勾股定理实数综合测试题
第十七章 勾股定理 单元测试训练卷

人教版八年级数学下册第十七章 勾股定理单元测试训练卷一、选择题(共10小题,每小题4分,共40分)1. 下列各组数中,为勾股数的是( )A .1,2,3B .3,4,5C .1.5,2,2.5D .5,10,122. 如图所示的数轴上的四点E ,F ,G ,H 中,表示实数- 5 的点是( )A .点EB .点FC .点GD .点H3. 若一直角三角形的两直角边的长分别是4和6,则它的斜边长为( )A .6B .213C .37D .104. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( ) A .365 B .1225C .94D .3345. 如图,矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和为( )A .14B .16C .20D .286. 如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A .1013 13B .913 13C .813 13D .713 13 7. 若△ABC 的三边长a ,b ,c 满足(a -b)2+|a 2+b 2-c 2|=0,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .无法确定8. 如图是台阶的示意图,已知每级台阶的宽度都是30 cm ,每级台阶的高度都是15 cm ,连接AB ,则AB 等于( )A .195 cmB .200 cmC .205 cmD .210 cm 9. 如图是一块长、宽、高分别是6 cm ,4 cm ,3 cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需爬行的最短路程是( )A .(3+213 ) cmB .97 cmC .85 cmD .109 cm 10. 在△ABC 中,AB =10,AC =210BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或10 二.填空题(共6小题,每小题4分,共24分)11. 在△ABC 中,∠ACB =90°,AC =6,AB =10,BC =________.12. 在平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB 的长为__ __.13. 公元3世纪初,中国古代数学家赵爽注《周髀算经》时创造了“赵爽弦图”.如图,设勾a =6,弦c =10,则小正方形ABCD 的面积是__ __.14. 如图,在△ABC 中,∠B =45°,AB 的垂直平分线交AB 于点D ,交BC 于点E(BE >CE),点F 是AC 的中点,连接AE ,EF ,若BC =7,AC =5,则△CEF 的周长为________.15. 如图,长方体的长、宽、高分别为8 cm,4 cm,5 cm.一只蚂蚁沿着长方体的表面从点A 爬到点B.则蚂蚁爬行的最短路径的长是__ __cm.16. 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是__ _.三.解答题(共6小题,56分)17.(6分) 如图,在四边形ABCD中,已知AB=1,BC=2,CD=2,AD=3,且AB⊥BC,试说明:AC⊥CD.18.(8分) 如图,有一个长方形的场院ABCD,其中AB=9 m,AD=12 m,在B处竖直立着一根电线杆,在电线杆上距地面8 m的E处有一盏电灯,则点D到灯E的距离是多少?19.(8分) 如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.20.(10分) 如图,在一条公路CD的同一侧有A,B两个村庄,A,B到公路的距离AC,BD分别为50 m,70 m,且C,D两地相距50 m,若要在公路旁(在CD上)建一个集贸市场(看作一个点),求A,B两村庄到集贸市场的距离之和的最小值.21.(12分) 如图,某沿海城市A接到台风警报,在该城市正南方向260 km的B处有一台风中心,沿BC方向以15 km/h的速度向C移动,已知城市A到BC的距离AD=100 km,那么台风中心经过多长时间从B点移动到D点?如果在距台风中心30 km的圆形区域内都将受到台风的影响,正在D点休息的游人在接到台风警报后的几小时内撤离才可以免受台风的影响?22.(12分) 阅读与思考如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB,现根据木板的情况,要过AB上的一点C,作出AB的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB上量出CD=30 cm,然后分别以D,C为圆心,以50 cm与40 cm为半径画圆弧,两弧相交于点E,作直线CE,则∠DCE必为90°.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M,N两点,然后把木棒斜放在木板上,使点M与点C重合,用铅笔在木板上将点N对应的位置标记为点Q,保持点N不动,将木棒绕点N旋转,使点M落在AB上,在木板上将点M对应的位置标记为点R.然后将RQ延长,在延长线上截取线段QS=MN,得到点S,作直线SC,则∠RCS=90°.