新课标人教A版选修2-1全套教案

合集下载

浙江省温州中学人教新课标A版数学 选修2-1 2.2 椭圆的切线方程 教案

浙江省温州中学人教新课标A版数学 选修2-1 2.2 椭圆的切线方程 教案

“椭圆的切线方程”教学设计浙江省温州中学 孔娣一、教学目标学问与技能:1、能依据已知条件求出已知椭圆的切线方程;2、让同学可以运用争辩圆的切线方程的方法类比到椭圆切线方程的争辩。

过程与方法:尝试用椭圆的切线方程解决椭圆的切线性质问题。

情感态度与价值观: 通过对椭圆的切线方程问题的探究,培育同学勤于思考,勇于探究的学习精神。

二、教学重点与难点教学重点:应用特殊化(由特殊到一般)方法解决问题。

教学难点:椭圆的切线方程的探究。

三、教学流程设计 (一)创设情境复习:怎样定义直线与圆相切?设计意图:温故而知新。

由前面学习过的直线与圆相切引出直线与椭圆相切。

定义做类比,都是“直线与其有且只有一个交点”来定义相切,从而通过解析法中联立方程组,消元,一元二次方程中的判别式等于零来解决。

(二)探究新知 基础铺垫:问题1、已知椭圆22:182x y C +=与直线l 只有一个公共点 (1)请你写出一条直线l 的方程;(2)若已知直线l 的斜率为1k =-,求直线l 的方程;(3)若已知切点(2,1)P ,求直线l 的方程;(4)若已知切点P ,求直线l 的方程。

设计意图:(1)依据椭圆的特征,可以得到特殊的切线方程如x y =±=般状况。

切线确定,切点确定。

(2)已知斜率求切线,有两条,并且关于原点对称。

利用斜截式设直线,联立方程组,消元,得到一元二次方程,判别式0∆=。

切线斜率确定,切线不确定。

(3)已知切点求切线,只有唯一一条。

利用点斜式设直线,联立方程组,消元,得到一元二次方程,判别式0∆=。

由于切点是整数点,运算简洁。

切点确定,切线确定。

可总结由(2)(3)两道小题得到求切线方程的一般步骤:设直线,联立方程组,消元,得到一元二次方程,判别式0∆=。

(4)同(3)的方法,但是切点不是整数点,运算麻烦,同学运算有障碍,所以要引出由切点得到椭圆切线的一般方法。

问题一般化:猜想:椭圆2222:1x y C a b+=与直线l 相切于点00(,)P x y ,则切线l 的方程?(椭圆的切线方程的具体求法,详情请见微课)设计意图:类比经过圆上一点P(x 0,y 0)的切线的方程为200x x y y r +=进行猜想,培育同学合情推理的力量。

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

人教版高中数学选修2-1《椭圆及其标准方程》教案一、课型新授课二、教学内容1、椭圆的定义;2、椭圆的两类标准方程;3、根据椭圆的定义及标准方程的知识解决一些简单的问题。

三、教学目标1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。

能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。

让学生感知数学知识与实际生活的普遍联系;3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。

培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。

通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。

四、教学重点、难点重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的推导过程。

五、教学方法教师引导为主、学生自主探究为辅。

六、教学媒体幻灯片、黑板。

七、教学过程(一)创设情境,导入新课用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。

此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。

这就是我们这节课所要学习的内容——椭圆及其标准方程。

(二)问题探究老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何?1、椭圆的形成下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。

然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢?如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。

数学:1.2《充分条件与必要条件》PPT课件(新人教A版-选修2-1)

