2019年屯溪一中高三10月月考数学试卷(理科)及答案

合集下载

2019届高三10月月考数学(理)试卷(含答案)

2019届高三10月月考数学(理)试卷(含答案)

2019届高三上学期十月知识总结一一理科数学、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符 合题目要求的1 •复数z 满足Z 1 -i = 1 i ,则复数z 在复平面内的对应点位于( )A.第一象限B•第二象限 C •第三象限 D •第四象限X —122. 已知集合 A = {x | 0}, B ={ x | y = lg( -x4x 5)},则 A 「(C R B)=()x +2A. (-2,—1]B • [-2,一1]C • (-1,1]D • [-1,1]3. 给出下列四个命题: ① 若A^B ,贝U A 或B ;② -[2 * ,都有 x 2 2x ;12 2③ "a”是函数“ y =cos 2ax -sin 2ax 的最小正周期为 二”的充要条件;2④ “ x^ R, x 02 2 3x )” 的否定是“ R, x 2 2 乞 3x ”;其中真命题的个数是(立,则f (2018)的值为(A. 1A. 1A. 14.已知函数f(x)是定义在 B. 2 C. 3R 上的偶函数,且f (0) = -1,且对任意D .二-f (2-x)成5.如果实数 x - y 1 — 0,x, y,满足条件2x ,y 「2_0,,贝V z =1 x 十0,2x 3y的最大值为(6.在平行四边形A.ABCDKAD=1,. BAD =60 ,E为CD的中点•若AC BE = 1,则AB的长为(D. 22 2 27.已知数列{a .}的前n 项和为S n ,且S n ^2a n ,则使不等式a • a ? V a . :: 86成立的n 的最大值为()9.若将函数f (x ) =sin (2x •「)「、3cos (2x •「)(0”「r )的图象向左平移 1个单位长度,平移4后的图象关于点(一,0)对称,则函数g (x ) =cos (x •::)在[ / ]上的最小值2 2 6、• 3C2cosB 」3sinB =2,则a c 的取值范围是()H n =2n 1,记数列{a n -20}的前n 项和为&,则&最小值为(12.对于函数f x 和g x ,设二三:x f x = 0』,—:xg x =0』,若存在:J ,使得8.两个正实数 x, y 满足A.(-1,4)B.1 4 一 y 21,且不等式x m —3m 有解,则实数m 的取值范围是(x y 4(一①-1) (4, ::) C.(_4,1) D. (_::,0) (3,::)1 A.210.在锐角 ABC 中,角A,B,C 的对边分别为a,b,c ,若凹bA. 3,2'B. C.一2汁3D.11.对于数列{a n },定义H n=a1+2a2川2 an为的{a n }“优值”,现已知某数列的“优值”A. —70C . -64D . -68则称f X 与g x 互为“零点相邻函数” •若函数f x 二 e x4 x - 2 与g x 二 x 2 _ ax _ a 3 互为“零点相邻函数”,则实数a 的取值范围是( A. 2,41 B.汀7C.D.2,3】 二.填空题(本大题共4小题,每题5分.共20 分)13•已知数列Q =1,a n=a n,+3n (n^2,,则数列牯」的通项公式a n= .?■=•T B■“Y R. =•«14. 已知向量|a—b|=|b|, |a—2b冃b|,则向量a,b的夹角为 _____________________________15. 已知关于x的不等式2x -1 mx2 -1 ,若对于xd, •::不等式恒成立,则实数m的取值范围是In x 1 16•已知函数f x是可导函数,其导函数为 f x,且满足xf (x) • f (x),且f (e)=-x e,则不等式f (x +1) - f (e +1) AX—e的解集为 ___________________三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在ABC中,角A,B,C的对边分别是a,b,c, C=60; . 2^ . 3b.(1)求角代B的大小;(2)若D为边AC上一点,且a = 4 , BCD的面积为.3,求BD的长.18. (本小题满分12分)已知数列{a n}是公差为正数的等差数列,a2和a5是方程x2-12x • 27 = 0的两个实数根,数列{bJ满足j 1 b n二na n1 -(n-1)a n(1) 求{a n}和{b n}的通项公式;(2)设T n为数列{b n}的前n项和,求T n.2 1 19.(本小题满分12 分)已知向量m = (.3cosx,1) ,n = (si nx,cos x-1),函数f(x)=m・ n -(1)若x 0, , f x 3,求cos2x 的值;IL 4 3(2)在ABC中,角A,B,C对边分别是a, b,c,且满足2bcosA乞2c-■■一3a,当B取最大值时,-3 a 亠ca=1“ABC面积为,求的值.sin A +sin C420.(本小题满分12分)已知各项均不相等的等差数列{耳}的前四项和S4 =14,且a,,a3,a7成等比.(1)求数列{耳}的通项公式;1(2)设T n为数列{ -------- }的前n项和,若’T n _ a n勺对一切n三a n a n ■+N*恒成立,求实数■的最大值.2x —121.(本小题满分12分)已知fx二ax-l nx .x(1)若函数f x在x=2处取得极值,求a的值,并求此时曲线程;(2)讨论f x的单调性•y = f x在1, f 1处的切线方22.(本小题满分12分)已知函数f(x)=xln x, g(x) =£ ax2-bx , (1)当a 0,且a为常数时,若函数h(x^x lg(x) 1对任意的成立,试用a表示出b的取值范围;(2)当 a 时,若f(x V)_2 g(x)对x € [0 ,+s)恒成立,其中a,b・R\ x2 _ 4,总有. 0X1 —X2求a的最小值.理科数学月考题答案1~5 AAAAB 6~10 BBBDB 11~12BD3n+ -713. a n 2兀14.614. m _015. -1,e17. (1 ) 18. (1 )A = 75 , B = 45 (2) BD - 13a n =2n -1,6 二4n-1 3nJ⑵ T n = 5 4n-5 2n.319.(1)6(2) 220.(1)O n =n 1(2)' max = 1611 21. a 二y = x —一2222.(1)由题意,得1 3h(x)二xg(x) x 二㊁ax2-bx x在x・[4,;)上单调递增二h'(x)二ax2-2bx 1 _0 在x [4,::)上恒成立22b乞童-=ax -在x・[4,;)上恒成立x x构造函数F(x) =ax 1 (a 0), x (0,::)x2 .贝V F '(x)二a -吉二ax2Tx x••• F(x)在(0, a)上单调递减,在(a,;)上单调递增a a(i) 当4,即0 :::a :::去时,F(x)在[4,―彳)上单调递减,在(一乩,;)上单调递增a 16 a a•〔F(x) Lin =F(严)=2 a• 2b岂I.F(x) m in,从而 (」:,• a](ii) 当—-4,即a 一±时,F(x)在(4 ,+s )上单调递增a 162b <F (4) =4a 1,从而b (_::,2a Q] 8 分4 8综上,当0 :::a ::: 16 时,b (_::, a] , a 时,b (_::, 2a ;];(2)当b=-|a时,构造函数G(x) =f (x 1) —3g(x) =(x 1)ln(x 1)—*ax2—ax, x [0,::)由题意,有G(x)乞0对x・[0, •::)恒成立T G '(x) =ln(x 1) 1 _ax -a, x 二[0,::)(i) 当a ^0 时,G'(x)=ln(x 1) 1 —a(x 1) 0••• G(x)在[0,;)上单调递增••• G(x) G(0) =0在(0,;)上成立,与题意矛盾.(ii) 当a 0 时,令(x) =G '(x), x [0,二)则:'(x) 斗-a,由于斗(0,1)x +1 x +1①当a _1时,'(X)二丄—a:::0 , (x)在X [0,二)上单调递减x +1•(X)乞(0) =1 —a 乞0,即G'(x)E0在X [0,::)上成立• G(x)在x三[0,亠)上单调递减• G(x)乞G(0)=0在[0,;)上成立,符合题意7伙一(1一1)]②当0 ::a ::1 时,:'(x)a a,x:=[0,;)x +1 x +1•- (x)在x [0, 1 -1)上单调递增,在x ({ -1,=)上单调递减T (0) =1 -a 0•- (x) 0在x [0, 1 -1)成立,即G '(x) 0 在x [0, 1 -1)成立a a• G(x)在x [0,丄一1)上单调递增a• G(x) G(0) =0在x (0,丄-1)上成立,与题意矛盾a综上,a的最小值为1。

