第二章 导数与微分 习题课2
同济大学数学系《高等数学》(第7版)(上册)教材包含 笔记 课后习题 考研真题 导数与微分(圣才出品

区间 Ix={x|x=f(y),y∈Iy}内也可导,且
f 1 x
f
1
y
或
dy dx
1 dx
dy
3.复合函数的求导法则
如果 u=g(x)在点 x 可导,而 y=f(u)在点 u=g(x)可导,则复合函数 y=f[g(x)]
在点 x 可导,且其导数为
dy f ug x或 dy dy du
dx
dx du dx
u nv
nu n1v
nn
1
u
n2 v
...
n
n
1... n
k
1
u
nk
v
k
... uv
n
2!
k!
或
uv n n Cnkunkvk k 0
四、隐函数及由参数方程所确定的函数的导数
1.隐函数的导数
(1)隐函数 F(x,y)=0 导数的求法
把函数方程两边分别对 x 求导,然后化简得到 dy/dx 的结果。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 2 章 导数与微分
2.1 复习笔记
一、导数概念
1.导数
(1)导数与导函数
①导数的定义
f
x0
lim
x0
y x
lim
x0
f
x0
x
x
f
x0
(2)单侧导数
①左导数
f ( x0
)
lim
h0
f
x0 h
h
f
x0
②右导数
(1)参数方程的一阶导数公式
dy dx
dy dt dt dx
高等数学第七版教材答案详解

高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。
如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。
首先,我将给出每章节的课后习题答案。
在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。
你可以根据自己的需要,选择性地查看想要解答的习题。
接下来是课后思考题答案的解析。
这些思考题往往比较有挑战性,需要一定的思考和推导。
我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。
最后,我将给出课后习题的详细解析。
在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。
通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。
总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。
2-6 导数与微分习题课

当0 x 2时, f ( x) 3x2 4x;
2019年12月24日星期二
蚌埠学院 高等数学
9
当x 2时,
f ( 2)
lim
x2
f ( x) f (2) x2
lim x2 ( x 2) 4. x2 x 2
f ( 2)
lim
f (0) lim f (0 x) f (0)
x0
x
lim f (0 x) f (0)
x0
x
f (0).
2 f (0) 0, 即 f (0) 0.
2019年12月24日星期二
蚌埠学院 高等数学
16
例13. 设
x2, f (x)
d(a x ) a x ln adx
d(e x ) e xdx
d (loga
x)
1 dx x lna
d(arcsin x) 1 dx 1 x2
d
(arctan
x
)
1
1 x
2
dx
d(ln x) 1 dx x
d(arccos x) 1 dx 1 x2
d
(arc
cot
x)
2019年12月24日星期二
蚌埠学院 高等数学
13
例9. 设 y xab abx axb , 求 y.
解 y [x(ab ) ] [a(bx ) ] [a(xb ) ]
ab xab 1 (abx ln a) (bx ln b) (axb ln a) (b xb1).
(1)n n! ( x 1)n1
,
高等数学第二章导数与微分习题

h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2
(完整版)第二章导数与微分(答案)

x 第二章导数与微分(一)f X 0 X f X 0Ix 0X3 .函数f x 在点x 0连续,是f x 在点x 0可导的(A )5. 若函数f x 在点a 连续,则f x 在点a ( D )C . a6. f x x 2 在点X 2处的导数是(D ) A . 1 B . 0 C .-1 D .不存在7.曲线y 2x 3 5x 2 4x 5在点2, 1处切线斜率等于(A )A . 8B . 12C . -6D . 68.设y e f x 且fx 二阶可导,则y ( D )A . e f xB f X r e ff X££fX丄2x C . e f x f x D . ef x9.若 f x axe , x 0在x 0处可导,则a , b 的值应为 b sin2x,(A ) A .左导数存在; B .右导数存在; C .左右导数都存在 1 .设函数y f x ,当自变量x 由x 0改变到X ox 时,相应函数的改变量f x 0 x B .f x 0 x C . f x 0X f X 0 f X 。
x2 .设f x 在x o 处可,则limf X 0 B .X oC . f X 0D . 2 f X 0A .必要不充分条件B . 充分不必要条件C .充分必要条件既不充分也不必要条件4.设函数y f u 是可导的,且ux2,则 dy ( C )x 2 B . xf x 2C .2 22xf x D . x f xD .有定义10•若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F x f x g x , G x f x g x 在 x 0 处(A )A •一定都没有导数B •—定都有导数C .恰有一个有导数D •至少一个有导数11.函数fx 与g x 在x 0处都没有导数,则Fxg x 在 x o 处(D )13 . y arctg 1,贝U yxA .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12.已知F xf g x ,在 X X 。
同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。
高等数学课件-习题课2
哈 尔
解 x 0 :f( x ) ( 3 x 2 ) 6 x ;
滨 工
x 0 :f( x ) ( x 2 ) 2 x ;
程 大 学
f(0)lim 2x2x|x|0;
x 0
x
高
f (0)x l i0m f(x)x f(0)
lim2x02; x0 x
等 数 学
f (0)x l i0m f(x)x f(0)
滨
工 解 首,先 f(x)在x0处必须 ,从 连 而 续
程
大
f(00)f(00).
