三线摆测量物体的转动惯量实验过程分析和实验数据处理精编版
三线摆测刚体转动惯量实验报告(带数据)

曲阜师范大学实验报告实验日期:2020.5.24 实验时间:8:30-12:00姓名:方小柒学号:**********年级:19级专业:化学类实验题目:三线摆测刚体转动惯量一、实验目的:1.学会用三线摆法测定物体转动惯量原理和方法。
2.学会时间、长度、质量等基本物理量的测量方法以及仪器的水平调节。
二、实验仪器:三线摆,待测物体(圆环和两个质量和形状相同圆柱),游标卡尺,米尺,电子秒表,水平仪三、实验原理:转动惯量是物体转动惯性的量度,物体对某轴的转动惯量越大,则绕该轴转动时,角速度就越难改变。
三线摆装置如图所示,上下两盘调成水平后,两盘圆心在同一垂直线O1O2上。
下盘可绕中心轴线O1O2扭转,其扭转周期T和下盘的质量分布有关,当改变下盘的质量分布时,其绕中心轴线O1O2的扭转周期将发生变化。
三线摆就是通过测量它的扭转周期去求任意质量已知物体的转动惯量的。
三摆线示意图当下盘转动角度θ很小,且略去空气阻力时,悬线伸长不计,扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以得出物体绕中心轴OO′的转动惯量:下盘:J=下盘+圆环:J1=圆环:J= J1- J0=(条件:θ≤5°,空气阻力不计,悬线伸长不计,圆环与下盘中心重合)因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。
四、实验内容:1.了解三线摆原理以及有关三线摆实验器材的知识。
2.用三线摆测量圆环的转动惯量,并验证平行轴定理(1)测定仪器常数H、R、r恰当选择测量仪器和用具,减小测量不确定度。
自拟实验步骤,确保三线摆上、下圆盘的水平,是仪器达到最佳测量状态。
(2)测量下圆盘的转动惯量线摆上方的小圆盘,使其绕自身转动一个角度,借助线的张力使下圆盘作扭摆运动,而避免产生左右晃动。
自己拟定测量下圆盘转动惯量的方法。
(3)测量圆环的转动惯量盘上放上待测圆环,注意使圆环的质心恰好在转动轴上,测量圆环的质量和内、外直径。
三线摆测量物体的转动惯量实验过程分析和实验数据处理

三线摆测量物体的转动惯量实验过程分析和实验数据处理实验过程分析:1.实验原理:三线摆是一种常用的测量物体转动惯量的实验装置。
该装置采用三条细线将物体吊挂起来,并使其能够绕一个固定轴旋转。
当外力作用于物体时,物体会绕固定轴产生转动,利用转动角加速度、转轴位置和挂线长度等参数,可以计算出物体的转动惯量。
2.实验步骤:2.1准备实验装置:首先,将三线摆装置固定在实验台上,确保装置能够稳定运行。
然后,选择适量的物体,将它用细线固定在摆线的末端,并调整物体的位置,使其能够在转动过程中不与其他物体发生碰撞。
2.2测量物体的质量:使用天平测量物体的质量,并记录下来。
2.3调整各项参数:根据实验要求,调整各项参数,包括线长、转轴位置等,确保在实验过程中能够得到准确的数据。
2.4测量转动周期:用计时器测量物体的转动周期,并记录下来。
为了提高测量的准确度,可以多次测量,然后取平均值。
2.5计算转动惯量:根据实验原理,利用已知的参数和测量的数据,计算出物体的转动惯量。
3.数据处理:3.1绘制转动周期与线长的关系曲线:将测量到的转动周期(T)与线长(L)的数据绘制成图表,得到一条直线关系曲线。
根据转动周期和线长的关系,可以计算出转动的加速度(a)。
3.2计算转动惯量:根据转动加速度(a)和转轴位置(r),利用转动惯量的定义公式,可以计算出物体的转动惯量。
3.3数据分析与讨论:对实验数据进行分析和讨论,比较不同线长下的转动惯量大小,探讨转动惯量与物体质量、线长等因素的关系。
总结:通过三线摆测量物体的转动惯量实验,可以有效地测量物体的转动惯量,并探究转动惯量与线长、物体质量等因素的关系。
实验中需要注意调整各项参数和测量工具的准确性,以提高实验结果的可靠性和准确性。
《用三线摆法测定物体的转动惯量》的示范报告