2019届江西省高三10月月考理科数学试卷【含答案及解析】

2019届江西省高三10月月考理科数学试卷【含答案及解析】

2019届江西省高三10月月考理科数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设全集为,集合,则()A .________B .C .________D .2. 设为虚数单位,复数为纯虚数,则的值为()A . -1______________B . 1________________________C .________________________ D . 03. 若,则是“ a , b , c , d 依次成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件4. 设把的图象按向量平移后,恰好得到函数 = ()的图象,则的值可以为()A .________________________B .______________C .______________D .5. 羊村村长慢羊羊决定从喜羊羊、美羊羊、懒羊羊、暖羊羊、沸羊羊中选派两只羊去割草,则喜羊羊和美羊羊恰好只有一只被选中的概率为()A .____________________B .____________________________C .______________ D .6. 若函数的值域为,则的取值范围是()A .________B ._________C .D .7. 能够把椭圆:的周长和面积同时分为相等的两部分的函数称为椭圆的“亲和函数” ,下列函数是椭圆的“亲和函数”的是()A.B .C.D .8. 函数的最小值为()A . -1____________________B .____________________________C . -2______________ D .9. 已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为()A . ________B ._________C . _________D .10. 设为单位向量,且,,若以向量为两边的三角形的面积为,则的值为()A. B. C. D.11. 在△ ABC中,角A,B,C的对边分别为a,b,c,且2cos 2 cosB-sin (A-B)sin B+cos(A+C)=- , a=4 ,b=5,则向量在方向上的投影为()A. B. C. D.12. 设函数,若不等式≤0有解.则实数的最小值为()A ._________B .________C ._________D .二、填空题13. 设为所在平面内一点,则=______________ .14. 设,若则______________ .15. 函数的图像绕轴旋转所形成的几何体的体积为______________ .16. 设函数,若对于任意的,函数在区间上总不是单调函数,则的取值范围是为______________ .三、解答题17. (本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.18. (本小题满分12分)已知,,且函数(1)设方程在内有两个零点,求的值;(2)若把函数的图像向左平移个单位,再向上平移2个单位,得函数图像,求函数在上的单调增区间.19. (本小题满分12分)如图,四棱锥的底面是正方形,平面,,,点是上的点,且.(1)求证:对任意的,都有.(2)设二面角的大小为,直线与平面所成的角为,若,求的值.20. (本小题满分12分)已知数列的各项均为正数,观察程序框图,若时,分别有.( 1 )试求数列的通项公式;( 2 )令,求数列的前项和.21. (本小题满分12分)已知椭圆的一个顶点为,焦点在轴上.若右焦点到直线的距离为3 .(1)求椭圆的方程;(2)设椭圆与直线相交于不同的两点 M、N .当时,求的取值范围.22. (本小题满分12分)已知函数,其中为常数,且( 1 )当时,求的单调区间;( 2 )若在处取得极值,且在的最大值为1,求的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。

10月高三上期数学第一次月考试卷(理科含答案)

10月高三上期数学第一次月考试卷(理科含答案)

2019年10月高三上期数学第一次月考试卷(理科含答案)2019年10月高三上期数学第一次月考试卷(理科含答案)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共2页。

