正弦定理的变形及三角形面积公式

合集下载

正弦定理和余弦定理的所有公式

正弦定理和余弦定理的所有公式

正弦定理和余弦定理的所有公式正弦定理和余弦定理的公式有哪些?在数学学习中,正弦定理和余弦定理的应用是很频繁的,正余弦定理指定是正弦定理、余弦定理,是揭示三角形边角关系的重要定理,下面是小编为大家整理的正弦定理和余弦定理的所有公式,供参考。

数学不好的人五大特征高中数学最无耻的得分技巧高考考场上数学拿高分的技巧如何判断函数的对称性与周期性1正弦定理、三角形面积公式正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于该三角形外接圆的直径,即:a/sinA=b/sinB=c/sinC=2R.面积公式:S△=1/2bcsinA=1/2absinC=1/2acsinB.1.正弦定理的变形及应用变形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=a/2R,sinB=b/2R,sinC=c/2R.应用(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题:a.已知两角和任一边,求其他两边和一角.b.已知两边和其中一边的对角,求另一边的对角.一般地,已知两边和其中一边的对角解三角形,有两解、一解.(2)正弦定理,可以用来判断三角形的形状.其主要功能是实现三角形中边角关系转化.例如:在判断三角形形状时,经常把a、b、c分别用2RsinA、2RsinB、2RsinC来代替.2.余弦定理在△ABC中,有a2=b2+c2-2bccosA;b2=c2+a2-2accosB;c2=a2+b2-2abcosC;变形公式:cosA=b2+c2-a2/2bc,cosB=c2+a2-b2/2ac,cosC=a2+b2-c2/2ab在三角形中,我们把三条边(a、b、c)和三个内角(A、B、C)称为六个基本元素,只要已知其中的三个元素(至少一个是边),便。

(完整版)解三角形之正弦定理与余弦定理解析

(完整版)解三角形之正弦定理与余弦定理解析

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形。

正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形。

知识点清单一.正弦定理:1。

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即R CcB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2。

变形:1)sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin caC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin CAc a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4。

△ABC 中,已知锐角A ,边b,则①A b a sin <时,B 无解;②A b a sin =或b a ≥时,B 有一个解; ③b a A b <<sin 时,B 有两个解。

高中数学三角形面积公式

高中数学三角形面积公式

高中数学三角形面积公式.
高中数学中常用的三角形面积公式包括:
1. 三角形面积公式:
三角形的面积可以通过底边与高的乘积的一半来计算:
面积 = 1/2 ×底边 ×高
2. 海伦公式(适用于已知三边长度但无法判断是否为直角三角形的情况):
对于已知三边长分别为a、b、c的三角形,可以使用海伦公式计算其面积:
面积= √[s × (s-a) × (s-b) × (s-c)]
其中,s为三边长的半周长,即s = (a+b+c)/2
3. 正弦定理(适用于已知两边长度和它们夹角的情况):
对于已知三角形两边长度分别为a、b和夹角C的情况,可以使用正弦定理计算其面积:
面积 = 1/2 × a × b × sin(C)
4. 余弦定理(适用于已知三边长度和它们夹角的情况):
对于已知三角形三边长度分别为a、b、c和夹角C的情况,可以使用余弦定理计算其面积:
面积 = 1/2 × a × b × sin(C)。