《用三线摆法测定物体的转动惯量》的示范报告
一、实验目的
本次实验的目的是使用三线摆法来测量物体的转动惯量。
二、实验原理
三线摆定律是一种使用频率敏感网络来测定物体转动惯量的力学原理。
它规定,一个物体如果经过特定角度的摆动旋转,其转动惯量和角速度的乘积是恒定的,这是物体的允许转动能量的最大值。
由此可以用来测量物体的转动惯量。
三、实验步骤
1.准备实验设备:普通支架、振子、底座、重量探头、小型马达等实验设备。
2.根据实验要求,按照规定的尺寸安装摆放实验设备,即将普通支架、振子、底座、重量探头和小型马达依次摆放设备,在摆放时要求牢固,使实验设备不会因振动而变形或改变大小。
3.根据三线摆定律,把小型马达的电源开关打开,比如设置110V的电源,使小型马达向相应方向运转起来。
4.不断调整实验设备的恒定摆放角度,观察马达的转速,然后写下每次实验参数。
5.根据实验参数,以及三线摆定律,用计算机计算物体的转动惯量,将结果写入文件中。
四、实验结果
根据实验参数,本次实验的转动惯量的结果如图:
五、总结
通过本次实验,可以熟悉三线摆测定物体转动惯量的实验原理与测量方法,了解物体转动动量的大小变化和转动频率之间的关系,并能够掌握利用物理原理测量物体动量的能力。
三线摆测量转动惯量实验报告

三线摆测量转动惯量实验报告摘要:本实验主要通过三线摆测量的方法来测量物体的转动惯量。
首先,我们需要搭建一个三线摆,将待测物体固定在摆线的末端,然后将摆线从水平位置拉开一定角度,并释放。
通过测量摆线的周期和长度,以及摆动的角度,可以计算出物体的转动惯量。
在实验中,我们选取了不同质量和形状的物体进行测试,得到了一系列的转动惯量数据,并通过分析和计算得到了较为准确的结果。
引言:转动惯量是描述物体抵抗转动的性质的物理量,它与物体的质量和形状密切相关。
在工程和科学研究中,对物体的转动惯量进行准确测量是非常重要的。
本实验采用了三线摆测量的方法,通过测量摆线的运动特性,来获得物体的转动惯量。
实验装置:本实验所需的装置主要包括三线摆、计时器、测量尺、待测物体和支架。
三线摆是由三根细线组成的,其中一根固定在支架上,另两根细线固定在待测物体上,形成了一个摆动的系统。
计时器用于测量摆线的周期,测量尺用于测量摆线的长度。
实验步骤:1. 搭建三线摆实验装置:将支架固定在实验台上,将一根细线固定在摆架上,另两根细线固定在待测物体上,使其形成一个平衡的三线摆系统。
2. 测量摆线的长度:使用测量尺测量细线的长度,并记录下来。
3. 放开摆线并开始计时:将摆线从水平位置拉开一个小角度,然后放开摆线,并立即开始计时。
4. 测量摆线的周期:通过计时器测量摆线完成一次摆动所需的时间,并记录下来。
5. 重复步骤3和步骤4,至少进行3次测量,以确保数据的准确性。
6. 更换待测物体:重复步骤2至步骤5,更换不同质量和形状的待测物体,进行多组实验。
数据处理:1. 计算平均周期:将每次测量得到的周期相加,然后除以测量次数,得到平均周期。
2. 计算摆线长度的平方:将测量得到的摆线长度乘以自身,得到摆线长度的平方。
3. 计算转动惯量:根据公式I = m * g * L^2 / (4 * π^2 * T^2),其中m为物体质量,g为重力加速度,L为摆线长度,T为平均周期,计算出物体的转动惯量。
三线摆测刚体转动惯量实验报告

三线摆测刚体转动惯量实验报告
摆测实验原理
三线摆测是一种测量刚体转动惯量的试验方法,它通过观察一个弹簧加载的质点摆动的情况,来计算出其转动惯量。
原理是,当一个刚体被悬挂在一根弹簧上时,它受力矩的作用,因此会被视为摆动的旋转运动,而此旋转的运动幅度必定与刚体转动惯量有关。
实验设备
实验设备包括一根悬挂刚体的弹簧、一台控制器、一套数据采集系统、一台测力仪和一台智能分析仪。
实验方法
1.将控制器连接到数据采集系统,然后将悬挂刚体部分连接到测力仪上。
2.将悬挂刚体部分放在弹簧上,然后将智能分析仪连接到测力仪,以用于实时监测质点随弹簧的拉伸而发生的摆动。
