。

四种命题的相互关系图三、充分条件和必要条件的概念1、若,我们就说是的充分条件,是的必要条件。

2、一般地,如果既有,又有,就记作。

此时,我们说是的充分必要条件,简称充要条件。

3、一般地,若p⇒q,但q ≠>p,则称p是q的充分但不必要条件;若p≠>q,但q ⇒ p,则称p是q的必要但不充分条件;若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件。

四、重要结论1、互为逆否命题的两个命题真值相同:原命题与它的逆否命题等价;否命题与逆命题等价。

2、对于充分条件、必要条件的判定,我们需要将命题转化为集合,充分利用集合的关系进行判定,可以更加直观形象。

3、命题的否定和否命题是两个不同的概念。

典型例题知识点一:命题的基本概念以及四种命题的相互关系例1、判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。

第2章_1节-命题逻辑基本概念

第2章_1节-命题逻辑基本概念


定义2.4 设p,q为两个 命题“如果p,则q” 称作p与q的蕴涵式, 记作 pq,并称p是 蕴涵式的前件,q为蕴 涵式的后件,称蕴 涵联接词.其真值表为 : p q pq 0 0 1 0 1 1 1 0 0 1 1 1
pq也可表示为: (1)只要p,就q; (2)因为p,所以q (3)p仅当q; (4)只有q,才p; (5)除非q,才平; (6)除q,否则非p; (7)假如没有q,就没有p.
离散数学
主讲教师:易静
1
2.1 命题逻辑基本概念
关键知识点: • 命题与真值 •联结词(¬ , , , , , ) •命题公式(重言式,矛盾式,可满足式) •重要等值式 •重要推理规则 •个体,个体域与谓词 •全称量词与存在量词
2
命题与真值
命题:所表达的判断是真(正确)或假(错误)但不能可 真可假的陈述句。通常用p,q,r等表示(即命题符号化) 命题的真值:作为命题所表达的判断只有两个结果:正确 和错误,此结果称为命题的真值。 命题是正确的,称此命题的真值为真;命题是错误 的,称此命题的真值为假。 在数理逻辑中,命题的真值的真和假,有时分别用 1和0来表达,也有时分别用T(True)和F(False)来表 达。本书用1和0来表达。(即真值的符号化) 真命题:真值为真的命题 假命题:真值为假的命题 例如, p:2+2=4, q:3是偶数 它们都是命题, p是真命题, q是假命题.


定义2.2 设p,q为二 命题,复合命题“p并 且q”(或“p与q”) 称为p与q的合取式, 记作pq,称作合取 联接词. 其真值表为:
p 0 0 1 1 q 0 1 0 1 pq 0 0 0 1
也可表示联接词: “既......,又.......”, “不但......而 且......”, “虽然......但 是.......”, “一面......一 面.......”等

命题的基本概念

命题的基本概念
指派
当命题变元P用一个特定的简单命题取代时,P才能确定真值,这时也称对P进行指派。
本章小结
只有陈述句才有可能是命题,但并不是所有的陈述句都能成为命题。 本小节的思维形式注记图:
• 意味着P表示“今天下雨”这个命题的名。 • 也可用数字表示此命题 例如:[12]:今天下雨 表示命题的符号称为命题标识符,P和[12]就是命题标识符。
1.1.3 命题标识符
命题常元
一个命题标识符如果表示确定的简单命题,就称为命题常元。
命题变元
如果一个命题标识符只表示任意简单命题的位置标志,就称它为命题变元。 因为命题变元可以表示任意简单命题,所以它不能确定真值,故命题变元不是命题。
命题
判断给定的句子是否为命题的基本步骤
首先应是陈述句; 其次要有唯一的真值。
68%
80%
Sed ut perspiciatis unde omnis.
Sed ut perspiciatis unde omnis.
180
175
案例
1)该吃早饭了! 祈使句,不是命题。
2)多漂亮的花呀! 感叹句,不是命题。
我正在说谎,二者也相矛盾。这其实是一个语义上的悖论。悖论不是命题。
5) x-y >2。
Sed ut perspiciatis
Sed ut perspiciatis
unde omnis.
unde omnis.
不是命题。因为x, y的值不确定,某些x, y使x−y>2为真,某些x, y使x−y>2为假,即
复合命题的基本性质是:其真值可以由其原子命题的真值以及它们复合成该复合
命题的联结方式确定。
1.1.3 命题标识符
命题标识符
• 为了能用数学的方法来研究命题之间的逻辑关系和推理,需要将命题符号化。 • 通常使用大写字母P, Q, R…或用带下标的大写字母或用数字,如Pi,[12]等表

命题的通俗解释

命题的通俗解释

命题的通俗解释摘要:1.命题的定义2.命题的分类3.命题的通俗解释4.命题的逻辑关系5.命题的重要性正文:1.命题的定义命题是逻辑学中的一个基本概念,它是一种对事情的陈述或判断。