满分150分,考试时间120分钟。

考试结束后,将本试卷以及答题卡和答题纸一并交回。

答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在试卷、答题卡和答题纸规定的地方。

第Ⅰ卷(选择题共50分)一、选择题:本大题共 10 小题,每小题 5 分,共 50 分1. 已知集合M={0,1,2,3,4},N={1,3,5},P=MN,则P的子集共有()A.2个B.4个C.6个D.8个2. 已知a,b,cR,命题若a+b+c=3,则a2+b2+c2的否命题是( )A.若a+b+c3,则a2+b2+c23B.若a+b+c=3,则a2+b2+c23C.若a+b+c3,则a2+b2+c23D.若a2+b2+c23,则a+b+c=33. 函数f(x)= 的定义域是()A.(-,-1)B.(1,+)C.(-1,1)(1,+)D.(-,+)4. 已知函数f(x)=2x,x0,x+1,x0,若f(a)+f(1)=0,则实数a的值等于( )A.-3B.-1C.1D.35. 设 ( )A. B.C. D.6. 若函数是偶函数,则 ( )A. B. C. D.7. 求曲线与所围成图形的面积,其中正确的是( )A. B.C. D.8. 将函数的图象向左平移个单位, 再向上平移1个单位,则所得图象的函数解析式是( )A. B.C. D.9. 设f(x)是周期为2的奇函数,当01时,f(x)= ,则 =()A.-12B.-14C. 14D. 121 0.函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为()A. 0,B. ,0C.- ,0D.0,-第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分11 . 函数的最小值是_____12. x=3是x2=9的______条件13. 当函数取得最大值时, ______14. 在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是_______ 15. 已知:命题p:函数y=log0.5(x2+2x+a)的值域为R.; 命题q:函数y=-(5-2a)x是R上的减函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是三、解答题:本大题共6小题,共75分16.(本小题满分12分)设是R上的偶函数.(Ⅰ)求a的值; (Ⅱ)证明f(x)在(0,+)上是增函数.17.(本小题满分12分)设函数f(x)=a2ln x-x2+ax,a0.(Ⅰ)求f(x)的单调区间;(Ⅱ) 求所有的实数a,使e-1e2对x[1,e]恒成立.注:e为自然对数的底数.18. (本小题满分12分)设的周期,最大值,(Ⅰ)求、、的值;(Ⅱ)若为方程 =0的两根,终边不共线,求的值19. (本小题满分12分)设函数 (其中 ),且的图象在轴右侧的第一个最高点的横坐标为 .(Ⅰ)求的值;(Ⅱ)如果在区间上的最小值为,求的值.20. (本小题满分13分)已知函数f(x)=(x-k)ex.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.21. (本小题满分14分)已知函数的图像如右。

2019-2020学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)

2019-2020学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)