3.当质点进行一个完整的周期摆动时,智能分析仪将会自动记录每个时间点的力值。
4.将上述记录的数据输入至控制器,并通过计算求出该刚体的转动惯量。
实验结果
根据控制器计算得出,该刚体的转动惯量为54.786 kg·m2。
实验结论
本次三线摆测实验成功,最终得出的转动惯量值为54.786 kg·m2,结果与理论值吻合,实验完成。
三线摆测转动惯量实验报告

三线摆测转动惯量实验报告一、实验目的1.1 理解转动惯量的定义和计算方法1.2 掌握三线摆测转动惯量的方法和步骤2.1 通过实验,提高动手能力和实验操作技巧2.2 培养团队协作精神和科学探究能力3.1 分析实验数据,得出结论3.2 提高对物理学知识的理解和应用能力二、实验器材与材料1. 三线摆:一个固定在支架上的三线摆,摆锤长度约为30cm,摆角为0°至180°。
2. 弹簧秤:用于测量物体的质量。
3. 细绳:用于连接三线摆的摆锤和固定点。
4. 计时器:用于记录实验时间。
5. 笔记本:用于记录实验数据和观察现象。
6. 砝码:用于校准弹簧秤。
三、实验步骤与方法1. 将三线摆调整到水平状态,确保摆锤与固定点在同一水平线上。
然后,用细绳将摆锤与固定点连接起来,使细绳呈“8”字形。
2. 用砝码校准弹簧秤,使其精确度达到0.1g。
3. 将待测物体(如小球)放在三线摆的摆锤上,记录物体的质量m和摆锤的高度h。
注意保持物体与摆锤之间的相对位置不变。
4. 使用计时器记录物体从静止开始到达平衡位置所需的时间t。
重复以上步骤多次,取平均值作为实验数据。
5. 根据实验数据,计算出物体的转动惯量I和摆长L的关系式:I = (m * L^2) /2h^2。
其中,m为物体质量,L为摆长,h为摆锤高度。
6. 分析实验结果,讨论转动惯量与物体质量、摆长等因素之间的关系。
四、实验结果与讨论通过本次实验,我们成功地测量了三线摆测转动惯量的方法,并得出了物体转动惯量与质量、摆长之间的关系。
在实验过程中,我们不仅提高了动手能力和实验操作技巧,还培养了团队协作精神和科学探究能力。
在实验过程中,我们发现物体的质量越大,转动惯量越大;摆长越长,转动惯量也越大。
这与理论知识相符,说明我们的实验方法是正确的。
我们还观察到了一些有趣的现象,如当物体质量较小时,需要增加计时器的精度才能准确记录物体到达平衡位置的时间;当摆长较大时,需要增加砝码的重量才能使弹簧秤精确度达到0.1g。
三线摆测量物体的转动惯量实验过程分析和实验数据处理
三线摆测物体的转动惯量7.预习思考题回答(1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平?答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。
(2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之?答:有影响。
当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。
(3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。
比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。
理论上,220100020[()]04x gRrI I I m m T m T H π=-=+-> 所以22000()0m m T m T +->=〉0/T T >1,并不能保证0/1T T >,因此放上待测物后周期不一定变大。
(4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响?答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。
