血药浓度-时间曲线

合集下载

药动学 出现双峰的可能原因-概述说明以及解释

药动学 出现双峰的可能原因-概述说明以及解释

药动学出现双峰的可能原因-概述说明以及解释1.引言1.1 概述药物动力学是研究药物在体内转化和排泄的科学,它对药物在体内的吸收、分布、代谢和排泄过程进行深入探究。

在药物动力学的研究中,常常会遇到一种现象——药物血浆或组织中的浓度-时间曲线呈现出双峰形态。

双峰现象是指药物在体内给药后,在药物浓度-时间曲线上出现两个峰值的现象。

一般情况下,药物的浓度-时间曲线表现为单峰形态,即药物浓度逐渐升高到达峰值,然后缓慢降低。

然而,当某些特定情况下,药物在体内的转化和排泄过程发生问题时,会导致药物浓度-时间曲线呈现出双峰形态。

双峰现象可能原因很多,其中之一是口服给药后的肠道药物吸收不完全或受到肠道内容物的影响。

例如,当药物遇到食物或其他药物时,药物的吸收速度可能会变慢或受到抑制,导致药物在体内的浓度-时间曲线出现双峰。

另外,双峰现象也可能与药物的代谢和排泄过程有关。

药物在体内经过代谢后,产生的代谢产物可能会再次被吸收,因此在药物浓度-时间曲线上会出现第二个峰值。

此外,药物在体内的排泄速度也可能影响药物浓度-时间曲线的形状,当药物在体内的排泄速度较慢时,可能会导致药物浓度-时间曲线出现双峰。

总之,双峰现象是药物动力学中一种常见的现象,可能是由于药物的吸收、代谢和排泄等过程发生问题导致的。

进一步研究和探索双峰现象的原因,有助于我们更好地理解药物在体内的转化和排泄过程,为临床用药提供指导和参考。

1.2 文章结构文章结构部分的内容应该包括对整篇文章的组织结构进行介绍和解释。

在这一部分,读者可以了解到文章的整体框架,明确各个章节的主要内容和顺序安排。

文章结构的编排要紧扣主题,清晰明了,使读者能够迅速把握文章的逻辑脉络。

以下是对文章结构进行说明的参考内容:本文主要探讨药动学中出现双峰现象的可能原因。

为了让读者更好地理解本文的内容,文章按照如下结构进行组织:第一部分是引言。

在引言中,我们将简要概述药动学和双峰现象的背景和相关概念。

第八章 单室模型(血管外).

第八章 单室模型(血管外).

(二)曲线下面积AUC
1.积分法
AUC 0 M e kt e k t dt 0

a

M kt M e d kt 0 k ka M M 0 1 0 1 k ka M M k ka FX 0 kV
ci 1 ci cn AUC 0 ti 1 t i 2 k i 0
n 1
(三)k和ka的计算
1.残数法: 是药物动力学中把一条曲线分解成若干指数成分,从 而求药动学参数的方法。 在单室模型和二室模型中均有应用。 总之,凡C-T曲线为多项指数时,均可采用此方法。
该式为待排泄的原型药物量与时间t的关系。
当ka>k,t充分大时,e
u
-ka t
0
X k kt X Xu e ka k
X k k lg( X X u ) lg t ka k 2.303
u u a
u a

lg( X u X u ) 对t作图,从直线的斜率可求出K。
对上式积分得
( X A )t VCt KV Cdt
0
t
其中,(XA)t为t时间体内已吸收的药量,Ct为t时的血药浓度
( X A )t VCt KV Cdt
0
t
当t→∞时
( X A ) KV Cdt
0
其中,(XA) ∞为体内完全被吸收的药量。
( XA)t VCt kV 0 Cdt Ct k 0 Cdt 吸收分数 XA kV Cdt k Cdt 0
dX u / dt 故 C= keV
(dX u / dt) k dX u 1 d . ke dt ke dt

[管理]血药浓度随时间变化的规律及药动学参数

[管理]血药浓度随时间变化的规律及药动学参数

血药浓度随时间变化的规律及药动学参数血药浓度随时间变化的规律及药动学参数(一)药时曲线用药后药物在体内的浓度可因转运或转化以致随时间而变化,药效也随着浓度而变化,如以曲线表示,则前者称时量关系曲线(Time-concentration Relationship Curve),后者为时效关系曲线(Time-response Relationship Curve)。

