211一元二次方程(第一课时)课件

合集下载

一元二次方程ppt课件

一元二次方程ppt课件

教法学法
教材分析
学情分析 教学目标 重点难点
教法学法 教学步骤 教学过程 板书设计
学法:
已有知识
观察 合作 分析 思考 运用 自主探究 自我建构
新学知识
教法:
启发探究式 小组合作交流 多媒体辅助教学
教学步骤
教材分析
学情分析 教学目标 重点难点 教法学法
教学步骤 教学过程 板书设计
创设情境 导入新课 对比探究 归纳新知 小试牛刀 当堂反馈 运用新知 解决问题 限时训练 自检自查 课堂小结 回归目标
分式方程
一元二次方程
再认识
实际问题
二 次 函 数 知 识
学情分析
学情分析
知识与技能
整式乘法
一元一次方程的概念 和实际应用 二元一次方程组的概念 和实际应用 分式方程的概念和实 际应用
情感与素养
较为活泼,对新事物好奇心强 具备一定的数学表达能力 学生的学习迁移能力有待提高 数学抽象概括能力有待提高
教学目标
教材分析 学情分析 教学目标 重点难点 教法学法 教学步骤
教学过程
板书设计
(1) 了解一元二次方程的概念及其一般形式,并会判断一元二次方程的 二次项系数、一次项系数和常数项;
(2) 引导学生分析实际问题中的数量关系,类比一元一次方程的概念, 学生自己抽象出一元二次方程的概念;
(3) 对概念中的关键词进行辨析,解决辨析题巩固一元二次方程的概念;
教材分析 学情分析 教学目标 重点难点 教法学法 教学步骤
教学过程 板书设计
二、对比探究——归纳新知
说设计
Q1:你能否将所列方程进行化简整理?
① x2+10x-900=0 ② x2-75x+350=0 ③ x2-x-56=0

21.1一元二次方程-完整版课件PPT

21.1一元二次方程-完整版课件PPT
21.1 一元二次方程
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动1
问题:有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一 个正方形,然后将四周突出部分折起,就能制作一个无盖长方体 盒子.如果要制作的无盖长方体盒子底面积为3600cm²,那么铁皮 各角应切去边长为多少cm的正方形?
(2)为什么要限制a≠0,b、c可以为0吗?
(3)一元二次方程3x2-x+2=0的一次项系数是1吗?为什么?
总结一元二次方程的特殊形式:
当c=0时, ax2 bx 0a 0 当b=0时, ax2 c 0a 0 当b=0,c=0时, ax 2 0a 0
探究一:一元二次方程的概念和一般形式
活动2 一元二次方程的一般形式的应用
例4 若关于x的方程 (m 1)x2 x c x2 是一元二次 方程,求m的取值范围. 【解题过程】
解:原方程整理得(m 2)x2 x c 0, 因其是一元二次方程,所以m-2≠0, 即m≠2.
【思路点拨】先将原方程化为一般形式,再根据一元二次 方程的二次项系数不能为0,求出m的范围.
一元二次方程的一般形式:ax2 bx c 0(a 0)
其中ax2是二次项,a是二次项系数; bx是一次项,b是一次项系数; c是常数项.
探究一:一元二次方程的概念和一般形式
重点、难点知识★▲
活动4 一元二次方程的一般形式: ax2 bx c 0(a 0)
问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
探究二:利用一元二次方程的概念解决简单的问题
重点、难点知识★▲
活动2 一元二次方程的一般形式的应用
练习4:若关于x的方程 (m 1)xm2 1 x c 0 是一元二次 方程,求m的值. 【解题过程】

21.1.1一元二次方程第1节ppt(共36张)