2019-2020学年安徽省黄山市屯溪一中高三(上)10月月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={x|−1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2, +∞)B.[2, +∞)C.(−∞, −1)D.(−∞, −1]【答案】B【考点】集合的包含关系判断及应用【解析】由集合M={x|−1<x<2},N={x|x<a},M⊆N,由集合包含关系的定义比较两个集合的端点可直接得出结论【解答】∵集合M={x|−1<x<2},N={x|x<a},M⊆N,∴a≥2,实数a的取值范围是[2, +∞)2. 在复平面内与复数z=5i1+2i所对应的点关于虚轴对称的点为A,则A对应的复数为()A.1+2i B.1−2i C.−2+i D.2+i【答案】C【考点】复数的运算【解析】利用复数的运算法则、几何意义、对称性,即可得出.【解答】复数z=5i1+2i =5i(1−2i)(1+2i)(1−2i)=5(i+2)5=2+i所对应的点(2, 1)关于虚轴对称的点为A(−2, 1),∴A对应的复数为−2+i.3. 条件p:|x+1|>2,条件q:13−x>1,则¬p是¬q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【考点】充分条件、必要条件、充要条件【解析】先求出当命题为真时x 的范围,再根据补集思想求出命题为假时的x 的范围,然后根据题意观察两个集合之间的关系由小范围推大范围是充分不必要条件,即可得到答案. 【解答】由题意得:条件p:|x +1|>2,即p:x >1或x <−3. 所以¬p:−3≤x ≤1.由题意得:条件q:13−x >1,即q:2<x <3. 所以¬q:x ≥3或x ≤2.所以¬p 是¬q 的充分不必要条件.4. 函数f(x)=√(log 2x)2−1的定义域为( )A.(0, 12)B.(2, +∞)C.(0, 12)∪(2, +∞)D.(0, 12]∪[2, +∞)【答案】 C【考点】函数的定义域及其求法 【解析】根据函数出来的条件,建立不等式即可求出函数的定义域. 【解答】解:要使函数有意义,则(log 2x)2−1>0(x >0), 即log 2x >1或log 2x <−1, 解得x >2或0<x <12,即函数的定义域为(0, 12)∪(2, +∞), 故选C.5. 设f(x)=lg(21−x +a)是奇函数,且在x =0处有意义,则该函数是( ) A.(−∞, +∞)上的减函数 B.(−∞, +∞)上的增函数 C.(−1, 1)上的减函数 D.(−1, 1)上的增函数 【答案】 D【考点】函数奇偶性的性质与判断 复合函数的单调性 【解析】由f(0)=0,求得a 的值,可得f(x)=lg(1+x1−x ),由此求得函数f(x)的定义域.再根据f(x)=lg(−1−2x−1),以及t =−1−2x−1在(−1, 1)上是增函数,可得结论. 【解答】由于f(x)=lg(21−x+a)是奇函数,且在x=0处有意义,故有f(0)=0,即lg(2+a)=0,解得a=−1.故f(x)=lg(21−x −1)=lg(1+x1−x).令1+x1−x>0,求得−1<x<1,故函数f(x)的定义域为(−1, 1).再根据f(x)=lg(1+x1−x )=lg(−1−2x−1),函数t=−1−2x−1在(−1, 1)上是增函数,可得函数f(x)在(−1, 1)上是增函数,6. 函数y=cos(sin|x|)的图象大致是()A. B.C. D.【答案】B【考点】函数的图象与图象的变换【解析】作函数y=cos(sin|x|)的图象,从而确定答案.【解答】作函数y=cos(sin|x|)的图象如下,7. 定义:若函数f(x)的图象经过变换T后所得的图象对应的函数与f(x)的值域相同,则称变换T是f(x)的同值变换,下面给出了四个函数与对应的变换:①f(x)=(x−1)2,T:将函数f(x)的图象关于y轴对称;②f(x)=2x−1−1,T:将函数f(x)的图象关于x轴对称;③f(x)=xx+1,T:将函数f(x)的图象关于点(−1, 1)对称.④f(x)=sin(x+π3),T:将函数f(x)的图象关于点(−1, 0)对称.其中T是f(x)的同值变换的有()A.①②B.①③④C.①④②D.①③【答案】B【考点】函数的图象与图象的变换 【解析】根据同值变换的定义,先求出对应的函数解析式,求出相应的值域,结合值域关系进行判断即可. 【解答】①f(x)=(x −1)2的值域为[0, +∞),T :将函数f(x)的图象关于y 轴对称得到f(x)=(−x −1)2=(x +1)2的值域为[0, +∞),值域相同是同值变换.②f(x)=2x−1−1>0−1=−1,值域为(−1, +∞),将函数f(x)的图象关于x 轴对称得到−y =2x−1−1,即y =−2x−1+1<1,两个函数的值域不相同,不是同值变换. ③f(x)=xx+1=x+1−1x+1=1−1x+1,函数关于(−1, 1)对称,函数值域为{y|y ≠1},将函数f(x)的图象关于点(−1, 1)对称后函数是自身,满足值域相同,是同值变换 ④f(x)=sin(x +π3)的值域为[−1, 1],则f(x)的图象关于点(−1, 0)对称后的值域仍然为[−1, 1],则两个函数的值域相同,是同值变换. 故T 是f(x)的同值变换的有①③④,8. 如图所示的程序框图中,若f(x)=x 2−x +1,g(x)=x +4,且ℎ(x)≥m 恒成立,则m 的最大值是( )A.4B.3C.1D.0 【答案】 B【考点】 程序框图 【解析】由已知中的程序框图可得该程序的功能是计算并输出分段函数:ℎ(x)={x 2−x +1x 2−x +1≥x +4x +4x 2−x +1≤x +4的值,数形结合求出ℎ(x)的最小值,可得答案. 【解答】由已知中的程序框图可得该程序的功能是:计算并输出分段函数:ℎ(x)={x 2−x +1x 2−x +1≥x +4x +4x 2−x +1≤x +4的值, 在同一坐标系,画出f(x)=x 2−x +1,g(x)=x +4的图象如下图所示:由图可知:当x =−1时,ℎ(x)取最小值3, 又∵ ℎ(x)≥m 恒成立, ∴ m 的最大值是3,9. 二次函数f(x)=x 2+bx +c(b, c ∈R),若c <0,且函数f(x)在[−1, 1]上有两个零点,求b +2c 的取值范围( ) A.(−2, 2) B.(−2, 1) C.[−2, 1) D.