以非静脉一次给药为例,药物的时量关系和时效关系经历以下三个阶段:潜伏期-持续期-残留期。

潜伏期:用药后到开始出现作用的时间,反映药物的吸收和分布;持续期:药物维持有效浓度的时间;残留期:药物浓度已降至最小有效浓度以下时,但尚未从体内完全消除的时间。

(三)药物的消除动力学:血药浓度不断衰减的动态变化过程。

药物的消除:药物经生物转化和排泄使药理活性消失的过程。

药物的消除动力学有两种:1、一级消除动力学:指单位时间内药物按恒定的比例消除。

即血液中药物的消除速率与血中的药物浓度成正比,机体的血药浓度高,其单位时间内消除的药量多,消除速度随血药浓度下降而降低。

在血药浓度下降以后,药物的消除仍然按比率消除,故又称之为药物的恒比消除。

大多数药物按此方式消除。

如每小时消除1/2。

2、零级消除动力学:指单位时间内药物按恒定数量进行的消除。

即不论血浆药物浓度高低,单位时间内消除的药物量不变。

故又称之为药物的恒量消除。

常为药量过大,超过机体最大消除能力所致。

如每小时消除100mg/h。

(三)药物的消除动力学:血药浓度不断衰减的动态变化过程。

药物的消除:药物经生物转化和排泄使药理活性消失的过程。

药物的消除动力学有两种:1、一级消除动力学:指单位时间内药物按恒定的比例消除。

即血液中药物的消除速率与血中的药物浓度成正比,机体的血药浓度高,其单位时间内消除的药量多,消除速度随血药浓度下降而降低。

在血药浓度下降以后,药物的消除仍然按比率消除,故又称之为药物的恒比消除。

大多数药物按此方式消除。

药代动力学参数汇总

药代动力学参数汇总
Css,min
稳态最低观测浓度
CL
清除率
CLss
静脉给药稳态清除率
CL/F
表观清除率
CLss/F
口服给药稳态清除率
CLR
肾清除率
DF
波动指数
fe
累积排泄分数
λz
消除速率常数
MIC
最低抑菌浓度
PD
药效学
PKS
药代动力学分析集
PKCS
药代动力学浓度分析集
PKPS
药代动力学参数分析集
Rac (AUC)、Rac(Cmax)蓄Biblioteka 比t1/2消除半衰期
Tmax
达峰时间
Tss,max
稳态达峰时间
Vz
分布容积
Vss
静脉输注稳态分布容积
Vz/F
表观分布容积
缩略语
英文全称
中文全称
%AUCex
Percentage ofthe area undertheconcentration-timecurvethathasbeenderived afterextrapolation
Rac(AUC)
AUC0-tau药物蓄积比,用AUC0—tau末剂/AUC0-24首剂计算
Rac(Cmax)
Cmax药物蓄积比,用Cssmax末剂/Cmax首剂计算
DF
波动指数,计算公式为100*(Css,max-Css,min)/Cavg
PD
Pharmacodynamics
药物效应动力学,就是研究药物对机体得作用及其规律,阐明药物防治疾病得机制,如,药物与器官得靶分子或靶细胞得相互作用等。
Tmax
Time toreach maximumconcentration

一期临床主要参数

一期临床主要参数

1、血药浓度-时间曲线下面积(AUC):全称为area under concentration-time curve。

代表药物的生物利用度(药物活性成分从制剂释放吸收进入全身循环的程度和速度),AUC大则生物利用度高,反之则低。

AUC0-∝指药物从零时间至所有原形药物全部消除这一段时间的药-时曲线下总面积,反映药物进入血循环的总量。

2、生物利用度(bioavailability,F)是指药物经血管外途径给药后吸收进入全身血液循环的相对量。

F=(A/D)X100%。

A为体内药物总量,D为用药剂量绝对生物利用度是指该药物静脉注射时100%被利用,该药物的其它剂型与其剂量相等时被机体吸收利用的百分率;相对生物利用度则是以某种任意指定的剂型(如口服水制剂)为100%被利用,然后测定该药物其它剂型在相同条件下的百分利用率。

生物利用度与药物疗效密切相关,特别是治疗指数窄、剂量小、溶解度小和急救用的药物,其生物利用度的改变,对临床疗效的影响尤为严重,生物利用度由低变高时,可导致中毒,甚至危及生命。

反之则达不到应有疗效而贻误治疗。

AUC是评定生物利用度的最可靠的指标。

3、表观分布容积(apparent volume of distribution, Vd)是指当药物在体内达动态平衡后,体内药量与血药浓度之比值称为表观分布容积。