21.1.1一元二次方程第1节ppt(共36张)
第30页,共36页。
课内练习
1.下列(xiàliè)方程中是一元二次方程的为( C )
(A)、x2+3x= 2
x2
(B)、2(X-1)+3x=2
(C)、x2=2+3x
(D)、x2+x3-4=0
第31页,共36页。
把一元二次方程(x-√5 )(x+√5 )+(2x-1)2 =0 化为一般形式(xíngshì),正确的是(A )
③未知数的最高次数是2。
一元二次 方程是刻 画现实世 界的一种 数学模型
像这样的等号两边都是整式, 只含有一个未知数,并且 未知数的最高次数是2(二次)的方程叫做一元二次方程。
第5页,共36页。
例1:判断(pànduàn)下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
第36页,共36页。
第17页,共36页。
3 4x x 2 25 43x 2 x 1 8x 3
3 4xx 2 25
一般(yībān) 式:
二次项系数为4,一次项系数8,常数项-25.
4 3x 2x 1 8x 3
一般式: 3x2 7x 1 0.
二次项系数为3,一次项系数-7,常数项1.
第18页,共36页。
第16页,共36页。
例: 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式, 并写出其中(qízhōng)的二次项系数,一次项系数及常数项.
解:去括号,得
3x2-3x=5x+10.
移项,合并同类项,得一元二次方程的一般 形式:
3x2-8x-10=0.
其中二次项系数为3,一次项系数为-8,常数项为-10.

一元二次方程(第一课时)PPT课件

一元二次方程(第一课时)PPT课件

①为一元一次方程;2020年源自0月2日②为一元二次方程?
6
讨论:一元二次方程的一般形式: ax2+bx+c=0(a、b、c是已知数,a≠0) 中,只限制了a≠0,那么b、c的值如何考 虑?(若b、c中的一个或两个也为0时会 怎样)
2020年10月2日
7
例4.判断下列方程是否一元二次方程,并
说明理由。
(3) 9(2x-1)2= 16 (4) (x-1)2=x-1
2020年10月2日
5
例2.方程(m-5)(m-3)xm-2+(m-3)x+5=0 中,当m为何值时,此方程为一元二次方 程?
解:若此方程为一元二次方程,则有:
m22
m5m30
例3. m为何值时,方程
(m-1)x2+2mx+(m-2)=0为
2020年10月2日
1
问题一
绿苑小区住宅设计,准备在每两幢楼房 之间,开辟面积为900平方米的一块长 方形绿地,并且长比宽多10米,那么绿 地的长和宽各为多少?
解:设长方形绿地的宽为x米, 可得 方
程:
x(x+10)=900
整理可得:
x2+10x-900=0. (1)
2020年10月2日
2
问题2 学校图书馆去年年底有图书5万册,预 计到明年年底增加到7.2万册.求这两年 的年平均增长率.
(1) 2x2-x-3√=0 (2)(3) √t2=0
× 1.(5) x2-2y-1=0
(7) x2 3x 2
× (8)(39x) 2 460 × x
2020年10月2日
(2) y y2 0
× 4 × (4) x3-x2=1
× (6)1 3 0 x2

21一元二次方程1课件

21一元二次方程1课件
因所为以:x左=-边1是=方右程边的解。 当x=0时,左边=02 -2=-2 右边=0
因为:左边≠右边
所以x=0不是方程的解。
一元二次方程的解:能使一元二次方程两边相等 的未知数的值叫一元二次方程的解或根。
17
练一练
1、判断下列各题括号内未知数的值是不是方程的根:
(1)x2-3x+2=0
(x1=1 x2=2 x3=3)
(2) ? 2x2 ? 5x ? 3 ? 0.答:a=-2, b=-5, c= 3.
(3) 3x2 ? 5x ? 2. ? 3x2 ? 5x ? 2 ? 0.
答:a=3, b=-5, c= 2.
? (4) 2x ? 1?3?x ? 2?? 3. ? 6x2 ? 4x? 3x? 2 ? 3,
? 6x2 ? x? 5 ? 0.
2001
2002
2003 年份
5
4、一个包装盒的表面展开图如图,包装盒的容积为 750cm3.请列出关于 x的方程.
30
x
x
单位:cm
15
15x(30-2x)÷2=750
x2-
15x+50=0
6
观察所列方程
(1) x2+5x=150. (2) x 2 ? 3 x ? 4
(3)6700 ? 13400 x ? 6700 x2 ? 9200
的二次项系数、一次项系数和常数项:
方程
一般形式
3x2=5x-1
3x25x+1=0
(x+2)(x -1)=6 x2+x-8=0
二次项 系数
3
1
一次项 系数
-5
常数项
1
1 -8
4-7x2=0