正弦定理求三角形面积推导

正弦定理求三角形面积推导

正弦定理求三角形面积推导哎,今天咱们要聊聊一个数学上的小妙招,就是用正弦定理来求三角形的面积。

别担心,这听上去可能有点儿吓人,但其实挺简单的,咱们一步步来,保证你听了之后恍若拨云见日,恍如豁然开朗。

1. 正弦定理的基础知识1.1 什么是正弦定理?正弦定理,说白了就是在一个三角形里,任意一边的长度跟它对面的角的正弦值的比,都是一个常数。

这常数就是三角形的两倍的外接圆半径。

也就是:[ frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C} = 2R ]。

其中,(a)、(b)、(c) 是三角形的三边,(A)、(B)、(C) 是三角形的内角,而 (R) 是三角形的外接圆半径。

听起来有点儿绕,不过别急,慢慢来,一会儿你就能掌握这招了。

1.2 正弦定理的用处这定理在三角形的计算中特别有用,比如当我们知道三角形的两边和它们夹角的正弦值时,就可以通过这个定理来找到三角形的面积。

用来求面积,正好就像找到那颗点石成金的魔法石一样。

2. 用正弦定理求三角形的面积2.1 公式的推导我们可以通过正弦定理来推导出一个计算三角形面积的公式。

这个公式很有意思,就像给你做了一碗美味的汤,让你一尝就知道那滋味儿。

假设你有一个三角形,边长分别为 (a)、(b)、(c),角度分别为 (A)、(B)、(C)。

如果我们知道了这三边的其中两边和它们夹角的正弦值,我们就能轻松找到面积了。

具体来说,面积 ( Delta ) 就可以通过下面的公式来计算:[ Delta = frac{1}{2}ab sin C ]。

这公式怎么来的呢?其实就像在讲一个简单的小故事:三角形的面积等于底边乘以高的一半。

这里的“底边”就是其中的两边 (a) 和 (b),而“高”则是它们夹角的正弦值乘上边长的一个量。

所以说,正弦定理就像是教你用一个简单的公式来计算这份面积的秘诀。

2.2 应用实例举个简单的例子吧。

假设你有一个三角形,两边分别是 5 和 7,它们之间的夹角是60 度。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

三角形面积公式正弦余弦定理

三角形面积公式正弦余弦定理

三角形面积公式正弦余弦定理三角形是几何学中最基本的形状之一,而三角形的面积是我们在计算三角形相关问题时常常需要用到的概念。

在这篇文档中,我们将讨论三角形面积的计算方法,以及正弦余弦定理在三角形计算中的应用。

首先,让我们来看三角形面积的计算公式。

对于任意一个三角形,我们可以利用其底边长和高来计算其面积。

三角形的面积公式为:$S=\frac{1}{2}\times底边长\times高$。

这个公式也可以写成另外一种形式,即$S=\frac{1}{2}\times a\times b\times sinC$,其中$a、b$分别为两个边长,$C$为它们之间的夹角。

在三角形的计算中,正弦定理和余弦定理也扮演着重要的角色。

正弦定理可以表示为$\frac{a}{sinA}=\frac{b}{sinB}=
\frac{c}{sinC}$,其中$a、b、c$为三角形的三边,$A、B、C$为对应的角度。