数学:1.2《充分条件与必要条件》PPT课件(新人教A版-选修2-1)
2
(充要条件) 4)同旁内角互补"是 " 两直线平行 "的 "
5)" x 5" 是 " x 3"的
(必要不充分条件) 6)" a b " 是 " a c b c "的 (充要条件)
7)已知ABC不是直角三角形, "A<B" 是 "tan A tan B "的 (既不充分也不必要条件)
例3、求3x 10x k 0有两个同号且不相等
2
实根的充要条件 .
25 0k . 3
作业:
P.15
A组 第4题
B组第2题
引申
①从命题角度看
㈠若p则q是真命题,那么p是q的充分条件 q是p的必要条件. ㈡若p则q是真命题,若q则p为假命题,那么p是 q 的充分不必要条件,q是p必要不充分条件. (三)若p则q,若q则p都是真命题,那么p是q的 充要条件 (四)若p则q,若q则p都是假命题,那么p是q的 既不充分也不必要条件,q是p既不充分也不必 要条件.
例2、以“充分不必要条件”、“必要不充分条件”、“ 要条件”与”既不充分也不必要条件“中选出适当的一种 填空. 1)" x 0, y 0" 是 " xy 0"的(充分不必要条件) 2)a N "是 " a Z "的 (充分不必要条件) "
3) x 1 0" 是 " x 1 0"的 (必要不充分条件) "
引申
②从集合角度看
命题“若p则q”
已知A= x | x满足条件p},B= x | x满足条件q} { {

高二数学 第二章 第3节双曲线(理) 人教新课标A版选修2-1

高二数学 第二章 第3节双曲线(理) 人教新课标A版选修2-1

高二数学 第二章 第3节双曲线(理) 人教新课标A 版选修2-1一、学习目标:1、知识目标:掌握双曲线的定义,双曲线的标准方程和双曲线的几何性质。

2、能力目标:培养学生的解析几何观念;培养学生的观察、概括能力,以及类比的学习方法;培养学生分析问题、解决问题的能力。

二、重点、难点:重点:双曲线的定义、标准方程和几何性质,并会利用双曲线的几何性质解决一些问题。

难点:双曲线的定义和几何性质的灵活应用,会处理有关双曲线焦点三角形的问题并能与正余弦定理结合解题。

能用坐标法解决简单的直线与双曲线的位置关系等问题。

三、考点分析:学习完本节内容,我们要熟练掌握双曲线的定义及其两种标准方程的表达,会用待定系数法确定双曲线的方程,以及双曲线的简单几何性质的运用。

初步掌握用定义法和直接法求轨迹方程的一般方法,同时解决一些直线与双曲线的位置关系的问题。

1、对双曲线第一定义的理解在双曲线定义中,平面内的动点与两个定点F 1,F 2的距离之差的绝对值等于常数,当这个常数小于|F 1F 2|时,动点的轨迹是双曲线;当这个常数等于|F 1F 2|时,动点的轨迹是两射线F 1F 2,F 2 F 1;当这个常数大于|F 1F 2|时,动点不存在。

2、双曲线的第二定义:动点M 与一个定点F 的距离和它到一条定直线的距离的比是一个大于1的正常数,这个点的轨迹是双曲线。

定点是双曲线的焦点。

定直线叫双曲线的准线,常数e 是双曲线的离心率。

即dMF ||=e (e >1)。

注意:(1)定点必须在直线外。

(2)比值必须大于1。

(3)符合双曲线第二定义的动点轨迹肯定是双曲线,但它不一定具有标准方程的形式。

(4)双曲线离心率的两种表示方法:到相应准线的距离点的距离到焦点点M F M a c e ==准线方程为:双曲线焦点在x 轴:c a x 2±=双曲线焦点在y 轴:ca y 2±=3、双曲线的标准方程与几何性质标准方程22a x -22b y =1(a >0,b >0) 22a y -22bx =1(a >0,b >0)简图中心 O (0,0)O (0,0)顶点 A 1(-a ,0),A 2(a ,0)B 1(0,a ),B 2(0,-a )范围 |x|≥a|y|≥a焦点 F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )准线x =±c a 2y =±c a 2渐近线 y =±a b xy =±ba x4. 焦半径公式(1)当M (x 0,y 0)为22a x -22b y =1右支上的点时,则|MF 1|=ex 0+a ,|MF 2|=ex 0-a 。