在数学、物理、化学等学科中,命题常常用来描述一个事实或者表达一个观点。

简单来说,命题就是一个陈述句,它可以是真或假,可以通过推理和证明来确定其真假性。

2.命题的分类根据命题的内容和形式,我们可以将命题分为两类:肯定命题和否定命题。

肯定命题是对某件事情的肯定判断,例如“太阳从东方升起”;否定命题则是对某件事情的否定判断,例如“月亮不是地球的卫星”。

3.命题的通俗解释要理解命题的通俗解释,我们可以从日常生活中的例子入手。

比如,我们可以用命题来描述一个人的身高、体重、年龄等属性。

假设有一个人叫张三,我们可以用命题来表达关于张三的信息,如“张三身高170 厘米”、“张三体重60 公斤”等。

这些命题都是对张三属性的陈述,我们可以通过观察和测量来验证这些命题的真假。

4.命题的逻辑关系在逻辑学中,命题之间存在一定的逻辑关系。

主要包括以下几种关系:且(∧)、或(∨)、非()、蕴含(→)等。

这些逻辑关系可以帮助我们更好地理解和分析命题,判断它们之间的逻辑联系。

5.命题的重要性命题在人类认识世界的过程中具有重要意义。

通过命题,我们可以表达观点、陈述事实、进行推理和论证。

在科学研究中,命题是构建理论体系的基础,它们帮助我们揭示自然规律、探索未知领域。

此外,在日常生活和交流中,命题也起着关键作用,它们帮助我们表达思想、传递信息、解决争端等。

总之,命题是一种对事情的陈述或判断,它在逻辑学、科学研究以及日常生活中具有重要意义。

命题的概念和例子

命题的概念和例子

要点三
真值与逻辑值的关系
真值是命题本身的属性,而逻辑值是 命题在逻辑运算中的取值。因此,一 个命题的真值决定了它在逻辑运算中 的逻辑值。例如,在二值逻辑中,如 果一个命题是真的,那么它的逻辑值 为“1”,否则为“0”。
02
CATALOGUE
简单命题及例子
原子命题
定义:原子命题是逻 辑中最基本的命题单 位,它不能再被进一 步分解为更简单的命 题。原子命题通常表 示一个具体的陈述或 事实。
推理规则在复合命题中应用
析取推理
对于复合命题“P或Q”,如果已知其中一个命题是假的, 则可以推出另一个命题是真的。
合取推理
对于复合命题“P且Q”,如果已知其中一个命题是真的,则 不能推出另一个命题的真假;但如果已知其中一个命题是假的
,则可以推出整个复合命题是假的。
假言推理
对于复合命题“如果P,则Q”,如果已知P是真的且Q是假的 ,则可以推出整个复合命题是假的;如果已知Q是真的,则不
判断步骤
根据联结词的性质,计算复合命 题在每个组合下的真值。
真值表定义:真值表是一种列出 命题逻辑中所有可能的真值组合 ,并根据这些组合确定复合命题 真值的表格。
列出所有原子命题的所有可能真 值组合。
将结果填入真值表中,得出复合 命题的真值。
实例分析
实一
考虑命题“P:今天下雨”和“Q:我去散步”。复合命题“P并且Q”表示“今天下雨并且我去散步 ”。根据真值表,当P和Q都为真时,“P并且Q”才为真。
语句可以是陈述句、疑问句、感叹句 等,而命题只能是陈述句。此外,语 句的真假值可能因人而异或随时间变 化,而命题的真假值是确定的。
真值与逻辑值
要点一
真值概念
真值是指命题的真假值,即命题所表 达的陈述是否为真。在数学逻辑中, 真值通常用“真”和“假”或“1” 和“0”来表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极小项 极小项
极小项
~P∧~Q∧R ~P∧Q∧R
P∧Q∧R
2019/12/29
计算机学院
14
将极小项全部进行析取后,可得到相应的主析 取范式:
G=(P→Q)R = ( ~ P∧ ~ Q ∧ R ) ∨ ( ~ P∧ Q ∧ R ) ∨
(P∧Q∧R)
2019/12/29
计算机学院
15
例2
2019/12/29
计算机学院
5
二、基本要求
能准确地将给定命题符号化 深刻理解全称量词、存在量词及量词的辖域、
全总个体域的概念 能准确理解约束变元(量)和自由变元的概念 掌握约束变元的改名规则和自由变元的代入
规则 能熟练地运用US、ES、UG、EG规则进行推理
2019/12/29
2019/12/29
计算机学院
7
二、基本要求
1、熟练掌握关系的性质和运算 2、熟练运用Warshall算法计算关系的传递闭包 3、熟练掌握偏序关系的哈斯图的画法以及由哈斯
图给出相应的偏序关系 4、熟练掌握求偏序集中子集的最大元 、最小元 、
极大元、极小元、上界、下界、最小上界、最 大下界的方法 5、熟练掌握利用关系的性质和定义进行证明
2019/12/29
计算机学院
1
第一章
一、基本概念 命题、命题常元、命题变元、命题的解释或
赋值、原子命题(简单命题)、复合命题、否定 联结词、合取、析取、可兼或、不可兼或、条 件、双条件、常值命题、命题变量、命题公式、 命题公式的解释、真值表、永真公式(重言式)、 永假公式(矛盾式,不可满足公式)、可满足公 式、公式的等价、对偶(公)式、对偶原理、 子句、短语、析取范式、合取范式、主析取 (主合取)范式、极小项、极大项
2019/12/29
计算机学院
8
第六章
一、基本概念
复合函数、单射 、满射、双射、置 换、 单位(恒等)置换、循环、逆函数
二、基本要求
1、熟练掌握判断函数是否为单射 、满射、双射 的方法
2、熟练掌握置换的复合运算和置换表示成循环 的积的方法
2019/12/29
计算机学院
9
例1
求G=(P→Q)∧R的主合取范式和主析取范式。 解:(公式转换法) G=(P→Q)∧R=(~P∨Q)∧R(蕴涵) =(~P∨Q∨(R∧~R))∧
2019/12/29
计算机学院
10
G=(P→Q)∧R=(~P∨Q)∧R (蕴涵) =(~P∧R)∨(Q∧R) =(~P∧(~Q∨Q)∧R)∨((~P∨P)∧Q∧R) =(~P∧~Q∧R)∨(~P∧Q∧R)∨ (~P∧Q∧R)∨(P∧Q∧R) (分配律) =(~P∧~Q∧R)∨(~P∧Q∧R)∨(P∧Q∧R) ——主析取范式