学
f(0 0 ) lism a in x 0 , x 0
高
等
f ( 0 0 ) li [m 1 l n x ) b ( ] b ,
数
x 0
学
b0.
对任意 a ,当 x 给 0 ,f定 (x )都 的 存 ; 在
dy
y
t
dx x t
1
1 1 t2
1 1 t2
2t
t; 2
等
数 学
1
d2y
2 t dx2
(
dy dx
)t
xt
2
1 1 t2
1 t2
4t
例8
用微分法则求函数
y
arctan1 1
x2 x2
的微分和
哈 尔 滨 工 程 大
导数.
解
dy1(111xx22)2d(11xx22)
学
高 等
1(1 11 x x2 2)2(1x2) (2(x 1)d x x 2)(2 1x2)2xdx u vduudv
6x0 lim 6;
x0 x
因 f (0 为 ) f (0 ),所以 f(0)不存 . 在
习题课(导数与微分)
利用 f ( x) 在 x = 1 处可导,则必定连续,从而有 − + a + b = 1 = 1 (a + b + 1) f (1 ) = f (1 ) = f (1) 2 即 a=2 ′ ′ f − (1) = f + (1)
机动 目录 上页 下页 返回 结束
ax + b ,
f (x) =
1 ( a+ b + 1) , 2
解y = − ln( 1 −源自x ), 令 u = 1 − x .
y = – lnu .
.
u′ −1 1 dy dy du = . =− = − = ⋅ ∴ y′ = 1− x u 1− x dx du dx
.
(4)复合函数求导练习 题 复合函数求导练习23题 复合函数求导练习
1
o o
( sin 2 x ) ′ = 2 cos 2 x (e
1 14 (ln(1 − x ))′ = − 1− x 3 o 3 15 (ln 2 x )′ = x
o o
.
21 (arcsin3 x )′ = 22 (e )′ = 2 xe
o x2 o
x2
3 1 − 9x2
16 (e 17
o o
o
3 x +1
)′ = 3e
3 x +1
2 (arctan2 x )′ = 1 + 4 x 2
0
√
).
( (
× ). √ √
).
(
).
(2)判断是非(是: √ 非: × ): 判断是非( 判断是非
.
已知 y = f ( x )在点 x 0 可导 :
f ( x 0 + h) − f ( x 0 ) e . f ′( x 0 ) = lim h→ 0 h f ( x 0 − h) − f ( x 0 ) f . f ′( x 0 ) = lim h→ 0 h f ( x 0 + 3h) − f ( x 0 ) 1 g . f ′( x 0 ) = lim h 3 h→ 0
微积分第二章习题参考答案
f ( 0 )
lim
x 0
(2e x
1) x
1
2,
f ( 0 )
lim
x 0
(x2
bx x
1)
1
b ,
b
2.
当 a 1,b 2时 , f ( x )在 x 0处 可 导 .
5.设 t时 刻 水 面 的 高 度 为 h , 液 面 半 径 为 r ,则 r R h , H
2.当 0时 ,函 数 在 x 0处 连 续 ,
当 0时 ,函 数 在 x 0处 不 连 续 ;
当 1时 ,函 数 在 x 0处 可 导 ,
当 1时 ,函 数 在 x 0处 不 可 导 .
五 .证 明.
设 切 点 为( x0, y0 ),
y( x0 )
a2
x
2 0
y0 x0
y
x
y y( y x ln y) . x( x y ln x)
3.解 : y ln(1 t) ln(1 t),
y(n)
(1)n1 [(1 t)n
1 (1 t)n
](n 1)!.
4.解 : f (0 0 ) lim (2e x a ) 2 a , x 0 f (0 0) lim ( x 2 bx 1) 1, x 0
,
切线方程为
:
y
y0
y0 x0
(x
x0 ),其 截 距 式 为
xy 1,
2 x0 2 y0
切线与两坐标轴构成的三角形面积
S
1 2
| 2x0
|
| 2 y0
|
2a 2为 常 数 ,与 切 点 无 关 .