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空:“办法一”依据的一个数学定理是__ __;(2)根据“办法二”的操作过程,证明∠RCS=90°;(3)①尺规作图:请在图③的木板上,过点C作出AB的垂线(在木板上保留作图痕迹,不写作法);②说明你的作法所依据的数学定理或基本事实(写出一个即可).参考答案1-5BABAD 6-10DCACC11.8 12. 513. 414. 8 15. 14516. 1017.解:在△ABC 中,AB ⊥BC ,根据勾股定理得AC 2=AB 2+BC 2=12+22=5, ∵在△ACD 中,AC 2+CD 2=5+4=9,AD 2=9,∴AC 2+CD 2=AD 2,∴根据勾股定理的逆定理得,△ACD 为直角三角形,∴AC ⊥CD.18.解:∵在Rt △ABD 中,∠BAD =90°,∴BD =AB 2+AD 2 =92+122 =15(m).又∵在Rt △BDE 中,∠EBD =90°,∴ED =EB 2+BD 2 =82+152 =17(m),∴点D 到灯E 的距离是17 m19.解:在Rt △BDC 中,BC 2=BD 2+DC 2,在Rt △ABC 中,AC 2=AB 2+BC 2,∴AC 2=AB 2+BD 2+DC 2,又∵BD =DC ,∴AC 2=AB 2+2CD 2=42+2×62=88,∴AC =222 ,即AC 的长为22220.解:设A 关于直线CD 的对称点为A′,连接A′B ,则A′B 即为A ,B 两村到集贸市场的距离之和的最小值,过A′作BD 的垂线A′H 交BD 的延长线于点H ,在Rt △BHA′中,BH =50+70=120 (m),A′H =50 m ,∴A′B =1202+502=130(m),故A ,B 两村庄到集贸市场的距离之和的最小值为130 m.21.解:由题意可知∠ADB =90°.在Rt △ABD 中,∵AB =260 km ,AD =100 km ,∴BD =2602-1002=240(km).∴台风中心从B 点移动到D 点所用的时间为24015=16(h). 在D 点休息的游人应在台风中心距D 点30 km 前撤离,30÷15=2(h),16-2=14(h). ∴在接到台风警报后的14 h 内撤离才可以免受台风的影响.22.解:(1)∵CD =30,DE =50,CE =40,∴CD 2+CE 2=302+402=502=DE 2,∴∠DCE=90°,故“办法一”依据的一个数学定理是勾股定理的逆定理,故答案为:勾股定理的逆定理(2)由作图方法可知,QR=QC,QS=QC,∴∠QCR=∠QRC,∠QCS=∠QSC,∵∠SRC +∠RCS+∠QSC=180°,即∠QCR+∠QCS+∠QRC+∠QSC=180°,∴2(∠QCR+∠QCS)=180°,∴∠QCR+∠QCS=90°,即∠RCS=90°(3)①如图③所示,直线PC即为所求;②答案不唯一,到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2023—2024年人教版初二数学勾股定理达标测试

2023—2024年人教版初二数学勾股定理达标测试 班级 姓名 得分 一、单选题(本大题共12小题,每题3分,共36分) 1.下列二次根式中,不能与2合并的是( ) A .12 B .8 C .12 D .182.下列计算中,正确的是( )A .233255+=B .333236⨯=C .2733÷=D .2222-=3.估计13介于()A .1与2之间B .2与3之间C .3与4之间D .4与5之间 4.计算2(32)-的值为( )A .32-B .32+C .23-D .32--5.如图,在Rt ABC △中,90ABC ∠=︒,1BC =.将AB 边与数轴重合,点A ,点B 对应的数分别为1-,2.以点A 为圆心,AC 的长为半径画弧,交数轴于点D ,则点D 表示的数为( )A .3B .10C .101-D .101--6.实数a 、b 在数轴上的位置如图所示,那么化简2a b a --的结果是( )A .2a b -B .bC .b -D .2a b -+7.如图,小正方形边长为1,连接小正方形的三个顶点,可得ABC ,则AC 边上的高长度为( )第7题 第8题A .355 B .3510 C .55 D .5108.如图,一根长25m 的梯子,斜靠在一竖直的墙上,这时梯子的底端距墙底端7m .如果梯子的顶端下滑4m ,那么梯子的底端将向右滑动( )A .15mB .9mC .7mD .8m9.如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A 、B 、C 的面积依次为2、4、3,则正方形D 的面积为( )第9题 第10题 第11题A .7B .8C .9D .1010.如图,《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=十尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度为( )A .3尺B .3.2尺C .3.6尺D .4尺11.如图,长方体的长为2,宽为1,高为3,一只蚂蚁从点A 出发,沿长方体的外表面到点B 处觅食,则它爬行的最短路程为( )A 14B 18C 20D 2612222233+333388+=44441515+=55552424+=1010b b a a +则a b +的值为( )A .179B .109C .210D .104二、填空题(本大题共6小题,每题3分,共18分)138=_____.14.点()9,40P 到坐标原点的距离是__________.15.已知a 10b 是它的小数部分,则210a b +______.16.