余弦定理则可以表示为$c^2=a^2+b^2-2ab\times cosC$,其中$c$为三角形的一边,$A、B、C$为对应的角度。

通过这些公式和定理,我们可以更加灵活地进行三角形相关问题的计算。

无论是求解三角形的面积,还是计算其边长和角度,正弦余弦定理都能够为我们提供有效的方法。

在实际运用中,我们需要灵活运用这些公式和定理,结合具体问题的特点,才能够准确地解决三角形相关计算问题。

希望通过本文的介绍,读者能够更加深入地了解三角形的面积公式、正弦余弦定理,从而在数学学习和实际问题中灵活运用。

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理正弦定理和余弦定理要点梳理 1.正弦定理其中 R 是a b c ? ? ? 2R sin A sin B sin C三角形外接圆的半径.由正弦定理可以变形为:(1)a∶ b∶ c=sin A∶ sin B∶ sin C; (2)a=2Rsin A,b=2Rsin B,c=2Rsin C; (3)sin A= a b c ,sin B=,sin C=等形式,以解决不同的三角形问题. 2R 2R 2R2.三角形面积公式1 1 1 abc 1 S△ ABC= absin C= bcsin A= acsin B== (a +b+c)· r(r 是三角形内切圆的半径),并可由此计算 R、 2 2 2 4R 2 r. 3.余弦定理:a 2=b2+c2-2bccos A,b2=a 2+c2-2accos B,c2=a 2+b2-2abcos C .余弦定理可以变形为:b2 ? c2 ? a 2 cos A= 2bca 2 ? c2 ? b2 ,cos B = 2aca 2 ? b2 ? c2 ,cos C= 2ab.4.在解三角形时,正弦定理可解决两类问题: (1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题: (1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.基础自测2π 1.在△ ABC 中,若 b=1,c= 3,C=,则 a= 3 1 .2.已知△ ABC 的内角 A,B,C 的对边分别为 a,b,c,若 c= 2,b= 6,B=120° ,则 a=xxxxxxxxxxxxxxxxxxxxxxxx. 9 3.在△ ABC2中,若 AB= 5,AC=5,且 cos C=,则 BC= 10 4或5 . )4.已知圆的半径为 4,a、b、c 为该圆的内接三角形的三边,若 abc=16 2,则三角形的面积为( C A.2 2 B.8 2 C. 2 D. 2 2第1 页题型分类题型一例1 利用正弦定理求解三角形深度剖析在△ABC 中,a= 3,b= 2,B=45°.求角 A、C 和边 c.思维启迪已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断. a b 3 2 解: 由正弦定理得=,=, sin A sin B s in A sin 45° ∴sin A= 3 .∵a&gt;b,∴A=60° 或 A=120° . 2 6+ 2 bsin C =; sin B 2当 A=60° 时,C =180° -45° -60° =75° ,c=6- 2 bsin C 当 A=120° 时,C=180° -45° -120° =15° ,c== . sin B 2 探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可. (2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练 1 已知 a,b,c 分别是△ABC 的三个内角 A,B,C 所对的边,若 a=1,b= 3,A+C=2B,则 A=? 6π ∵A+C=2B,∴B= . 3 利用余弦定理求解三角形由正弦定理知 sin A= asin B 1 b =2.解析题型二cos B ? 例 2 在△ABC 中,a、b、c 分别是角 A、B、C 的对边,且= cos C (1)求角 B 的大小; (2)若 b= 13,a+c=4,求△ABC 的面积.解(1)由余弦定理知:cos B= a2+c2-b2 , 2acb . 2a ? ca2+b2-c2 cos B b cos C= .将上式代入=-得: 2ab cos C 2a+c a2+c2-b2 2ab b ·2 =-, 2ac a +b2-c2 2a+c 整理得:a2+c2-b2=-ac. a2+c2-b2 -ac 1 ∴cos B===-. 2ac 2ac 22 ∵B 为三角形的内角,∴B=π. 3 2 2 2 2 2 2 (2)将 b= 13,a+c=4,B=π 代入 b =a +c -2accos B,得 b =(a +c) -2ac-2accos B,∴13=16 3 1 3 3 ? 1? -2ac?1- ?,∴ac=3.∴S△ABC = acsin B= . 2 2 4 ? ?第2 页探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.变式训练 2 已知 A、B、C 为△ABC 的三个内角,其所对的边分别为 a、b、c,且 2cos (1)求角 A 的值;解 (1)由 2cos22A +cos A=0 . 2(2)若 a=2 3,b+c=4,求△ABC 的面积.A 1 +cos A=0 ,得 1+cos A+cos A=0,即 cos A=-2. 