Vd可用L体重表示。

Vd=给药量*生物利用度/血浆药物浓度Vd≈5L 表示药物大部分分布于血浆Vd≈10~20L 表示药物分布于细胞外液Vd≈40L 表示药物分布于全身体液Vd >100L 表示药物集中分布至某个组织器官或大范围组织内Vd越小,药物排泄越快,在体内存留时间越短;分布容积越大,药物排泄越慢,在体内存留时间越长。

4、半衰期(Half-life,t1/2)一般指药物在血浆中最高浓度降低一半所需的时间。

反映了药物在体内消除(排泄、生物转化及储存等)的速度,表示了药物在体内的时间与血药浓度间的关系,它是决定给药剂量、次数的主要依据,半衰期长的药物说明它在体内消除慢,给药的间隔时间就长;反之亦然。

药代动力学

药代动力学

1 1 = + = MRTiv + MAT k ka
MAT:平均吸收时间 : 3.短时间静脉滴注给药 短时间静脉滴注给药
T MRT = MRTiv + 2
MAT=1/Ka
T为滴注时间 为滴注时间
三、稳态表观分布容积
Vss可在药物单剂量静注后通过清除率与平均驻留时 可在药物单剂量静注后 静注后通过清除率与平均驻留时 间积进行计算
种属间比放( scaling) 种属间比放(species scaling) 方法: 方法:
1,体形变异法(异速增大方程) 体形变异法(异速增大方程) 2,生理学药代动力学模型
一、体形变异法
变异增大方程(异速增大方程,allometric expression) 变异增大方程(异速增大方程, expression) 多种生理学参数与体重满足变异增大方程 F(B): F(B)= F(B)=αBβ F(B):有关解剖生理学参数 B:体重 lg F(B)对lgB做直线回归 α:体形变异系数 F(B)对lgB做直线回归 斜率为β β:体形变异指数 药物间的主要差别在于α 药物间的主要差别在于α 多数组织重量的β约等于1 多数组织重量的β约等于1 之间( 与机体功能有关的β 0.65-0.8之间 GFR,耗氧量等) 与机体功能有关的β在0.65-0.8之间(GFR,耗氧量等)
第 3节
生理药物代谢动力学模型
一、生理药物代谢动力学模型的基础
性质:建立在机体的生理、 性质:建立在机体的生理、 生化、 生化、解剖和药物热力学 性质基础上的一种整体模型
二、药物在组织中的命运
基于生理特性的组织 房室模型
药量变化速率=进入速率 输出速率-消除速率 合成速率 药量变化速率 进入速率-输出速率 消除速率+合成速率 进入速率 输出速率 消除速率 血流灌注速率限制性模型(perfusion血流灌注速率限制性模型(perfusion-rate limited) 药物进入组织中的速率主要受组织血流灌注速率的控制 膜限制模型(membrane 膜限制模型(membrane limited) 毛细血管膜的通透性成为药物进入组织的主要限制因素。 毛细血管膜的通透性成为药物进入组织的主要限制因素。 如脑、 如脑、睾丸等

药动学概述

药动学概述

药动学概述学习要点:1.药动学基本参数及其临床意义2.房室模型:单室模型、双室模型、多剂量给药3.非线性动力学4.给药方案设计5.个体化给药6.治疗药物监测7.新药药动学研究8.生物利用度9.生物等效性药物动力学(药物代谢动力学、药代动力学)——研究药物在体内的动态变化规律,定量描述需要搞懂药动学的三大人群新药研发临床试验临床药师一、药动学基本概念1.血药浓度-时间曲线(药时曲线)药动学的研究中,将药物制剂通过适当的方式给予受试者,然后按照适当的时间间隔抽取血样,检测血样中的药物浓度,每一个取血时间点有一个对应的药物浓度,由此就得到一系列的血药浓度相对于时间的实验数据,简称为药-时数据。

将其用坐标图表示,称为血药浓度-时间曲线(药-时曲线)2.治疗浓度范围(治疗窗)治疗窗窄的药物,其治疗浓度相对较难控制,易发生治疗失败或不良反应,常需进行治疗药物监测。