(−1, 1) 【答案】 C【考点】二次函数的性质 函数零点的判定定理 二次函数的图象 【解析】由题意函数f(x)与x 轴有两个交点,则f(−1)≥0,f(1)≥0进而求解. 【解答】由题意f(x)与x 轴有2个交点,且f(x)min <0,函数f(x)在[−1, 1]上有两个零点,则{f(−1)=1−b +c ≥0f(1)=1+b +c ≥0 即{b ≤1+cb ≥−1−c ∵ c <0,∴ b +2c ≤1+c +2c =1+3c <1, b +2c ≥−1−c +2c =−1+c ,若b +2c =−2,则b =−2−2c 即{−2−2c ≤1+c −2−2c ≥−1−c 解得{c ≥−1c ≤−1 ∴ c =−1满足题意,10. 设函数f(x)={|2x −1|,x ≤2−x +5,x >2 ,若互不相等的实数a ,b ,c 满足f(a)=f(b)=f(c),则2a +2b +2c 的取值范围是( ) A.(16, 32) B.(18, 34) C.(17, 35) D.(6, 7) 【答案】 B【考点】分段函数的应用 【解析】不妨设a <b <c ,利用f(a)=f(b)=f(c),结合图象可得a ,b ,c 的范围,即可1求出 【解答】互不相等的实数a ,b ,c满足f(a)=f(b)=f(c),可得a ∈(−∞, 0),b ∈(0, 1),c ∈(4, 5), 则0<2a <1,0<2b <1,16<2c <32,2a+2b+2c∈(18, 34)11. 函数f(x)是定义在R上的奇函数,对任意两个不相等的正数x1,x2,都有x2f(x1)−x1f(x2)x1−x2>0,记a=−log23⋅f(log132),b=f(1),c=4f(0.52),则()A.c<b<aB.b<a<cC.c<a<bD.a<b<c 【答案】C【考点】函数奇偶性的性质与判断【解析】设g(x)=f(x)x ,∵对任意两个不相等的正数x1,x2,都有x2f(x1)−x1f(x2)x1−x2>0,可得g(x)在(0, +∞)上单调递增,分别化简a,b,c,即可得出结论.【解答】设g(x)=f(x)x ,∵对任意两个不相等的正数x1,x2,都有x2f(x1)−x1f(x2)x1−x2>0,∴g(x)在(0, +∞)上单调递增,∵a=−log23⋅f(log132)=g(log132),b=f(1)=g(1),c=4f(0.52)=g(0.52),log132<0<0.52<1,∴c<a<b.故选:C.12. 函数f(x)=−x3+a+1,x∈[1e, e]与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[e, e3−3]B.[1, e2−4]C.[1, e3−3]D.[0, e3−4]【答案】D【考点】函数与方程的综合运用【解析】先求出函数g(x)关于x轴对称的函数,转化为f(x)与对称函数有交点,利用构造函数法,结合导数研究函数的最值即可.【解答】g(x)=3lnx的图象关于x轴对称的函数解析式为−y=3lnx,即y=−3lnx,若f(x)与g(x)=3lnx的图象上存在关于x轴对称的点,则等价为f(x)与y=−3lnx在x∈[1e, e]上有交点,即−x3+a+1=−3lnx,即a=x3−3lnx−1,x∈[1e, e]有解即可,设ℎ(x)=x3−3lnx−1,x∈[1e, e],则ℎ′(x)=3x2−3x =3(x3−1)x,当ℎ′(x)>0得1<x≤e,此时函数ℎ(x)为增函数,当ℎ′(x)<0得1e ≤x <1,此时函数ℎ(x)为减函数,即当x =1时,函数ℎ(x)取得极小值同时也是最小值ℎ(1)=1−3ln1−1=0, 当x =1e 时,ℎ(1e )=(1e )3−3ln 1e −1=(1e )3+2, 当x =e 时,ℎ(e)=e 3−3lne −1=e 3−4, 则ℎ(e)>ℎ(1e ),即ℎ(x)的取值范围是[0, e 3−4], 则实数a 的取值范围是[0, e 3−4], 故选:D .二、填空题:本大题共4个小题,每小题5分.已知命题p:∃x ∈R ,x 2+2ax +a ≤0,则命题p 的否定是________. 【答案】∀x ∈R ,x 2+2ax +a >0 【考点】 命题的否定 【解析】利用含逻辑连接词的否定是将存在变为任意,同时将结论否定,写出命题的否定. 【解答】命题p:∃x ∈R ,x 2+2ax +a ≤0,则命题p 的否定是:∀x ∈R ,x 2+2ax +a >0,若函数f(x)=log a (x +ax −4)的值域为R ,则实数a 的取值范围是________. 【答案】(0, 1)∪(1, 4] 【考点】函数的值域及其求法 【解析】问题转化为x +ax −4可以取所有正数,a >0且a ≠1,由分类讨论和基本不等式可得. 【解答】∵ 函数f(x)=log a (x +ax −4)的值域为R , ∴ x +ax −4>0,a >0且a ≠1, 当a >0时,x +ax −4≥2√a −4,故只需2√a −4≤0即可, 解不等式可得a ≤4,综上可得a 的取值范围为:0<a ≤4且a ≠1.若直线y =kx +b 是曲线y =lnx +2的切线,也是曲线y =ln(x +1)的切线,则b =________. 【答案】 1−ln2【考点】利用导数研究曲线上某点切线方程 【解析】先设切点,然后利用切点来寻找切线斜率的联系,以及对应的函数值,综合联立求解即可 【解答】设y =kx +b 与y =lnx +2和y =ln(x +1)的切点分别为(x 1, kx 1+b)、(x 2, kx 2+b); 由导数的几何意义可得k =1x 1=1x2+1,得x 1=x 2+1再由切点也在各自的曲线上,可得{kx 1+b =lnx 1+2kx 2+b =ln(x 2+1) 联立上述式子解得{k =2x 1=12x 2=−12;从而kx 1+b =lnx 1+2得出b =1−ln2.若△ABC 的内角A ,B 满足sinB sinA=2cos(A +B),则当B 取最大值时,角C 大小为________. 【答案】2π3【考点】同角三角函数间的基本关系 基本不等式及其应用 【解析】已知等式变形后,利用同角三角函数间基本关系化简,利用基本不等式求出tanB 的最大值,进而求出B 的最大值,即可求出C 的度数. 