§2.2求导法则(21-22)
第二章导数与微分习题
第二章-导数与微分习题第二章 导数与微分【内容提要】1.导数的概念设函数y =f (x )在x 0的某邻域(x 0-δ,x 0 + δ)(δ>0)内有定义,当自变量x 在点x 0处有改变量Δx 时,相应地,函数有改变量00()()y f x x f x ∆=+∆-.若0→∆x 时,极限xyx ∆∆→∆0lim 存在,则称函数y =f (x )在x =x 0处可导,称此极限值为f(x)在点x 0 处的导数,记为)(0x f '或)(0x y '或|x x y ='或0|d d x x xy=或0|d d x x xf=+→∆0x 时,改变量比值的极限xyx ∆∆+→∆0lim 称f(x)在x 0处的右导数,记为)(0x f +'。
-→∆0x 时,改变量比值的极限xy x ∆∆-→∆0lim 称f(x)在x 0处的左导数,记为)(0x f -'。
2.导数的意义导数的几何意义:)(0x f '是曲线y =f (x )在点(x 0,y 0)处切线的斜率,导数的几何意义给我们提供了直观的几何背景,是微分学的几何应用的基础。
导数的物理意义:路程对时间的导数)(0t s '是瞬时速度v (t 0) 。
以此类推,速度对时间的导数)(0t v '是瞬时加速度a (t 0)。
3.可导与连续的关系定理 若函数)(x f y =在点x 0处可导,则函数在点x 0处一定连续。
此定理的逆命题不成立,即连续未必可导。
4.导数的运算定理1(代数和求导法则)若u (x )和v (x )都在点x 处可导,则v u v u '±'='±)(定理2(积的求导法则)若u (x )和v (x )都在点x 处可导,则v u v u uv '+'=')(定理3(商的求导法则)若u (x )和v (x )都在点x 处可导,且v (x )≠0,则2v v u v u v u '-'='⎪⎭⎫ ⎝⎛定理4 若函数)(x g u =在点x 处可导,且)(u f y =在其相应点u 处可导,则复合函数)]([x g f y =在x 处可导,且xu x u y y '⋅'=' 或d d d d d d y y u x u x=⋅5.基本初等函数求导公式本节中我们已求出了所有基本初等函数的导数,整理所下:)(='C1)(-='μμμx xaa a x x ln )(=' xx e )e (='ax x a ln 1)(log =' xx 1)(ln ='xx cos )(sin =' xx sin )(cos -=' xx 2sec )(tan =' xx 2csc )(cot -=' xx x tan sec )(sec =' xx x cot csc )(csc -= 211)(arcsin x x -='211)(arccos x x --='211)(arctan xx +=' 211)cot arc (x+-='这些基本导数公式必须熟记,与各种求导法则、求导方法配合,可求初等函数的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分, lim (A)-1; (C)1;
y dy x
x 0
等于( (B)0; (D) .
)
10、设函数 y f ( x ) 在点 x 0 处可导,且 f ( x 0 ) 0 , 则 lim (A)0; (C)1;
y dy x
x 0
等于( ). (B)-1; (D) .
)
6、已知函数 f ( x ) 具有任意阶导数,且
f 整数时,
2
f ( x ) 的 n 阶导数 f (A)n![ f ( x )]
n1
(n)
( x ) 是(
)
n1
;
(B) n[ f ( x )]
;
(C) [ f ( x )] ;
1 ( x 1)
n1
1 ( x 1)
n 1
].
一、选择题:
测验题
)
1、函数 f ( x ) 在点x 0 的导数 f ( x 0 ) 定义为( (A)
f ( x 0 x ) f ( x 0 ) x f ( x 0 x ) f ( x 0 )
x f ( x) f ( x0 )
3
三、证明 x e sin t , y e cos t 满足方程
t
t
( x y)
2
d y dx
2
2
2( x
dy
y) .
dx g ( x ) cos x ,x 0 四、已知 f ( x ) 其中g ( x ) 有二阶连 x a , x 0
续导数,且 g ( 0) 1 , 1、确定 a 的值,使 f ( x ) 在x 0 点连续; 2、求 f ( x ) 五、设 y x ln x , 求 f
例6
设y x (sin x )
cos x
, 求 y .
解
y y(ln y ) y(ln x cos x ln sin x )
x (sin x )
cos x
(
1 x
sin x ln sin x
cos x sin x
2
)
例7
设y
2
4x 1
2
x 1
2
,求 y
x 2t t dy 例3 设 ,求 2 dx y 5t 4t t
t 0
.
解 分析:
当t 0时, t 导数不存在,
dx dy 当t 0时, , 不存在, dt dt
lim y x lim 5( t ) 4t t
2
不能用公式求导.
t[5 4 sgn( t )] 2 sgn( t )
3、若函数 f ( x ) 在点x 0 不连续,则 f ( x ) 在 0 x (A)必不可导; (C)不一定可导; 4、如果 f ( x ) =(
2 2
(
)
(B)必定可导; (D)必无定义. ) ,那么 f ( x ) 0 .
(A) arcsin 2 x arccos x ; (B) sec x tan x ; 2 2 sin x cos (1 x ) ; (C)
2
.