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .17.某会展期间,准备在高5BC =米、长13AC =米,宽2米的楼梯上铺地毯,则所铺地毯的面积为 __________平方米.18.如图,已知直角三角形ABC 的周长为24,且阴影部分的面积为24,则斜边AB 的长为______.三、解答题19.计算(每小题5分,共计25分). (1)32712+-. (2)()21122321+---. (3) 1013220223-⎛⎫-+-- ⎪⎝⎭ (4)()()()232233223223+⨯---.20.(7分)在平面直角坐标系中,ABC 的三个顶点位置如图所示.(1)请画出ABC 关于x 轴对称的A B C '''(其中A ',B ',C '分别是A ,B ,C 的对应点);(2)直接写出A B C '''三点的坐标:A '__________,B '__________,C '__________;(3)求AC '的长为__________.21.(8分)如图,Rt ABC △中,18,12,90AB BC B ==∠=︒,将ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,求线段BN 的长.22.(8分)如图,海中有一小岛P ,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M 处测得小岛P 在北偏东60°方向上,航行16海里到N 处,这时测得小岛P 在北偏东30°方向上.(1)求M 点与小岛P 的距离;(2)如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.23.(8分)如图,某电信公司计划在A ,B 两乡镇间的E 处修建一座5G 信号塔,且使C ,D 两个村庄到E 的距离相等.已知AD AB ⊥于点A ,BC AB ⊥于点B ,80km AB =,50km AD =,30km BC =,求5G 信号塔E 应该建在离A 乡镇多少千米的地方?24.(10分)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理,图1与图2都是由四个全等的直角三角形构成,图3是由两个全等的直角三角形构成(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径向外部作半圆,请写出1S 、2S 和3S 的数量关系:___________.。
人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。
勾股定理典型试题(自编)

勾股定理1、如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(A )2.5 (B )22 (C )3 (D )52、如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D到BC 的距离是:(A)3 (B)4 (C)5 (D)6练习:在ABC △中,AB=AC=5,BC=6。
若点P 在边AC 上移动,求BP 的最小值。
3、如图,已知正方形ABCD 的边长为3,E 为CD 边上一点, 1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 .4、 (勾股定理、垂直平分线——中等)如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连结CE ,则CE 的长为_____________。
练习1:如图,在矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好在边BC 上的点F 处,若AE=5,BF=3,则CD 边长是_____________。
练习2:如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE,且EF=3.则AB 的长为( )练习3: 如图所示,将一个长方形纸片ABCD 沿对角线AC 折叠.点B 落在E 点,AE 交DC 于F 点,已知AB=8cm,BC=4cm.则折叠后重合部分的面积为( )练习4:为了丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图阅览室,本社区的两所学校分别位于如图的点C 和点D 的位置上,已知CA ⊥AB 于点A ,DC ⊥AB 于点B,AB=25km,CA=15km,DB=10km ,试问阅览室E 应建在距点A 多少km 处,才能使它到C 、D 两学校的距离相等?练习5:如图,矩形ABCD 中,点P 、Q 分别是边AD 和BC 的中点,沿过C 点的直线折叠矩形ABCD 使点B 落在线段PQ 上的点F 处,折痕交AB 边于点E,交线段PQ 于点G,若BC 长为3,则线段FG 的的长为( )5、 满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶5练习:下列几组数:①9,12,15;②,,;③,,;④3a,4a,5a(a 为大于1的自然数);⑤m 2-n 2,2mn,m 2+n 2 其中m 、第3题E第2题第4题 第4题练习4E 第4题练习1 第4题练习2 第4题练习5 第4题练习3n为任意正整数(m>n).其中是勾股数的有( )6、(勾股定理——中等)某市道路交通管理条例规定:小汽车在市区路上行驶速度不得超过70km/h。
勾股定理练习题及答案(共6套)