22π . 3∵0&lt;A&lt;π,∴A=(2)由余弦定理得, a2=b2+c2-2bccos A,A=2π ,则 a2=(b+c)2-bc,又 a=2 3,b +c=4, 31 有 12=42-bc,则 bc=4,故S△ ABC= bcsin A= 3. 2 题型三正、余弦定理的综合应用例 3. 在△ABC 中,a、b、c 分别是角 A、B、C 的对边已知 2 2(sin 2 A ? sin 2 C) ? (a ? b)sin B ,△ABC 外接圆半径为(1)求角 C 的大小;2.(2)求△ABC 面积的最大值.解: (1)∵△ABC 外接圆半径为 2 ,且 2 2(sin 2 A ? sin 2 C) ? (a ? b)sin B ,即 (2 2 sin A)2 ? (2 2 sin C)2 ? (a ? b)2 2 sin B , ∴ 由正弦定理得: a2 ? c2 ? (a ? b)b , 即a2 ? b2 ? c2 ? ab , 由余弦定理得: cos C ?ab 1 ? a 2 ? b2 ? c 2 ? ? ,C ? (0 , ? ) , ? C? . 2ab 2 3 2ab(2) S max?3 ? 3 2探究提高在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练 3 在△ABC 中,内角 A,B,C 所对的边长分别是 a,b,c. π (1)若 c=2,C=,且△ABC 的面积为 3,求 a,b 的值; 3 (2)若 sin C+sin(B-A)=sin 2A,试判断△ABC 的形状.第3 页解π (1)∵c=2,C=,3∴由余弦定理 c2=a2+b2-2abcos C 得 a2+b2-ab=4.又∵△ABC 的面积为 3,?a2+b2-ab=4,? 1 ∴ absin C= 3,ab=4. 联立方程组? 解得 a=2,b=2. 2 ? ?ab=4,(2)由 sin C+sin(B-A)=sin 2A,得 sin(A+B)+sin(B-A)=2sin Acos A,即 2sin Bcos A=2sin Acos A,∴cos A· (sin A-sin B)=0,∴cos A=0 或 sin A-sin B=0,π 当 cos A=0 时,∵0&lt;A&lt;π,∴A=,△ABC 为直角三角形; 2 当 sin A-sin B =0 时,得 sin B=sin A,由正弦定理得 a=b,即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.思想方法方法与技巧 1.正、余弦定理和三角形面积公式是本节课的重点,利用三角形内角和、边、角之间的关系,三角函数的变形公式去判断三角形的形状,求解三角形,以及利用它们解决一些实际问题. A B C π 2.应熟练掌握和运用内角和定理:A+B+C=π,++=中互补和互余的情况,结合诱导公式可以减 2 2 2 2 少角的种数. 3.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得 sin2A=sin2B+sin2C-2sin B· sin C· cos A,可以进行化简或证明. 4.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.失误与防范在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.感悟提高第4 页过关精练一、选择题 1.在△ABC 中,A=60° ,a=4 3,b=4 2,则 B 等于( A.45° 或135°4 4) D.以上答案都不对 )B.135°4 2 2 2C.45°2.△ABC 中,若 a +b +c =2c (a +b ),则角 C 的度数是( A.60° B.45° 或135° C.120° D.30°3.在 ?ABC 中, bc ? 20, S?ABC ? 5 3, ?ABC 的外接圆半径为 3 ,则 a A.1 B.2 C.3 D. 3?()24.在 ?ABC 中,已知 b ? 2, c ? 1, B ? 45? , 则 a 等于( A.) D. 3 ? 2 ) D.150° )?6? 2 2B.6? 2 2C. 2 ? 15.在 ?ABC 中 AB ? 2, AC ? 3, BA ? AC ? 3, 则 ? A 等于( A.120° B.60° C.30°6.在 ?ABC 中, a : b : c A. 30?? 3:5: 7 ,?则这个三角形的最大角为( C. 120?B. 90D. 607.在△ABC 中,已知三边之比 a : b : c ?2 :3 :4 ,则 sin A ? 2 sin Bsin 2CA.1 B. 2 C. ? 2 D.?()1 23 b ,cos B ? () 28. ?ABC 中,边 a, b, c 的对角分别为 A、B、C,且 A=2B,a ? A. 1 B. 1 C. 2 D. 32334三角形2 2二、填空题 9.在△ABC 中,已知 2sinAcosB=sinC,那么△ABC 的形状是210.在锐角△ABC 中,a,b,c 分别为角 A,B,C 所对的边,且 3a=2csin A,则角 C=xxxxxxxxxxxxxxxxxxxxxxxx. 11.在△ABC 中,边 a, b, c 的对角分别为 A、 B、 C,且 sin A ? sin C ? sin A ? sin C ? sin B 。