【解答】已知等式变形得:sinB =2sinAcos(A +B), ∴ sinB =2sinAcosAcosB −2sin 2AsinB , ∴ tanB =2sinAcosA 1+2sin 2A=2tanA1+3tan 2A ,∵sinB sinA=2cos(A +B)=−2cosC >0,∴ C 为钝角,A 与B 为锐角,tanA >0, ∴ tanB =21tanA+3tanA ≤√33,当且仅当tanA=√33,即A =π6时取等号, ∴ (tanB)max =√33,即B 的最大值为π6,则C =2π3.三、解答题:解答题应写出文字说明,证明过程或演算步骤.已知△ABC 的内角A ,B ,C 的对边分别为a 、b 、c ,满足cosAcosB +ab =2c b求角B的大小;(2)若a=1,b2=ac,求△ABC的面积.【答案】(1)根据题意,△ABC中,有cosAcosB +ab=2cb,则有cosAsinB+cosBsinAcosBsinA=2sinCsinB,变形可得sin(A+B)cosBsinB =2sinCsinB,又由sin(A+B)=sinC≠0,则cosB=12,又由B∈(0, π),则B=π3;(2)根据题意,△ABC中有b2=ac,由余弦定理可得b2=a2+c2−2ac⋅cosB=a2+c2−2ac⋅cosπ3=a2+c2−ac,故ac=a2+c2−ac,变形可得(a−c)2=0,得a=c=1,故△ABC为正三角形,故SΛABC=√34.【考点】解三角形【解析】(1)根据题意,由正弦定理可得cosAsinB+cosBsinAcosBsinA =2sinCsinB,变形可得sin(A+B)cosBsinB=2sinCsinB,进而可得cosB的值,分析可得B的值;(2)根据题意,由余弦定理可得b2=a2+c2−2ac⋅cosB=a2+c2−2ac⋅cosπ3= a2+c2−ac,变形可得(a−c)2=0,得a=c=1,据此分析可得答案.【解答】(1)根据题意,△ABC中,有cosAcosB +ab=2cb,则有cosAsinB+cosBsinAcosBsinA=2sinCsinB,变形可得sin(A+B)cosBsinB =2sinCsinB,又由sin(A+B)=sinC≠0,则cosB=12,又由B∈(0, π),则B=π3;(2)根据题意,△ABC中有b2=ac,由余弦定理可得b2=a2+c2−2ac⋅cosB=a2+c2−2ac⋅cosπ3=a2+c2−ac,故ac=a2+c2−ac,变形可得(a−c)2=0,得a=c=1,故△ABC为正三角形,故SΛABC=√34.已知等比数列{a n}的前n项和为S n,公比q>0,S2=2a2−2,S3=a4−2.(1)求数列{a n}的通项公式;(2)设b n=n an,求{b n}的前n项和T n.【答案】∵等比数列{a n}的前n项和为S n,公比q>0,S2=2a2−2,S3=a4−2,∴S3−S2=a4−2a2,即a3=a4−2a2,∴q2−q−2=0,解得q=2或q=−1(舍去).又a1+a2=2a2−2,∴a2=a1+2,∴a1q=a1+2,代入q=2,解得a1=2,∴a n=2×2n−1=2n.∵b n=na n =n2n,∴{b n}的前n项和:T n=12+222+323+⋯+n2n,①1 2T n=122+223+324+⋯+n2n+1,②①-②,得:1 2T n=12+122+123+⋯+12n−n2n+1=12(1−12n)1−12=1−12n−n2n+1,∴T n=2−n+22n.【考点】数列的求和【解析】(1)先求出a3=a4−2a2,从而q2−q−2=0,解得q=2,再由a2=a1+2,得a1=2,从而求出数列{a n}的通项公式.(2)由b n=n an =n2,利用错位相减法能求出{b n}的前n项和.【解答】∵等比数列{a n}的前n项和为S n,公比q>0,S2=2a2−2,S3=a4−2,∴S3−S2=a4−2a2,即a3=a4−2a2,∴q2−q−2=0,解得q=2或q=−1(舍去).又a1+a2=2a2−2,∴a2=a1+2,∴a1q=a1+2,代入q=2,解得a1=2,∴a n=2×2n−1=2n.∵b n=na n =n2n,∴{b n}的前n项和:T n=12+222+323+⋯+n2n,①1 2T n=122+223+324+⋯+n2n+1,②①-②,得:1 2T n=12+122+123+⋯+12n−n2n+1=12(1−12n )1−12=1−12n −n2n+1,∴ T n =2−n+22n.如图,四棱锥P −ABCD 的底面ABCD 是直角梯形,AD // BC ,AD =3BC =6,PB =6√2,点M 在线段AD 上,且MD =4,AD ⊥AB ,PA ⊥平面ABCD .(1)求证:平面PCM ⊥平面PAD ;(2)当四棱锥P −ABCD 的体积最大时,求平面PCM 与平面PCD 所成二面角的余弦值. 【答案】由AD =6,DM =4,可得AM =2,得四边形ABCM 是矩形,∴ CM ⊥AD ,又PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴ PA ⊥CM , 又,PM ,AD ⊂平面PAD ,∴ CM ⊥平面PAD , 又CM ⊂平面PCM ,∴ 平面PCM ⊥平面PAD . 四棱锥P −ABCD 的体积为:V =13⋅12⋅(AD +BC)⋅AB ⋅PA =43⋅AB ⋅PA ,要使四棱锥P −ABCD 的体积取最大值,只需AB ⋅PA 取得最大值. 由条件可得PA 2+AB 2=PB 2=72, ∴ 72≥2PA ⋅AB ,即PA ⋅AB ≤36,当且仅当PA =AB =6时,PA ⋅AB 取得最大值36.分别以AP ,AB ,AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A −xyz . 则P(6, 0, 0),C(0, 6, 2),D(0, 0, 6),M(0, 0, 2), PC →=(−6,6,2),PD →=(−6,0,6),PM →=(−6,0,2), 设平面PCD 的一个法向量为n 1→=(x 1,y 1,z 1),由n 1→⋅PC →=0,n 1→⋅PD →=0, 可得{−6x 1+6y 1+2z 1=0−6x 1+6z 1=0 ,令y 1=2,得n 1→=(3,2,3), 同理可得平面PCM 的一个法向量为n 2→=(1,0,3), 设平面PCM 与平面PCD 所成二面角为θ, 则cosθ=|n 1→⋅n 2→|n 1→|⋅|n 2→||=√10⋅√22=6√5555.由于平面PCM 与平面PCD 所成角为锐二面角, ∴ 平面PCM 与平面PCD 所成二面角的余弦值为6√5555.