勾股定理课时练(1)1。
在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A 。
2 B.4 C 。
6 D 。
82.有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3。
直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6。
飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7。
如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度。
8。
一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。
求CD 的长。
第5题图 第7题图 第8题图9。
如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。
他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第9题图5m 13m 第11题勾股定理的逆定理(2)一、选择题1.下列各组数据中,不能作为直角三角形三边长的是( )A.9,12,15 B 。
勾股定理与实数训练

一.选择题(本大题共6小题,每小题3分,共18分)1.(3分)直角三角形一直角边长为12,另两边长均为自然数,则其周长为()A.36 B.28 C.56 D.不能确定2.(3分)直角三角形两直角边长分别为3和4,则它斜边上的高是()A.3.5 B.2.4 C.1.2 D.53.(3分)下面几组数:①7,8,9;②12,9,15;③m2+n2,m2﹣n2,2mn (m,n均为正整数,m>n);④a2,a2+1,a2+2.其中一定能构成直角三角形的三边长是()A.①②B.①③C.②③D.③④4.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形5.(3分)等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8C.25 D.646.(3分)小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为()A.2m B.2.5m C.2.25m D.3m二.填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图,AC⊥CE,AD=BE=13,BC=5,DE=7,则AC=_________.8.(3分)已知|x﹣6|+|y﹣8|+(z﹣10)2=0,则由此x,y,z为三边的三角形面积为_________.9.(3分)在△ABC中,若AB=30,AC=26,BC上的高为24,则此三角形的周长为_________.10.(3分)如图,直角梯形中∠B=90°,AD∥BC,AB=BC=8,CD=10,则梯形的面积是_________平方单位.11.(3分)一直角三角形三边长分别为5,12,13,斜边延长x,较短的直角边延长x+2,所得的仍是直角三角形,则x=_________.12.(3分)在△ABC中,若AB2+BC2=AC2,则∠A+∠C=_________°.三.解答题(本大题共8小题,每小题8分共64分)13.(8分)如图,一直角三角形三边长分别为6,8,10,且是三个圆的直径,求阴影部分面积(π取3.14)14.(8分)如图,某游泳池长48米,小方和小杨进行游泳比赛,从同一处(A点)出发,小方平均速度为3米/秒,小杨为3.1米/秒.但小杨一心想快,不看方向沿斜线(AC方向)游,而小方直游(AB方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么?15.(8分)在长为12cm,宽为10cm的长方形零件上钻两个半径为1cm的孔,孔心离零件边沿都是2cm,求两孔心的距离.16.(8分)如图,一长方体,底面长3cm,宽4cm,高12cm,求上下两底面的对角线MN的长.17.(8分)一个三角形的三边长的比为3:4:5,那么这个三角形是直角三角形吗,为什么?18.(8分)一艘帆船要向东横渡宽为96m的大河,由于大风的原因,船沿南偏东方向走,离横渡地点72m的地方靠岸.已知船在静水的速度为3m/秒,风速为2m/秒(水流速度不算,船顺着风走),求船航行的时间.19.(8分)如图,AD⊥AB,BC⊥AB,AB=20,AD=8,BC=12,E为AB 上一点,且DE=CE,求AE.20.(8分)如图,四个全等的直角三角形的拼图,你能验证勾股定理吗?试试看.《第2章 实数》一、选择题(本大题共10小题,每小题2分,共20分)每小题给出4个答案,其中只有一个是正确的.请把正确答案的字母代号填在下面的答题表一内,否则不给分.1.(2分)下列各数0.4,,3.14,0.80108,π﹣|1﹣π|,0.1010010001…,,0.451452453454…,其中无理数的个数是( ) A . 1 B . 2 C .3 D . 42.(2分)化简的结果是( ) A . ﹣4 B . 4 C .±4 D . 无意义 3.(2分)下列各式中,无意义的是( )A .B .C .D . 4.(2分)10﹣6的算术平方根等于( ) A . 10﹣2B . 10﹣3C . ±10﹣2D . ±10﹣3 5.(2分)的值等于( ) A . B . C . ﹣5 D . 56.(2分)下列说法中,正确的是( )A . 无理数包括了0B . 