1.3.且(and)-人教A版选修2-1教案

1.3.且(and)-人教A版选修2-1教案

1.3.且(and)-人教A版选修2-1教案一、教学目标•通过本节课的学习,能够掌握且的概念和运算方法;•能够熟练应用且的运算规律解决实际问题;•培养学生的逻辑思维和抽象思维的能力。

二、教学重点•理解且的概念和意义;•掌握且的运算规律。

三、教学难点•运用且的运算规律解决实际问题。

四、教学内容及方法(一)教学内容1.且的概念和意义;2.且的性质和运算规律;3.且的应用。

(二)教学方法1.演示法:通过举例说明且的概念和运算方法;2.讨论法:引导学生思考并讨论且的应用问题;3.练习法:通过实例练习,加深学生对且的理解和掌握。

五、教学过程(一)导入(5分钟)在黑板上写下下面的问题,引起学生思考并尝试回答: - 你知道“且”是什么意思吗? - 且在日常生活中有哪些用法?(二)讲解与练习(30分钟)1.讲解•且的概念和意义:–且,是数学中的逻辑运算符号,表示两个命题都为真时,连接结果为真。

–例如:若A为“小明是男孩”,B为“小明是学生”,则“A且B”为“小明是男学生”。

•且的运算规律:–交换律:A且B=B且A–结合律:(A且B)且C=A且(B且C)–分配律:A且(B或C)=(A且B)或(A且C)–德摩根律:非( A 且 B)=非A或非B–例如:已知三个命题P、Q、R,且P、Q、R均为真,则有•P且Q=Q且P•(P且Q)且R=P且(Q且R)•P且(Q或R)=(P且Q)或(P且R)•非(P且Q)=非P或非Q•运用–例如:小明喜欢数学,小红喜欢语文,则有:•若小明不喜欢语文,则小明班上有多少人也不喜欢语文?•解答:已知小明喜欢数学,且小红喜欢语文,则班上不喜欢语文的人为小明且不喜欢语文,或者不是小明但不喜欢语文的人。

因此,班上不喜欢语文的人为“不是小明且不喜欢语文”。

即,班上有n个学生不喜欢语文,其中小明不喜欢语文,n-1个学生不是小明且不喜欢语文。

2.练习•请解答下面的问题:–若A为“小明是男孩”,B为“小明是学生”,C为“小明喜欢运动”,则有:1.(A且B)或C=?2.非(A且B)=?(三)总结归纳(10分钟)•总结学生的答案,引导学生发现且的性质和运算规律。