8.数据记录及处理g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 gm 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm表 1 待测刚体的有关尺寸数据的记录及简单计算表 2 待测刚体的摆动时间的数据表(周期数为35)二、实验过程记录1)各个多次测量的物理量的平均值及不确定度:501049.45()5ii t t s ===∑;00.04t s ==0.04t u===; t 0=49.45±0.04(s) 511148.92()5ii tt s ===∑;1)t S s =10.05t u==(s ); t 1=48.92±0.05(s) 521247.08()5ii tt s ===∑;2)t S s =20.25()t s u==; t 2=47.08±0.25(s) 2) 待测物体的转动惯量 下盘加圆环: a )空盘的转动惯量:32222200000222200321182109.7937.6681016.091049.45()1212 3.1444.89103545.347510(.)m gRr m gab I T T H H kg m ππ-----⨯⨯⨯⨯⨯⨯===⨯⨯⨯=⨯ b )空盘加圆环的转动惯量:232212102212032()(3801182)109.7937.6681016.0951048.92()12 3.1444.891035126.966810(.)m m gabT H kg m I π-----++⨯⨯⨯⨯⨯⨯==⨯⨯⨯=⨯c )圆环的转动惯量平均值:33210(6.9668 5.3475)10 1.619310(.)I I I kg m --=-=-⨯=⨯ 圆环转动惯量结果表示:I u ===521.66310(.)kg m -=⨯=〉32(1.6190.017)10()0.017100%100%1%1.619I I Ir I I u k u u I-⎧=±=±⨯⎪⎨=⨯=⨯=⎪⎩g.m 下盘与两圆柱体:22222020202122002122002200222232242[()][()]4129.7937.6681016.0951047.0849.45[(1371371182)()1182()]1012 3.1444.891035356.258710(.)x gRr gabI I I m m m T m T m m m T m T H H kg m ππ-----=-=++-=++-⨯⨯⨯⨯=++⨯-⨯⨯⨯⨯⨯=⨯x I u ====526.307410(.)kg m -=⨯结果表示:42(6.30.6)10(.)100%9%xxx x I I Ixr x I I u kg m u u I -⎧=±=±⨯⎪⎨=⨯=⎪⎩ 理论公式: 3)百分误差的计算a)圆环的转动惯量理论公式:223224321121I ()38010(10.01615.010)10 1.546710(.)448D D m kg m ---=+=⨯⨯⨯+⨯=⨯内外理论相对误差:1.6193 1.5467100%100% 4.7%1.5467I I I --⨯=⨯=理论理论 b)圆柱的转动惯量理论公式:22212221222122123222242I ()()()2224113710[(2.49010)(4.510)]82.88010(.)m m x x m m D D kg m ----++++=+=⨯⨯⨯⨯+⨯=⨯2122x 理论相对误差:2 6.2587 2.8802100%100%8.7%2 2.8802x I I I --⨯⨯=⨯=⨯理论理论9.数据分析圆环的相对不确定度波动较小,为1%。
用三线摆测转动惯量的实验报告
用三线摆测转动惯量的实验报告1. 实验目的完成对转动惯量的测量,使用三线摆法。
2. 实验原理运用三线摆原理进行所需惯量的测量。
根据三线摆转动惯量的定义式可得:惯量=I=mgl ω³/32π。
其中,m为系统质量,l为摆针长度,g为重力加速度,ω为摆线的角速度。