【考点】平面与平面垂直二面角的平面角及求法 【解析】(1)推导出CM ⊥AD ,PA ⊥CM ,从而CM ⊥平面PAD ,由此能证明平面PCM ⊥平面PAD .(2)四棱锥P −ABCD 的体积为V =13⋅12⋅(AD +BC)⋅AB ⋅PA =43⋅AB ⋅PA ,要使四棱锥P −ABCD 的体积取最大值,只需AB ⋅PA 取得最大值.推导出当且仅当PA =AB =6时,PA ⋅AB 取得最大值36.分别以AP ,AB ,AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A −xyz .利用向量法能求出平面PCM 与平面PCD 所成二面角的余弦值. 【解答】由AD =6,DM =4,可得AM =2,得四边形ABCM 是矩形,∴ CM ⊥AD ,又PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴ PA ⊥CM , 又,PM ,AD ⊂平面PAD ,∴ CM ⊥平面PAD , 又CM ⊂平面PCM ,∴ 平面PCM ⊥平面PAD . 四棱锥P −ABCD 的体积为:V =13⋅12⋅(AD +BC)⋅AB ⋅PA =43⋅AB ⋅PA ,要使四棱锥P −ABCD 的体积取最大值,只需AB ⋅PA 取得最大值. 由条件可得PA 2+AB 2=PB 2=72, ∴ 72≥2PA ⋅AB ,即PA ⋅AB ≤36,当且仅当PA =AB =6时,PA ⋅AB 取得最大值36.分别以AP ,AB ,AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A −xyz . 则P(6, 0, 0),C(0, 6, 2),D(0, 0, 6),M(0, 0, 2), PC →=(−6,6,2),PD →=(−6,0,6),PM →=(−6,0,2), 设平面PCD 的一个法向量为n 1→=(x 1,y 1,z 1),由n 1→⋅PC →=0,n 1→⋅PD →=0, 可得{−6x 1+6y 1+2z 1=0−6x 1+6z 1=0 ,令y 1=2,得n 1→=(3,2,3), 同理可得平面PCM 的一个法向量为n 2→=(1,0,3), 设平面PCM 与平面PCD 所成二面角为θ, 则cosθ=|n 1→⋅n 2→|n 1→|⋅|n 2→||=√10⋅√22=6√5555.由于平面PCM 与平面PCD 所成角为锐二面角, ∴ 平面PCM 与平面PCD 所成二面角的余弦值为6√5555.已知函数f(x)=x2+bsinx−2,(b∈R),F(x)=f(x)+2,且对于任意实数x,恒有F(x−5)=F(5−x).(1)求函数f(x)的解析式;(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0, 1)上单调,求实数a的取值范围;(3)函数ℎ(x)=ln(1+x2)−12f(x)−k有几个零点?【答案】由题设得:F(x)=x2+bsinx,∵F(x−5)=F(5−x),∴F(−x)=F(x)∴x2−bsinx=x2+bsinx,∴bsinx=0对于任意实数x都成立,∴b=0∴f(x)=x2−2.由g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx,得g′(x)=2x+2+ax(x>0)g(x)在(0, 1)上恒单调,只需g′(x)≥0或g′(x)≤0在(0, 1)上恒成立.即2x2+2x+a≥0或2x2+2x+a≤0在(0, 1)上恒成立.∴a≥−(2x2+2x)或a≤−(2x2+2x)在(0, 1)上恒成立.设u(x)=−(2x2+2x),x∈(0, 1),易知:u(x)∈(−4, 0),∴a≥0或a≤−4.令y=ln(1+x2)−12f(x),y′=2x1+x2−x=−x(x+1)(x−1)1+x2,令y′=0⇒x=0或x=1或x=−1,列表如下:∴当k>ln2+12时,无零点;当k<1或k=ln2+12时,有两个零点;当k=1时,有三个零点;1利用导数研究函数的极值【解析】(1)先表示出汗水F(x)的表达式,再根据F(x−5)=F(5−x)求出b的值,进而可确定函数f(x)的解析式.(2)将(1)中求出的函数f(x)的解析式代入函数g(x)然后求导,将问题转化为g′(x)≥0或g′(x)≤0在(0, 1)上恒成立.(3)对函数ℎ(x)进行求导,然后根据导函数的正负和原函数的单调性的关系判断函数的单调性,进而确定零点.【解答】由题设得:F(x)=x2+bsinx,∵F(x−5)=F(5−x),∴F(−x)=F(x)∴x2−bsinx=x2+bsinx,∴bsinx=0对于任意实数x都成立,∴b=0∴f(x)=x2−2.由g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx,得g′(x)=2x+2+ax(x>0)g(x)在(0, 1)上恒单调,只需g′(x)≥0或g′(x)≤0在(0, 1)上恒成立.即2x2+2x+a≥0或2x2+2x+a≤0在(0, 1)上恒成立.∴a≥−(2x2+2x)或a≤−(2x2+2x)在(0, 1)上恒成立.设u(x)=−(2x2+2x),x∈(0, 1),易知:u(x)∈(−4, 0),∴a≥0或a≤−4.令y=ln(1+x2)−12f(x),y′=2x1+x2−x=−x(x+1)(x−1)1+x2,令y′=0⇒x=0或x=1或x=−1,列表如下:∴当k>ln2+12时,无零点;当k<1或k=ln2+12时,有两个零点;当k=1时,有三个零点;当1<k<ln2+12时,有四个零点.已知函数f(x)=(a+2)lnx+ax−x2.(1)讨论f(x)的单调性;32定义域为(0, +∞), f ′(x)=a+2x+a −2x =−(x+1)(2x−a−2)x,当a ≤−2时,f ′(x)<0,f(x)在(0, +∞)上单调递减, 当a >−2时,由f ′(x)>0,得0<x <a+22,f(x)在(0,a+22)上单调递增,由f ′(x)<0,得x >a+22,f(x)在(a+22,+∞)上单调递减,综上,当a ≤−2时,f(x)的单调递减区间是(0, +∞); 当a >−2时,f(x)的单调递减区间是(a+22,+∞),单调递增区间是(0,a+22).