高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

高二数学2.2.1椭圆及其标准方程教案1人教新课标A版选修21

P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。

◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。

教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。

教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。

人教A版高中数学选修2-1《2.2椭圆》复习教案

人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。

1.3.或(or)-人教A版选修2-1教案

1.3.或(or)-人教A版选修2-1教案

1.3.或(or)-人教A版选修2-1教案教学内容分析本节课主要围绕“或”的概念展开。

在数学中,“或”是一种逻辑关系,代表着两个或多个条件中的任意一个成立即可。

比如,对于“只有男生或只有女生参加活动”的条件,只要有男生或有女生参加就可以了。

在本教案中,将以几个例题和课堂练习来帮助学生理解“或”的概念,并学会运用“或”的逻辑关系进行数学问题的求解。

同时也希望通过这个过程,使学生能够在实际生活中更好地理解和应用“或”的概念。

教学目标1.理解“或”的概念和逻辑关系;2.学会正确地运用“或”进行数学问题的求解;3.发扬合作精神,互相帮助、共同进步。

教学重点深入理解“或”的概念和逻辑关系,并能熟练运用。

教学难点如何让学生正确地掌握“或”的概念和运用。

教学准备1.教材:人教A版选修2;2.课件:PPT课件,用于展示学习内容和例题讲解;3.黑板、彩笔、橡皮等。

教学过程热身启动(1)组织学生参与热身运动,以缓解课堂紧张氛围,调动大家的听课积极性。

(2)学生讲解请学生用自己的话解释“或”的意义和作用。

新课讲解(1)教师通过PPT展示,对“或”的概念和逻辑关系进行简单的讲解,并通过举例说明。

(2)教师总结“或”的运用规则,即两个条件中只要有一个成立则整个命题成立。

(3)教师在黑板上列出一些例题,依次请学生验证哪些是成立的。

并请有疑问的同学围绕讨论。

课堂练习(1)教师在黑板上列出几道练习题,让学生尝试用“或”的概念解决问题。

(2)学生可以分组进行讨论,搜集和总结解决问题的方法,以便更好地发挥集体智慧。

课堂小结(1)教师带领学生做问题总结,并回应学生提出的问题。

(2)教师提出“或”的几个易混淆问题,再一遍对规则进行讲解和强调。

(3)回顾本节课的教学内容,让学生对当前所学的知识点有进一步的理解和巩固。

教学方法本节课采用了讲解、小组讨论、课堂练习等多种教学方法。

通过PPT课件的示范,学生可以更加直观地理解“或”的概念和运用规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。

紧接着提出问题:命题是否也是由条件和结论两部分构成呢?6.命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q 叫做命题结论.7.练习、深化指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若整数a能被2整除,则a是偶数.(2)若四边行是菱形,则它的对角线互相垂直平分.(3)若a>0,b>0,则a+b>0.(4)若a>0,b>0,则a+b<0.(5)垂直于同一条直线的两个平面平行.此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。

其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.8.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

9.怎样判断一个数学命题的真假?(1)数学中判定一个命题是真命题,要经过证明.(2)要判断一个命题是假命题,只需举一个反例即可.10.练习、深化例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

11、巩固练习:P42、312.教学反思师生共同回忆本节的学习内容.1.什么叫命题?真命题?假命题? 2.命题是由哪两部分构成的?3.怎样将命题写成“若P,则q”的形式.4.如何判断真假命题.教师提示应注意的问题:1.命题与真、假命题的关系.2.抓住命题的两个构成部分,判断一些语句是否为命题.3.判断假命题,只需举一个反例,而判断真命题,要经过证明.13.作业:P9:习题1.1A组第1题1.1.2四种命题 1.1.3四种命题的相互关系(一)教学目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(二)教学重点与难点重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.教具准备:与教材内容相关的资料。

教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(三)教学过程学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2.思考、分析问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.3.归纳总结问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。

4.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.让学生举一些互逆命题的例子。

定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.让学生举一些互否命题的例子。

定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.让学生举一些互为逆否命题的例子。

小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。

5.四种命题的形式让学生结合所举例子,思考:若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.6.巩固练习写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)若一个整数的末位数字是0,则这个整数能被5整除;(3)若x2=1,则x=1;(4)若整数a是素数,则是a奇数。

7.思考、分析结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?通过此问,学生将发现:①原命题为真,它的逆命题不一定为真。

②原命题为真,它的否命题不一定为真。

③原命题为真,它的逆否命题一定为真。

原命题为假时类似。

结合以上练习完成下列表格:由表格学生可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性.由此会引起我们的思考:一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系.学生通过分析,将发现四种命题间的关系如下图所示:8.总结归纳由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题. 9.例题分析例4: 证明:若p 2 + q 2=2,则p + q ≤ 2.分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。

将“若p 2 + q 2=2,则p + q ≤ 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若p + q >2,则p 2 + q 2≠2”为真命题,从而达到证明原命题为真命题的目的. 证明:若p + q >2,则 p 2+ q2=21[(p -q )2+(p +q )2]≥21(p +q )2>21×22=2 所以p 2+ q 2≠2.这表明,原命题的逆否命题为真命题,从而原命题为真命题。

相关文档
最新文档