实数都是有理数C . 一个正数的平方根一定是正数D . 无理数一定是实数7.(2分)下列说法中,正确的是( )A . 负数和零没有平方根B . 负数和零没有立方根C . ﹣2与互为相反数D . ﹣2与互为相反数8.(2分)下列计算结果正确的是( )A .B .C .D .9.(2分)下列运算中,错误的有( )①,②,③,④.A.4个B.3个C.2个D.1个10.(2分)若a2=4,b2=9,且ab<0,则a﹣b的值为()A.±5 B.±1 C.5D.﹣1二、填空题(本大题共15空,每空2分,共30分.请将答案填在答题表二内相应的题号下.否则不给分)11.(4分)的平方根是_________;算术平方根是_________.12.(2分)﹣的立方根是_________.13.(4分)(1)3﹣2的平方根是_________;(2)的算术平方根是_________.14.(4分)(1)的平方根是_________;(2)的立方根是_________.15.(4分)平方根等于本身的数是_________,立方根等于本身的数是_________.16.(2分)如果=2,那么(x+3)2=_________.17.(4分)的相反数是_________,﹣的倒数是_________.18.(2分)若,则a2004+b2005=_________.19.(2分)若=2﹣a,则a的取值范围是_________.20.(2分)若+=0,则x=_________.三、解答题21.(6分)求下列各式中未知数x的值:(1)x2﹣225=0;(2)x3+27=0;(3)340+512x3=﹣3.22.(18分)计算:(1);(2)(2+)(2﹣);(3)(﹣)2;(4)(5)(﹣)2002•(+)2003(6)(﹣1)2+()﹣1﹣(+.23.(4分)若x、y都是实数,且y=++8,求x+3y的立方根.24.(4分)已知(a+b﹣1)(a+b+1)=8,求a+b的值.25.(4分)已知+|b2﹣10|=0,求a+b的值.26.(6分)已知的小数部分为a,的小数部分为b.求:(1)a+b的值;(2)a﹣b的值.27.(4分)已知和互为相反数,求的值.28.(4分)八年级(3)班两位同学在打羽毛球,一不小心球落在离地面高为6米的树上.其中一位同学赶快搬来一架长为7米的梯子,架在树干上,梯子底端离树干2米远,另一位同学爬上梯子去拿羽毛球.问这位同学能拿到球吗?《第1章勾股定理》一、选择题(共5小题,每小题3分,满分15分)1.(3分)把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.3倍D.5倍2.(3分)有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为()A.1B.2C.3D.43.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45°D.60°4.(3分)CD是Rt△ABC斜边AB上的高,若AB=1,AC:BC=4:1,则CD的长为()A.B.C.D.5.(3分)△ABC的三边a,b,c满足a2+b2+c2=ab+bc+ac,则△ABC是()A.等边三角形B.腰底不等的等边三角形C.直角三角形D.等腰直角三角形二、填空题(共5小题,每小题3分,满分15分)6.(3分)若一个直角三角形的三条边长是三个自然数,其中有两边的长分别为6和10,那么这个三角形的第三条边长是_________.7.(3分)等腰三角形的面积为48cm2,底边上的高为6cm,腰长为_________cm.8.(3分)三边长分别为m2﹣n2,2mn,m2+n2的三角形是_________三角形.9.(3分)已知|x﹣12|+(y﹣13)2与z2﹣10z+25互为相反数,则以x,y,z为边的三角形是_________三角形.10.(3分)若△ABC是直角三角形,两直角边都是6,在三角形斜边上有一点P,到两直角边的距离相等,则这个距离等于_________.三、解答题(共12小题,满分70分)11.(5分)小东拿着一根长竹秆进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果秆比城门高1米,当他把秆斜着时,两端刚好顶着城门的对角,问秆长多少米?12.(5分)如图四边形草坪ABCD,∠B=∠D=90°,AB=20cm,BC=15cm,CD=7cm.求这块草坪的面积.13.(5分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB 于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?14.(5分)如图所示,在四边形ABCD中,AC⊥DC,△ADC的面积为30cm2,DC=12cm,AB=3cm,BC=4cm,求△ABC的面积.15.(5分)如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?16.(6分)在△ABC中,三条边的长分别为a、b、c,a=n2﹣1,b=2n,c=n2+1(n>1,且n为整数),这个三角形是直角三角形吗?若是,哪个角是直角?17.(6分)观察下列表格:列举猜想3、4、5 32=4+55、12、13 52=12+137、24、25 72=24+25……35、b、c 352=b+c请你结合该表格及相关知识,求出b,c的值.18.(6分)如图所示,折叠长方形(四个角都是直角)的一边AD使点D 落在BC边的点F处,已知AB=DC=8cm,AD=BC=10cm,求EC的长.19.