故 {P∨Q,P→R,Q→S} S∨R
2019/12/29
计算机学院
16
例3(CP规则)
证明R→S可以从前提
{P→(Q→S),~R∨P,Q}推出
证:① R
P(附加前提)
② ~R∨P
P
③P
T,①,②,I5
④ P→(Q→S) P
⑤ Q→S ⑥Q
T,③,④,I3 P
计算机学院
12
将极大项全部进行合取后,可得到相应的主 合取范式:
G=(P→Q)∧R =(P∨Q∨R)∧(P∨~Q∨R)∧(~P∨Q∨R)∧ (~P∨Q∨~R)∧(~P∨~Q∨R)
2019/12/29
计算机学院
13
2)、求公式的主析取范式
P Q R (P→Q)∧R 000 0 001 1 010 0 011 1 100 0 101 0 110 0 111 1
求证 S∨R是 前提{P∨Q ,P→R, Q→S} 的有效结论。
(构造性二难推论)
证:步骤 公式
依据(注释)


P∨Q
P

② ~P→Q


Q→S
T,①,E12 P

④ ~P→S

⑤ ~S→P


P→R
T, ②, ③,I6 T,④,E14,E1 P

⑦ ~S→R
T,⑤,⑥,I6


S∨R
T,⑦,E12,E1
计算机学院
6
第三、四、五章
一、基本概念 幂集、笛卡尔集、关系、n元关系、空关
系、二元关系、全关系、关系矩阵;关系的交、 并、补、差、复合、幂、逆;自反闭包、对称 闭包、传递闭包;等价关系、以m为模的同余 关系、等价类、生成元、偏序关系、偏序集、 偏序集的哈斯图、最大元 、最小元 、极大元、 极小元、上界、下界、最小上界、最大下界、 全序关系、良序关系、良序集
2019/12/29
计算机学院
2
二、基本要求
1、深刻理解五种常用联结词的涵义,并能准确 地应用它们将基本命题及复合命题符号化。
2、熟练地写出给定命题公式的真值表 3、牢记基本等价式的名称及它们的内容; 4、熟练地应用基本等价式及置换规则进行等价
演算 5、熟练掌握求主析取(主合取)范式的方法
2019/12/29
((~P∧P)∨(~Q∧Q)∨R)(添加R、P、Q) =(~P∨Q∨R)∧(~P∨Q∨~R)∧ (~P∨~Q∨R)∧(~P∨Q∨R)∧ (P∨~Q∨R)∧(P∨Q∨R) (分配律) =(P∨Q∨R)∧(P∨~Q∨R)∧(~P∨Q∨R)∧ (~P∨Q∨~R)∧(~P∨~Q∨R)(结合律) -----主合取范式
2019/12/29
计算机学院
11
真值表技术法
1)、求公式的主合取范式
PQR 000 001 010 011 100 101 110 111
(P→Q) ∧R
0 1 0 1 0 0 0 1
极大项
极大项
极大项 极大项 极大项
P∨Q∨R
P∨~Q∨R
~P∨Q∨R ~P∨Q∨~R ~P∨~Q∨R
2019/12基本蕴涵关系式和蕴涵的基本 性质
7、牢记各条推理规则的内容及名称 8、熟练掌握推理的各种方法(直接法、利用CP
规则、反证法)
2019/12/29
计算机学院
4
第二章
一、基本概念
全总个体域(全论域)、全称量词、存在量词、 特性谓词、指导(作用)变元、辖域(作用域)、约 束变元、自由变元、约束变元的改名规则、自由变元 的代入规则、常量符号、变量符号、函数符号、谓词 符号、谓词公式、公式的解释、永真公式(重言式) 、 永假公式(矛盾式,不可满足公式)、可满足公式、 前束范式、母式、前束合取(或析取)范式、Skolem范 式、US(全称指定规则)、ES(存在指定规则)、UG(全 称推广规则)、EG(存在推广规则)
相关文档
最新文档