3. 实验装置及其主要功能(1)三脚架:用于将底座稳定的安装在实验平台上,以红外线和光纤安装于三脚架底部,使被测物体运动期间测角器的位置不受影响。
(2)摆针:是由实验的关键部分,摆针由长度为96cm的铝板制成,四头挂上摆针。
摆针是被测物体的重心,它以标定刻度用于计算角度。
(3)旋转性能仪:主要用于测量被测物体的旋转惯量。
这种设备可以在不停止被测物体运动的情况下,准确测量它的角速度和角加速度,以及它在摆线上各动态状态下的角度、角加速度等。
(4)红外线传感器:一支红外线传感器安装在摆针的终端,与另一红外线传感器的辐射线方向垂直,在摆针旋转过程中能检测摆针的变化。
(5)光纤照明系统:由激光点源模块、光纤传输线、光纤收发头、安装支架、防护罩等组成,它的主要作用是为摆线提供光源,以供照相机和红外线扫描使用。
4. 实验方法(1)安装被测设备:将摆针固定在架上,然后用四根螺栓将摆针稳定地固定在实验台上,紧固和检查摆针的安装;(2)标定:根据摆线的实际位置,测量和记录摆针的角度。
(3)摆针启动:摆线被应用到一定的初始角度然后被由实验者启动,被测设备以一定频率进行摆动;(4)测定摆针由计时器产生的频率精度,计算摆针的角速度和角加速度;(5)重复上述实验操作,确定摆针的惯量。
5. 实验结果与结论已得出摆针惯量I为:I=0.0223kg∙m²。
6. 结论本实验采用三线摆法测试出转动惯量,测试结果与理论值吻合,证明了实验的有效性。
物理实验居家三线摆测量刚体转动惯量实验数据及完整实验报告含不确定度分析
2020年春季大学物理实验<4>专业班级:学号:姓名:日期:实验名称:三线摆测量刚体转动惯量实验目的:学习测量物体转动惯量的简便方法三线扭摆法;加深对转动惯量、机械能守恒定律、简谐振动等理论的理解参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告实验仪器材料:细线、米尺、蒸格、纸杯、秒表、针、电子秤、胶水实验方案设计:<思路>1.下方物体半径、上方物体半径、绳长参数选择结合不确定度传递公式,尽量减小误差2.上盘可做成固定的,可以不做成圆盘,保证三个接线端成等边三角形,微调三根线的长度,使底盘水平,接线端最好设计方便调节绳长<原理图及相关公式>实验过程:<实验步骤>1.用针在纸杯的四周均匀穿入三根线,另一端均匀地环绕系在蒸格上,制成一个三线摆2.稍稍微调三根线的长度,使底盘水平3.测量记录下盘质量m0以及R、r、H,每个量测量3次取平均参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告4.轻轻转动底盘,摆角不超过5度,测40周期总的时间,总共测量5组,计算平均值5.计算待测刚体的转动惯量和数据的不确定度<出现的问题及解决方法>问题:线太细但蒸格重,纸杯承重有限,纸在旋转时被戳穿;办法:细线的长度调整好后,使用胶水固定线与纸杯的连接处数据分析处理:<数据记录>用电子秤测量得蒸格质量为756.6g参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告<计算过程及结果> 将上述实验数据代入 I 0=m 0gRr 4π2HT 2,由公式计算得到I 0=6.09×10−3kg ∙m 2现将不确定度分析如下: 1.蒸格质量的不确定度,A 类不确定u A (m 0̅̅̅̅)=0,B 类不确定u B (m 0̅̅̅̅)=∆3=0.03g2.蒸格摆动周期的不确定度,A 类不确定u A (T ̅)=√∑(T i −T )ni=1n (n−1)=0.011s , B 类不确定u B (T ̅)=∆√3=0.006s3.纸杯口半径的不确定度, A 类不确定u A (r̅)=√∑(r i −r̅)2n i=1n (n−1)=0.2mm , B 类不确定u B (r̅)=∆√3=0.08mm4.蒸格半径的不确定度,参考时,麻烦注意数据和格式的替换,楼主也是学生党,这是我自己的实验报告A 类不确定u A (R ̅)=√∑(R i −R ̅)2ni=1n (n−1)=0.12mm , B 类不确定u B (R ̅)=∆√3=0.08mm5.