(6分)某工厂的大门如图所示,其中四边形ABCD是长方形,上部是以AB为直径的半圆,其中AD=2.3米,AB=2米,现有一辆装满货物的卡车,高2.5米,宽1.6米,问这辆车能否通过厂门?说明理由.20.(7分)如图,在正方形ABCD中,E是边AD的中点,点F在边DC上,且DF=DC.试判断△BEF的形状,并说明理由.21.(7分)观察下列式子:32+42=52;82+62=102;152+82=172;242+102=262;…(1)找出规律,并根据此规律写出接下来第5个式子:_________;(2)写出这一规律:_________;(3)在Rt△ABC中,∠C=90°,AC=39999,BC=400,你能快速求出AB吗?22.(7分)矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿线段DA、线段BA向点A的方向运动,当动点M运动到点A时,M、N两点同时停止运动.连接FM、FN.设点M、N的运动速度都是1个单位/秒,M、N运动的时间为x秒,问:当x 为多少时,FM⊥FN?《第2章实数》一、选择题(共3小题,每小题4分,满分12分)1.(4分)下列选项正确的是()A.B.C.D.2.(4分)设实数a满足0<a<1,则在中()A.最大,a2最小B.a最大,最小C.a2最大,最小D.a最大,a2最小3.(4分)a是实数,则与a的大小关系是()A.=a B.≥a C.≤a D.>a二、填空题(共18小题,每小题5分,满分90分)4.(5分)10﹣6的算术平方根是_________;(﹣8)2的算术平方根是_________;_________;_________.5.(5分)若=3,则(x+3)2=_________.6.(5分)一个正数的平方根为x+3与2x﹣6,则x=_________,这个正数是_________.7.(5分)一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是_________.8.(5分)已知0<x<5,化简的结果是_________.9.(5分)(2006•山西)实数a,b在数轴上的位置如图所示,化简|a+b|+=_________.10.(5分)若a,b,c为三角形的三边长,则= _________.11.(5分)当x=_________时,3﹣(|x|﹣)2有最大值,最大值是_________.12.(5分)是无理数,那么在哪两个整数之间_________.13.(5分)满足的整数x的个数是_________,分别是_________.14.(5分)估算的值在_________和_________之间.15.(5分)写出大于而小于的所有整数_________.16.(5分)若5+的整数部分是a,小数部分是b,则a﹣b=_________.17.(5分)式子成立时,x_________.18.(5分)成立的条件是_________.19.(5分)已知,求x y的值_________.20.(5分)若有意义,则a能取到的最小整数为_________.21.(5分)若|x+2|+(y﹣3)2=0,则xy=_________.三、解答题(共2小题,满分0分)22.比较大小①;②;③;④;⑤;⑥;⑦.⑧在数轴上画出表示,,的点.23.解方程(x+1)2=36;(2x+1)2=6;x2﹣49=0;(x+1)3=﹣216.《第1章勾股定理》一、选择题(共3小题,每小题4分,满分12分)1.(4分)(1999•广西)如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()A.4B.5C.2D.2.(4分)若三角形中的一条边是另一条边的2倍,且有一个角为30°,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对3.(4分)如图,过△ABC的顶点A的直线DE∥BC,∠ABC、∠ACB的平分线分别交DE于E、D两点,若AB=6,AC=8,则DE=()A.10 B.14 C.16 D.24二、填空题(共7小题,每小题5分,满分35分)4.(5分)如图,P为△ABC边BC上的一点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是_________°.5.(5分)如图,在四边形ABCD中,AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠DAB的度数是_________°.6.(5分)如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是_________cm2.7.(5分)如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,那么PD2等于_________.8.(5分)如图,长方形纸片ABCD中,AB=3cm,BC=4cm,现将A、C 重合,使纸片折叠压平,设折痕为EF,则S△AEF=_________cm2.9.(5分)如图,已知∠A=∠B,AA1,BB1,PP1均垂直于A1B1,AA1=17,PP1=16,BB1=20,A1B1=12,则AP+PB=_________.10.(5分)如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是3,那么另一条直角边的长是_________.三、解答题(共4小题,满分53分)11.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2.12.