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程

《认识一元二次方程》一元二次方程PPT(第1课时)教学课件

《认识一元二次方程》一元二次方程PPT(第1课时)教学课件
102+112+122=132+142.
你还能找到五个连续整数,使前三个数的平方 和等于后两个数的平方和吗?
如果将这五个连续整数中的第一个数设为x,那 么怎样用含x的代数式表示其余四个数?根据题意, 你能列出怎样的方程?
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地 面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯 子的底端滑动多少米?
(来自《点拨》)
知3-练
1 随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计, 2014年约为20万人次,2016年约为28.8万人次,设观赏人数年 均增长率为x,则下列方程中正确的是( ) A.20(1+2x)=28.8 B.28.8(1+x)2=20 C.20(1+x2)=28.8 D. 20+(1+2x)+20(1+x)2=28.8
油利画用的长面方积形与的整面个积挂公 图式的和面油积画.面积与整个
90+2x
挂图面积之间的关系
解:(90+2x)(40+2x)×54%=90×40.
列(方来程自《点拨》)
总结
知3-讲
建立一元二次方程模型解决实际问题时,既要 根据题目条件中给出的等量关系,又要抓住题目中隐 含的一些常用关系式(如面积公式、体积公式、利润 公式等)进行列方程.
到右依次填写28,18,10,4. (4)通过分析表格中的数值,估计方程的解,对表格中所填数值
的分析应至少包括以下两个方面:①表格中,当x的值从小到 大变化时,(8-2x)(5-2x)的值逐渐减小,经历了从大于 18到等于18再到小于18的过程. ②由表格可知,当x=1时, (8-2x)(5-2x)-18,由方程的解得意义,可以得出“x-1是 方程,(8-2x)(5-2x)-18的解得结论,从而所求宽度为1 m.

一元二次方程(第一课时)课件

一元二次方程(第一课时)课件

02
理解一元二次方程的解 法,并能够灵活运用。
03
通过练习题巩固所学知 识,提高解题能力。
04
为下节课学习一元二次 方程的应用做好准备。
感谢您的观看
THANKS
一元二次方程(第一课时 )ppt课件
目 录
• 引言 • 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的根的性质 • 课堂练习与解答 • 总结与回顾
01
引言
课程背景
01
一元二次方程是初中数学的重要 内容,是代数知识的基础之一。
02
通过学习一元二次方程,学生可 以加深对代数概念的理解,提高 解决实际问题的能力。
进阶练习题
总结词
提高解题能力
详细描述
进阶练习题是在基础练习题的基础上进行提升,难度有所增加。这些题目需要学生灵活 运用一元二次方程的知识点,提高解题能力和思维灵活性。
综合练习题
总结词
综合运用知识
详细描述
综合练习题是将一元二次方程与其他知识点 进行综合运用,题目难度较大,需要学生具 备较高的思维能力和综合运用知识的能力。 这类题目有助于培养学生的思维能力和创新 能力。
学习目标
掌握一元二次方程的 标准形式和一般形式 。
能够运用配方法求解 一元二次方程。
理解一元二次方程的 解的概念和解的判别 式。
02
一元二次方程的定义
一元二次方程的数学定义
总结词
一元二次方程是只含有一个未知 数,且未知数的最高次数为2的方 程。
详细描述
一元二次方程的标准形式是 ax^2 + bx + c = 0,其中 a、b、c 是 常数,且 a ≠ 0。这个方程表示 一个未知数 x 的二次方程,其中 x 的最高次数是2。根与系数的关系根 Nhomakorabea系数的关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档