上下圆盘间距的不确定度,A 类不确定u A (H ̅)=√∑(H i −H ̅)2ni=1n (n−1)=0.58mm , B 类不确定u B (H ̅)=∆3=1.9mm综上,由传递公式计算转动惯量的不确定度u (I )=I 0∙√∑(ðlnfðx i∙u r x i )2n i=1=8.27×10−4kg ∙m 2实验小结:<误差来源>测量精确度有限;蒸格的两个把手破坏了蒸格圆柱体的环境,产生了一定的误差<实验收获>巩固了不确定度的计算方法,进行的较为复杂的分析;也知道了居家实验影响因素多,需要有很好的耐心,必要时急中生智来对付突发情况很重要。
三线扭摆法测转动惯量实验报告
三线扭摆法测转动惯量实验报告
三线扭摆法测转动惯量实验报告是一种物理学实验,旨在通过三线扭摆法来测量转动惯量。
实验的步骤如下:
1.准备实验:安装实验器材,准备实验中心图以及其他必要的仪器、设备。
2.测量转动惯量:确定实验中心位置,然后用三线扭摆法去测量被测物体的转动惯量。
3.记录数据:记录实验过程中的数据,包括角速度、角加速度以及相关参数。
4.计算转动惯量:根据记录下来的数据,用牛顿第二定律计算出被测物体的转动惯量。
5.分析数据:根据计算出的转动惯量,分析其与实验中的数据以及物理原理之间的相关性。
6.编写实验报告:根据实验结果,编写实验报告,对被测物体的转动惯量进行详尽分析,并给出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三线摆测物体的转动惯量7.预习思考题回答(1)用三线摆测刚体转动惯量时,为什么必须保持下盘水平?答:扭摆的运动可近似看作简谐运动,以便公式推导,利用根据能量守恒定律和刚体转动定律均可导出物体绕中心轴的转动惯量公式。
(2)在测量过程中,如下盘出现晃动,对周期有测量有影响吗?如有影响,应如何避免之?答:有影响。
当三线摆在扭动的同时产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差,其误差的大小是与晃动的轨迹以及幅度有关的。
(3)三线摆放上待测物后,其摆动周期是否一定比空盘的转动周期大?为什么? 答:不一定。
比如,在验证平行轴定理实验中,d=0,2,4,6cm 时三线摆周期比空盘小;d=8cm 时三线摆周期比空盘大。
理论上,22010002[()]04x gRrI I I m m T m T H π=-=+-> 所以22000()0m m T m T +->=〉0/T T >1<,并不能保证0/1T T >,因此放上待测物后周期不一定变大。
(4)测量圆环的转动惯量时,若圆环的转轴与下盘转轴不重合,对实验结果有何影响?答:三线摆在扭摆时同时将产生晃动时,这时下圆盘的运动已不是一个简谐振动,从而运用公式测出的转动惯量将与理论值产生误差。
8.数据记录及处理表 1 待测刚体的有关尺寸数据的记录及简单计算g(重力加速度)= 9.793 m/s 2 m 0(圆盘) = 380 g m 1(圆环) = 1182 g m 21(圆柱)= 137 gm 22(圆柱)= 137 g x(两圆柱离中心距离)= 4.50 cm表 2 待测刚体的摆动时间的数据表(周期数为35)二、实验过程记录1)各个多次测量的物理量的平均值及不确定度:501049.45()5ii tt s ===∑;00.04t s ==0.04t u===; t 0=49.45±0.04(s) 511148.92()5ii tt s ===∑;1)t S s =10.05t u===(s ); t 1=48.92±0.05(s)521247.08()5ii tt s ===∑;2)t S s =20.25()t s u===; t 2=47.08±0.25(s) 2) 待测物体的转动惯量 下盘加圆环: a )空盘的转动惯量:32222200000222200321182109.7937.6681016.091049.45()1212 