(13分)如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD于Q.求证:①△ADC≌△BEA;②BP=2PQ.13.(14分)如图,在等腰直角△ABC的斜边上取异于B,C的两点E,F,使∠EAF=45°,求证:以EF,BE,CF为边的三角形是直角三角形.14.(14分)如图,在Rt△ABC中,∠A=90°,D为斜边BC中点,DE⊥DF,求证:EF2=BE2+CF2.《第2章实数》一、选择题(共5小题,每小题4分,满分20分)1.(4分)下列各组数中,互为相反数的是()A.﹣3和﹣B.﹣2和C.(﹣2)3和|﹣8| D.和2.(4分)若a是一个无理数,则1﹣a是()A.正数B.负数C.无理数D.有理数3.(4分)的相反数是()A.B.C.D.﹣4.(4分)下列各语句中错误的个数为()①最小的实数和最大的实数都不存在;②任何实数的绝对值都是非负数;③任何实数的平方根都是互为相反数;④若两个非负数的和为零,则这两个数都为零.A.4B.3C.2D.15.(4分)实数a在数轴上的位置如图所示,则a,﹣a,,a2的大小关系是()A.a<﹣a<<a2B.﹣a<<a<a2C.<a<a2<﹣aD.<a2<a<﹣a二、填空题(共6小题,每小题5分,满分30分)6.(5分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长等于_________.8.(5分)负数a与的差的绝对值是_________.9.(5分)比较大小:(1)_________;(2)_________;(3)_________.10.(5分)把下列各数写入相应的集合内.(1)有理数集合:﹛_________…﹜;(2)无理数集合:﹛_________…﹜;(3)正实数集合:﹛_________…﹜;(4)负实数集合:﹛_________…﹜;11.(5分)把下列各数填入相应的集合内:﹣8.6,,9,,,,0.99,﹣π,(1)有理数集合:{_________…};(2)无理数集合:﹛_________…﹜;(3)正实数集合:﹛_________…﹜;(4)负实数集合:﹛_________…﹜.三、解答题(共13小题,满分0分)12.化简:(1);(2);(3);(4).13.化简:(1);(2);(3).14.实数a、b、c在数轴上的对应点如图所示,化简|a﹣b|﹣|c﹣a|+|b﹣c|﹣|a|.15.比较与的大小.16.在一个半径为20cm的圆形铁板上,欲截取一面积最大的正方形铁板作机器零件,求正方形的边长(精确到0.1).17.已知,,求a+b﹣2c的值.18.已知a、b、c为三角形三边长,且满足,试判断三角形的形状.19.化简.20.求下列各式中的x.(1);(2)(x﹣1)2﹣2=0;;(4)(3x ﹣2)2=6.21.(2005•徐州)计算:(﹣2)2﹣20+()﹣1+﹣.22.已知一个正方形的边长为4cm,另一个正方形的面积是这个正方形面积的10倍,求另一个正方形的边长.(精确到0.01).23.化简:(1);(2);(3);(4);(5).24.已知正数a和b,有下列命题:(1)若a+b=2,则≤1;(2)若a+b=3,则≤;(3)若a+b=6,则≤3;根据以上三个命题所提供的规律猜想:若若a+b=9,则≤_________。
中考数学 勾股定理综合练习(含答案)

2020中考数学 勾股定理综合练习(含答案)一、单选题(共有10道小题)1.和数轴上的点一一对应的 是()。
A. 整数B. 有理数C. 无理数D. 实数2.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切与E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A.133B.92D.3.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形④Rt ABC △中,90C =o ∠,两直角边a 、b 分别是方程2770x x -+=的两个根,则AB正确命题有( )A .0个B .1个C .2个D .3个4.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 的长度为( ) A. 5 B.6 C.7 D.255.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;以此类推,则平行四边形AO 4C 5B 的面积为( )A .54cm 2B .58cm 2C .516cm 2 D .532cm 26.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB=6,BC =9,则).FA CD E MN2A .4B.C .4.5D .57.如图,两个连接在一起的菱形的边长都是1 cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C8.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .39.下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是( )厘米. A 、4018 B 、4020 C 、8036 D 、602710.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
勾股定理,实数