3.血药浓度与药物效应的关系大多数药物进入体内后,血中的药物浓度与药物作用靶位的实际浓度呈正相关,从而间接反映药物的临床效应,包括治疗效果及不良反应。

部分药物在血液中可能与血浆蛋白结合,药物的存在形式包括结合型与游离型,只有游离型药物能通过生物膜到达作用部位。

血液中的游离型药物浓度常与总浓度保持一定的比例,药动学中常以血液中的药物总浓度作为观察指标。

4.药物转运的速度过程①一级速度过程速度与药量或血药浓度成正比。

②零级速度过程速度恒定,与血药浓度无关恒速静滴给药速度、控释制剂药物释放速度、酶饱和后转运③受酶活力限制的速度过程(Michaelis-Menten型、米氏方程)浓度影响反应速度,药物浓度高出现酶活力饱和。

高浓度零级,低浓度一级5.药动学常用参数药动学参数计算含义速率常数k(h-1、min-1)吸收:k a消除k=k b+k e+k bi+k lu…速度与浓度的关系,体内过程快慢生物半衰期(t1/2)t1/2 =0.693/k消除快慢——线性不因剂型、途径、剂量而改变,半衰期短需频繁给药表观分布容积(V)V=X0/C0表示分布特性——亲脂性药物,血液中浓度低,组织摄取多,分布广(地高辛vs利福平)清除率Cl=kV 消除快慢A:关于药动力学参数说法,错误的是A.消除速率常数越大,药物体内的消除越快B.生物半衰期短的药物,从体内消除较快C.符合线性动力学特征的药物,静脉注射时,不同剂量下生物半衰期相同D.水溶性或者极性大的药物,溶解度好,因此血药浓度高,表观分布容积大E.清除率是指单位时间内从体内消除的含药血浆体积『正确答案』DA:地高辛的表观分布容积为580L,远大于人体体液容积,原因可能是A.药物全部分布在血液B.药物全部与血浆蛋白结合C.大部分与血浆蛋白结合,与组织蛋白结合少D.大部分与组织蛋白结合,药物主要分布在组织E.药物在组织和血浆分布『正确答案』DA:某药物按一级速率过程消除,消除速率常数k=0.095h-1,则该药物消除半衰期t1/2约为A.8.0hB.7.3hC.5.5hD.4.0hE.3.7h『正确答案』BA:静脉注射某药,X0=60mg,若初始血药浓度为15μg/ml,其表观分布容积V是A.0.25LB.2.5LC.4LD.15LE.40L『正确答案』CA.0.2303B.0.3465C.2.0D.3.072E.8.42给某患者静脉注射一单室模型药物,剂量为100.0mg,测得不同时刻血药浓度数据如下表。

血药浓度一时间曲线的意义峰值Cma课件

血药浓度一时间曲线的意义峰值Cma课件

其他方法
如荧光法、质谱法等,根 据不同药物和检血药浓度是影响药物疗效的重要因素之一。在一定范围内, 药物疗效随血药浓度的增加而增强,但当血药浓度超过一定 范围时,可能会出现不良反应或毒性作用。
不同药物在体内的药效学和药动学特征不同,因此血药浓度 与药物疗效之间的关系也不同,需要根据具体药物和临床情 况进行分析。
血药浓度一时间曲 线的意义峰值cma 课件
目 录
• 血药浓度一时间曲线的临床意义 • 血药浓度一时间曲线在药物研发
• 血药浓度一时间曲线在医学教育
01
血药浓度一时间曲线的基 本概念
定义与意义
定义
血药浓度一时间曲线是指药物在体内 吸收、分布、代谢和排泄过程中,不 同时间点上血药浓度的变化曲线。
意义
峰值与不良反应的关系
一些药物在达到一定峰值后,继续增加给药剂量可能导致不良反应的发生。因此,在选择给药方案时需要综合考 虑峰值与不良反应之间的关系,以制定合理的用药方案。
03
血药浓度一时间曲线的临 床意义
指导临床用药
根据血药浓度一时间曲线,医生可以了解药物在体内的吸 收、分布、代谢和排泄情况,从而制定合理的用药方案, 包括给药剂量、给药间隔和给药途径等。
联合用药方案制定
通过比较不同药物的血药浓度一时间曲线,可以制定联合用药方案,提高药物的协同作用和治疗效果。
05
血药浓度一时间曲线在医 学教育中的价值
提高医学生对药物作用机制的认识
血药浓度一时间曲线能够直观地展示 药物在体内的动态变化过程,帮助医 学生深入理解药物的作用机制和药代 动力学特点。
通过分析曲线变化趋势,医学生可以 了解药物在不同时间点的浓度,从而 理解药物如何发挥作用,以及其在体 内的代谢和排泄过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档