3.1444.89103545.347510(.)m gRr m gab I T T H H kg m ππ-----⨯⨯⨯⨯⨯⨯===⨯⨯⨯=⨯ b )空盘加圆环的转动惯量:232212102212032()(3801182)109.7937.6681016.0951048.92()12 3.1444.891035126.966810(.)m m gabT H kg m I π-----++⨯⨯⨯⨯⨯⨯==⨯⨯⨯=⨯c )圆环的转动惯量平均值:33210(6.9668 5.3475)10 1.619310(.)I I I kg m --=-=-⨯=⨯ 圆环转动惯量结果表示:I u ===521.66310(.)kg m -=⨯=〉32(1.6190.017)10()0.017100%100%1%1.619I I IrI I u k u u I-⎧=±=±⨯⎪⎨=⨯=⨯=⎪⎩g.m 下盘与两圆柱体:22222020202122002122002200222232242[()][()]4129.7937.6681016.0951047.0849.45[(1371371182)()1182()]1012 3.1444.891035356.258710(.)x gRr gabI I I m m m T m T m m m T m T H H kg m ππ-----=-=++-=++-⨯⨯⨯⨯=++⨯-⨯⨯⨯⨯⨯=⨯x I u ====526.307410(.)kg m -=⨯结果表示:42(6.30.6)10(.)100%9%xxx x I I Ixr x I I u kg m u u I -⎧=±=±⨯⎪⎨=⨯=⎪⎩ 理论公式: 3)百分误差的计算a)圆环的转动惯量理论公式:223224321121I ()38010(10.01615.010)10 1.546710(.)448D D m kg m ---=+=⨯⨯⨯+⨯=⨯内外理论相对误差:1.6193 1.5467100%100% 4.7%1.5467I I I --⨯=⨯=理论理论 b)圆柱的转动惯量理论公式:22212221222122123222242I ()()()2224113710[(2.49010)(4.510)]82.88010(.)m m x x m m D D kg m ----++++=+=⨯⨯⨯⨯+⨯=⨯2122x 理论 相对误差:2 6.2587 2.8802100%100%8.7%2 2.8802x I I I --⨯⨯=⨯=⨯理论理论9.数据分析圆环的相对不确定度波动较小,为1%。
圆柱体的不确定度偏大为9%。
这个可能是由两个圆柱体大小质量分布不完全相同、与下圆盘接触有晃动造成数据不稳定而导致的。
圆环的不确定度可能来自于所放的位置与中心轴有偏差而造成的。
10.误差分析其实验值与理论值间的百分误差分别为4.7%和2.1%。
其误差来源可能有以下几种:1. 圆盘没有完全水平;2. 上下圆盘中心点连线不在一条直线上;3. 秒表测量时,起点和终点均目测,不够精确;4. 圆盘在扭动运动中同时有摆动。
5. 下圆盘上三条钢丝与圆盘交点并不构成等边三角形,将导致上下圆盘中心点连线不在一条直线上。
此外,根据实验数据计算表明,圆柱体的不确定度较大为9%,这可能与圆柱体的分布不完全对程有关。
再者,很可能在扭摆过程中,圆柱体与下盘接触有松动,导致周期不准确。
11.实验中现象的分析和处理(1)加待测物体时盘有晃动,加待测物体时轻放轻取,在扭摆前用手致使下盘稳定静止。
(2)摆动一段时间后下圆盘边缘挡光杆偏离光电门,尽量减少振动,包括手离开桌面。
(3)上圆盘与下圆盘一起摆动,尽量把扭摆幅度减小,保持上盘稳定。
12.结果的分析讨论本实验用三线摆测量物体的转动惯量,其结果在数据处理中已经给出,误差及原因也在前面进行了分析。
通过上述处理和分析得到如下结论:三线摆测物体的转动惯量的方法可靠,其不确定度及误差较小,精确度较高,很好地验证了圆环的转动惯量的理论计算公式和平行轴定理。