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级姓名:_______________班级:_______________考号:_______________一、选择题(每空?分,共?分)1、要使式子有意义,则的取值范围是()A.x> B.x>- C.x≥ D.x≥-2、估算的值在A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间3、下列关于的说法中,错误的是()A.是无理数 B.是15的算术平方根C.15的平方根是 D.4、一个正偶数的算术平方根是,那么与这个正偶数相邻的下一个正偶数的算术平方根是()A. B. C.D.5、下列说法错误的是() A.1是(-1)2的算术平方根 B.0的平方根是0C.-27的立方根是-3 D .6、若,则、、的大小关系是()A. B . C . D .7、以OA为斜边作等腰直角三角形OAB,再以OB为斜边在△OAB外侧作等腰直角三角形OBC,如此继续,得到8个等腰直角三角形(如图),则图中△OAB与△OHJ的面积比值是()A.32 B.64 C.128 D.256二、填空题(每空?分,共?分)8、根据图所示的程序计算,若输入x的值为64,则输出结果为________.9、请你观察思考下列计算过程:因为112=121,所以=11;同样,因为1112=12321,所以=111;…由此猜想=_10、直角三角形纸片的两直角边BC、AC的长分别为6、8,现将如图那样折叠,使点与点重合,折痕为,则的长为________.11、如图,矩形ABCD 中,AB=2,BC=3,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,则CE 的长为 。
三、简答题(每空? 分,共? 分)12、(1)观察:……可得= .(1.5分)如果,则奇数的值为 .(1.5分)(2)观察式子:;;……按此规律计算=.(2分)13、已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.14、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)15、如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC和EF的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版勾股定理、实数综合测试
填空题
1. V9的平方根是___________ ,算术平方根是_____________ •
2. 化简p一穴| +J(4 — ;r)2 = ______________
3. ―迈的相反数是____________ ,绝对值是_______________ .
4. 实数a、b、c在数轴上的对应点如图所示,则a+0+b|-二__________________________
5. 大于-忑,小于航的整数有______________ 个。
6. 如图,AABC中,ZC=90° , 43垂直平分线交于D若BC=S, AD=5,则AC
等于_______________
7. 如图,/\ABC中,ZC=90° , A3垂直平分线交BC于D若BC=8, AD=5,则AC
等于 ______ •
8. 在RtAABC 中,ZC=90°,①若a=5, b=12,则c二___________________ :②若a=15,
c=25,则b= _____________ :③若c=61, b=60,则a= ______________ ;④若a : b=3 : 4,
c=10 则S RlA ABC= _______
二:选择题
9. 下列说法中,正确的是( )
A.有理数都是有限小数.
(A ) 6 (B )
8.5
①|1-
2|-石 +
(-2厂②(X-1)2 -1=8 B ・无限循环小数都是无理数
C.有理数和无理数都可以用数轴上的点表示
0.无理数包括正无理数,0和负无理数
估算辰的值应在( )
A. 6・5~7.0 之间
B. 7.07.5 之间
C. 7・5~&0 之间 b. 8.O8.5 之间 在1.414, -苗,互,5宀2-苗中,无理数的个数是(
) A. 1 B. 2 下列各式中正确的是(
A.屈=±9 C.毎+42 =序 +序= 3 + 4 = 7 绝对值小
于3的所有实数的积为(
A. 6
B.12
对于爲-①来说()
有平方根 B.只有算术平方根 C.没有平方根 D.不能确定 若实数a 满足苗+&二0,则有()
a>0 B. a^O C. a<0 D. aWO 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为
计算题
10. 11. 12. 13. 14- A. 15. A. 16. 三: 17- D ・(3.14— ;r )u=l
-A /75
19. 一个正数的平方根为x+3与2x-6,求这个数。
20.已知的整数部分为a,小数部分为b,求乩b?的值
四:解答题
22.如图,有一个直角三角形纸片,两直角边AC=18cm, BC二24cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上,且与AE重合,求BD的长。
23、有一个长宽高分别为2cm, 1cm, 3cm的长方体,如图2,有一只小蚂蚁想从点A 爬到点Cl 处,请你帮它设计爬行的最短路线,并说明理山。
24、已知a, b, c 为ZkABC 三边,且满足a:+b2+c:+338=10a+24b+26c.试判断AABC 的形状。