解三角形知识点归纳(附三角函数公式)

解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >.11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:ααααααsin cos cot ,cos sin tan ==特殊角的三角函数值三角函数值0 111不存在三角函数诱导公式:“ (2k πα+)”记忆口诀: “奇变偶不变,符号看象限”,是指(2kπα+),k ∈Z 的三角函数值,当k 为奇数时,正弦变余弦,余弦变正弦(正切,余切;正割、余割也同样);当k 为偶数时,函数名不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦定理的变形及三角形面积公式第二课时
【选题明细表】题号
知识点、方法
易中
4
6 、12正弦定理的变形应用、、三角形面积公式的应用
7 310 5 正弦定理的综合应用、9 正弦定理的实际应用 8
基础达标) C ( 若sin A>sin B,则有,1.在△ABC中b (C)a>b (D)a ≤(B)a(A)a<b ≥b
a=2Rsin A,b=2Rsin B, ∵:解析sin A>sin B, 又C.
∴a>b.故选) 等于∶∶∶14,则abc( C ∶∶∶中已知△2.ABC,ABC=1
1∶∶4 1(A)1∶∶(B)1
(C)1∶∶2 (D)11∶∶4,
∶1∶C=1∶B∶A∵:解析.
∴A=30°,B=30°,C=120°,
∴a∶b∶c=(2Rsin A)∶(2Rsin B)∶(2Rsin C)
=sin A∶sin B∶sin C
=sin 30°∶sin 30°∶sin 120°
∶.故选=1∶1C.
3.在△ABC中,若A=75°,B=45°,c=6,则△ABC的面积为( A )
(B) (A)9+3
(D)(C)解析:∵A=75°,B=45°,
=2,
∴C=60°=,b=
×62.
=9+3∴S×=bcsin A=×ABC△故选A.
4.(2013即墨实验高中高二月考)在锐角三角形ABC中,a,b,c分别是
则的取值范围是( B=2A,,设B ) A,B,C内角的对边
(C)(,2) (D)(0,2)
(A)(-2,2) (B)() ,
由锐角三角形知: 解析, °又B=2A,A+B+C=180,
°<A<45°30
∴.
,).故选==2cos A∈∴B.
=(5.(2013连江一中高二期中联考)若三角形的三个内角成等差数列,对应三边成等比数列,则三角形的形状是( C )
(A)等腰三角形 (B)直角三角形
(C)等边三角形 (D)等腰直角三角形
解析:设三角形的三角为A,B,C,所对的边分别为a,b,c,则2,
A+C=2B,ac=b∵A+C+B=180°,
∴2B+B=180°,即B=60°.
2及正弦定理,ac=b得又由
22=, 60sin Asin C=sin°B=sin令A=60°-α,则C=60°+α,
)=α,
·sin(60°+∴sin(60°-α)
)=,
+sin (cos αα
22=αα-sincos.
22α=1, α+sincos∵∴sin α=0,
又-60°<α<60°,
∴α=0°,
A=B=C,
∴.
C. 故选∴三角形是等边三角形.
,b=,B=60°则= . ABC6.在△中,若
=2R,
解析==:由正弦定理
, =知
=2. =∴:2
答案能力提升
的,则边AB°7.(2011年高考福建卷)若△ABC的面积为,BC=2,C=60 . 长度等于
, 由于S°=,BC=2,C=60解析:ABC△
, ×∴=2×AC×AC=2,
∴, ABC为正三角形∴△AB=2. ∴:2
答案和CA,8.如图所示我炮兵阵地位于地面处,两观察所分别位于地
面点目标出现于地面上点ADC=75,ACD=45CD=6000 m,,D处已知∠°
∠°,结BDC=15,°BCD=30,处时B测得∠∠求炮兵阵地到目标的距离,°.()
果保留根
号.
解:在△ACD中,∠CAD=180°-∠ACD-∠ADC=60°,
=AD=∴CD.
在△BCD中,∠CBD=180°-30°-15°=135°,
=∴CD.
BD=在△ABD中,∠ADB=∠ADC+∠CDB=90°,
CD=1000·∴AB=(m). =
1000 m.
即炮兵阵地到目标的距离为9.在△ABC中,A、B、C所对的边分别为a、b、c,且b=acos C,△ABC
最小角的正弦值为12,的最大边长为.
(1)判断三角形的形状;
(2)求△ABC的面积.
=,
由正弦定理知解:(1)b=acos C, ∵
sin B=sin Acos C,
即cos C=,∴∵A+B+C=π,
sin(A+C)=sin Acos C,
∴.
即cos Asin C=0,
在△ABC中sin C≠0,
∴cos A=0,
A=∴,
∴△ABC为直角三角形.
(2)由题意知a=12,不妨设最小角为C,
sin C=, ∴
cos C=,

×∴b=acos C=12=8,
=16××8∴S.
=absin C=×12ABC△10.(2012年高考大纲全国卷)△ABC的内角A,B,C 的对边分别为a、b、c,已知cos(A-C)+cos B=1,a=2c,求C. 解:由B=π-(A+C),得cos B=-cos(A+C),
于是cos(A-C)+cos B=cos(A-C)-cos(A+C)=2sin Asin C,
sin Asin C=,①由已知得
由a=2c及正弦定理得sin A=2sin C,②
2C=,
由①②得sin
),
舍去(sin C=-或sin C=于是
又a=2c>c,
∴A>C,即C为锐角,
C=∴.。

相关文档
最新文档