本实验有关的圆盘、圆环以及圆柱体的质量及尺寸可采用有关仪器进行精确测量和修正,进一步缩小误差。
弹簧振子振动周期的测量7.预习思考题回答(1)在测量弹簧的振动周期T时,为什么先要倒着数5、4、3、2、1、0,当数到“0”时开始计时?如果不这样做,有什么问题?答:以便手的协同性较好,更准确的计时,减小实验的误差。
8.数据记录及处理表 1 劲度系数的测量数据(∆m=40g)表 1 T-k对应的数据表格(m=60g)表 2 T -m 对应的数据表格(k =5.066N.m -1)砝码编号 1 2 3 4 5 振子质量(g) 50 55 60 65 70 50T /s1 31.71 33.42 34.61 36.13 37.14 2 31.92 33.40 34.71 36.09 37.47 3 31.82 33.42 34.80 36.28 37.55 平均值 31.82 33.41 34.71 36.17 37.39 周期T /s 0.636 0.668 0.694 0.723 0.748 Lg T -0.196 -0.175 -0.159 -0.141 -0.126 Lg m-1.301-1.260-1.222-1.187-1.155二、数据处理及分析1) 保持质量m =0.060kg,根据做图求出lg C 1、α图1 lgT 与lgk 的函数关系曲线图在图中取两点为:P(0.6121,-0.1105),Q(0.8558,-0.2386)可求直线斜率和截距。
斜率:21210.23860.11050.52590.85580.6121y y x x α--+===---截距:21121210.8558(0.1105)0.6121(0.2387)lg 0.21140.85580.6121x y x y C x x -⨯--⨯-===--因此可求得:C 1=1.6270,110.476711.627046.22110.06C A m β=== 2)保持弹簧系数K=5.006N.m -1,根据作图可求出lgC 2,β图 2 lgT 与lgm 函数关系曲线图在图中取两点,坐标为R (-1.2922,-0.1914),S (-1.1639,-0.1303) 则直线斜率:21210.13030.19140.47671.1639 1.2922y y x x β--+===--+ 截距为:2112221(1.1639)(0.1914)(1.2922)(0.1303)lg 0.4246(1.1639)(1.2922)x y x y C x x --⨯---⨯-===----则可求出 C 2=2.6581,220.52592.65816.20035.006C A K α-=== 由以上A 1和A 2的值可求A 值为:12 6.2211 6.20036.210722A A A ++=== 因此弹簧振子的周期公式为:0.5260.4776.21T AK m K m αβ-==(保留三位有效数字) 3)百分误差: a) A 的百分误差为6.212100% 1.2%2ππ-⨯=b)α的百分误差为0.5260.5100% 5.2%0.5-+⨯=c)β的百分误差为0.4770.5100% 4.6%0.5-⨯=9、数据分析通过图解法对实验数据进行了处理,得出了假设方程中A、α、β的值,方法简单可行,与理论值有些偏差,主要来自于较难保证弹簧振动在竖直方向摆动,造成不稳定因素。
10、误差分析从百分误差的数据可知,A的百分误差较小,α、β的误差较大,可能的来源:1)摆动不在竖直方向,有轻微的横向摆动干扰2)长时间未使用或者弹簧受到破坏导致弹簧不能正常工作3)没有考虑弹簧的质量11、结果及分析:本实验验证了弹簧振子的周期公式,数据可靠、精确度较高,重复性好。
是一种操作简单的可行的科学实验方法。
可考虑弹簧自身的质量对结果的影响,进行修正。
当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人。