四、1、a g ( 0) ;
x[ g ( x ) sin x ] [ g ( x ) cos x ] ,x 0 2 x 2、 f ( x ) . 1 ( g ( 0) 1), x 0 2 (n) n 2 (1) ( 1) ( n 2)!. 五、 f
dy 8、若函数 f ( x ) 为可微函数,则 (
(A)与x 无关; (B)为x 的线性函数; (C)当 x 0 时为x 的高阶无穷小; (D)与x 为等价无穷小.
)
x x x 9、设函数 y f ( x ) 在点 处可导,当自变量 由 0 增 dy 加到 x 0 x 时,记y 为 f ( x ) 的增量, 为 f ( x ) 的
x 0
t 0
2 t t
lim
t 0
0.
故 dy dx
t 0
0.
例4 设函数y f ( x )由方程 x y
所确定, 求 d y dx
2 2
y
x ( x 0, y 0)
.
1 y y
1 y
解
两边取对数
1 x
ln y
ln x ,
即y ln y x ln x ,
f ( x ) 3 x 4 x; f ( x ) 3 x 4 x;
2
当x 2时,
f ( 2) lim
x2
f ( x ) f ( 2) x2 f ( x ) f ( 2) x2
lim
x2
x ( x 2)
2
x2
x ( x 2)
六、2.09. 20 8.16 (公里/小时). 七、 6
2
(n)
.
解 y
1
4x 1 x 1
2
4x 4 3 x 1
2
n
4
3
2 x 1
(
1
n
1 x 1
)
(
x 1
(n)
)
(n)
( 1) n! ( x 1)
n
n 1
, (
1 x 1
)
(n)
( 1) n! ( x 1)
n 1
,
y
3 2
( 1) n![
解 先去掉绝对值
x ( x 2), x 0 2 f ( x ) x ( x 2),0 x 2, 2 x ( x 2), x 2
2
当x 0时,
f (0) f (0) 0,
2
f (0) 0;
当x 2或x 0时, 当0 x 2时,
;
(B) lim (C) lim
x x0
;
x x0
(D) lim
x f ( x) f ( x0 )
; ;
x x0
x x0
2、若函数 y f ( x ) 在点x 0 处的导数 f ( x 0 ) 0 ,则 曲线 y f ( x ) 在点( x 0 , f ( x 0 ) )处的法线( (A)与 x 轴相平行; (B)与x 轴垂直; (C)与 y 轴相垂直; (D)与x 轴即不平行也不垂直: )
2
4.
f ( 2) lim
x2
lim
x2
x2
4.
f ( 2) f ( 2),
2
f ( x )在x 2处不可导.
3 x 4 x , x 2, 或x 0 f ( x ) 0, x 0, 3 x 2 4 x ,0 x 2,
5、D; 10、A;
二、1、cos x ln x 2、ln a sinh xa 3、(1 x )
2 sec x
2 sin x
cosh x
[tan x ln(1 x )
2
2x 1 x
2
] sec x ;
4、6 x tan(10 3 x ) ; 5、 6、 x y x y ; 1 3( 2 y 1)( 2 x 1) x x
二、求下列函数的导数: 1、 y sin x ln x ;
2
2、 y a
cosh x
a ( 0 ) ;
2
3、 y (1 x )
2
sec x
;
4、 y ln[cos(10 3 x )];
x y
2 2
5、设y 为x 的函数是由方程ln 定的;
arctan
y x
确
dy 2 x y y , u ( x 2 x ) 2 ,求 6、设 . du
(D)n![ f ( x )] . t 7、若函数 x x (t ) , y y(t ) 对 可导且 x ( t ) 0 ,又 )
2n
2n
dy x x (t ) 的反函数存在且可导,则 =( dx y ( t ) y ( t ) (A) ; (B) ; x( t ) x ( t ) y ( t ) y( t ) (C) ; (D) . x ( t ) x ( t )
ax
(D) arctan x arc cot x .
e , x 0 5、如果 f ( x ) 处处可导,那末( 2 b(1 x ), x 0 (A)a b 1 ; (B)a 2, b 1 ;
(C)a 1, b 0 ; (D)a 0, b 1 .
(n)
(1) .
3 六、计算 9.02 的近似值 .
七、一人走过一桥之速率为 4 公里/小时,同时一船在 此人底下以 8 公里/小时之速率划过,此桥比船高 200 米,问 3 分钟后人与船相离之速率为多少?
测验题答案
一、1、D; 6、A; 2、B; 7、C;
2
3、A; 8、B; ;
x ;
2
4、D; 9、B;
,
(1 ln y ) y ln x 1,
1 y x (1 ln y )
2
2
ln x 1 1 ln y
(ln y 1) (ln x 1)
y
y(ln y 1) x (ln x 1) xy(ln y 1)
3
2
例5
设f ( x ) x x ( x 2) , 求 f ( x ).