易知a >0, ①当0<a ≤2时,a+22≥a ,由(1)知,f(x)在(0, a)上单调递减,此时,f(x)在(0, a)上不存在最大值. ②当a >2时,f(x)在(0,a+22)上单调递增,在(a+22,a)上单调递减, 则f(x)max =f(a+22)=(a +2)lna+22+a(a+2)2−(a+22)2=(a +2)lna+22+a 2−44,故p(a)=(a +2)ln a+22+a 2−44(a >2),设g(x)=(x +2)lnx+22+x 2−44(x >2),则g ′(x)=1+lnx+22+x2,∵ x >2,∴ g ′(x)>0,∴ g(x)在(2, +∞)上单调递增, ∴ g(x)>g(2)=4ln2,即p(a)>4ln2.① ∵ 32a 2+a −4=12(3a −4)(a +2),且a >2, ∴ 要证p(a)<32a 2+a −4,只需证ln a+22+a−24<3a−42,即证lna+22−5a−64<0,设ℎ(x)=lnx+22−5x−64(x >2),则ℎ(x)=1x+2−54<0,则ℎ(x)在(2, +∞)上单调递减, 从而ℎ(x)<ℎ(2)=ln2−1<0,即lna+22−5a−64<0,则p(a)<32a 2+a −4,②由①②可知,4ln2<p(a)<32a 2+a −4.【考点】利用导数研究函数的最值 利用导数研究函数的单调性 【解析】(1)分类讨论,利用导数求函数的单调区间即可,注意函数的定义域为(0, +∞);(2)从(1)中结论可知,当0<a ≤2时,f(x)在(0, a)上单调递减,不存在最大值;当a >2时,f(x)max =f(a+22),再构造函数,结合导数,利用分析法证明即可.定义域为(0, +∞), f ′(x)=a+2x+a −2x =−(x+1)(2x−a−2)x,当a ≤−2时,f ′(x)<0,f(x)在(0, +∞)上单调递减, 当a >−2时,由f ′(x)>0,得0<x <a+22,f(x)在(0,a+22)上单调递增,由f ′(x)<0,得x >a+22,f(x)在(a+22,+∞)上单调递减,综上,当a ≤−2时,f(x)的单调递减区间是(0, +∞); 当a >−2时,f(x)的单调递减区间是(a+22,+∞),单调递增区间是(0,a+22).易知a >0, ①当0<a ≤2时,a+22≥a ,由(1)知,f(x)在(0, a)上单调递减,此时,f(x)在(0, a)上不存在最大值. ②当a >2时,f(x)在(0,a+22)上单调递增,在(a+22,a)上单调递减, 则f(x)max =f(a+22)=(a +2)lna+22+a(a+2)2−(a+22)2=(a +2)lna+22+a 2−44,故p(a)=(a +2)ln a+22+a 2−44(a >2),设g(x)=(x +2)lnx+22+x 2−44(x >2),则g ′(x)=1+lnx+22+x2,∵ x >2,∴ g ′(x)>0,∴ g(x)在(2, +∞)上单调递增, ∴ g(x)>g(2)=4ln2,即p(a)>4ln2.① ∵ 32a 2+a −4=12(3a −4)(a +2),且a >2, ∴ 要证p(a)<32a 2+a −4,只需证ln a+22+a−24<3a−42,即证lna+22−5a−64<0,设ℎ(x)=lnx+22−5x−64(x >2),则ℎ(x)=1x+2−54<0,则ℎ(x)在(2, +∞)上单调递减, 从而ℎ(x)<ℎ(2)=ln2−1<0,即lna+22−5a−64<0,则p(a)<32a 2+a −4,②由①②可知,4ln2<p(a)<32a 2+a −4.请在第22、23、二题中任选一题作答,答时用2B 铅笔在答题卡上把所选题目的题号涂黑.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为ρ=2√2cos(θ+π4),直线l 的参数方程为{x =t y =−1+2√2t (t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标;【答案】解:(1)由圆C 的极坐标方程为ρ=2√2cos(θ+π4), 化为ρ2=2√2(√22ρcosθ−√22ρsinθ),把{x =ρcosθy =ρsinθ代入可得:圆C 的普通方程为x 2+y 2−2x +2y =0,即(x −1)2+(y +1)2=2.∴ 圆心坐标为(1, −1), ∴ 圆心极坐标为(√2,7π4);(2)由直线l 的参数方程{x =ty =−1+2√2t(t 为参数),把t =x 代入y =−1+2√2t 可得直线l 的普通方程:2√2x −y −1=0, ∴ 圆心到直线l 的距离d =|2√2+1−1|3=2√23, ∴ |AB|=2√r 2−d 2=2√2−89=2√103,点P 直线AB 距离的最大值为r +d =√2+2√23=5√23,S max =12×2√103×5√23=10√59. 【考点】直线的参数方程参数方程与普通方程的互化 圆的极坐标方程 点到直线的距离公式 【解析】(1)由圆C 的极坐标方程为ρ=2√2cos(θ+π4),化为ρ2=2√2(√22ρcosθ−√22ρsinθ),把{x =ρcosθy =ρsinθ代入即可得出. (2)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2√r 2−d 2,利用三角形的面积计算公式即可得出. 【解答】解:(1)由圆C 的极坐标方程为ρ=2√2cos(θ+π4), 化为ρ2=2√2(√22ρcosθ−√22ρsinθ),把{x =ρcosθy =ρsinθ代入可得:圆C 的普通方程为x 2+y 2−2x +2y =0,即(x −1)2+(y +1)2=2.∴ 圆心坐标为(1, −1), ∴ 圆心极坐标为(√2,7π4);x =t把t =x 代入y =−1+2√2t 可得直线l 的普通方程:2√2x −y −1=0, ∴ 圆心到直线l 的距离d =|2√2+1−1|3=2√23,∴ |AB|=2√r 2−d 2=2√2−89=2√103,点P 直线AB 距离的最大值为r +d =√2+2√23=5√23,S max =12×2√103×5√23=10√59. [选修4-5:不等式选讲]已知函数f(x)=m −|x −1|−2|x +1|. (1)当m =5时,求不等式f(x)>2的解集;(2)若二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,求实数m 的取值范围. 【答案】当m =5时,f(x)={3x +6,x <−1−x +2,−1≤x ≤14−3x,x >1,由f(x)>2结合函数的单调性易得不等式解集为 (−43,0); 由二次函数的解析式可得该函数在对称轴x =−1处取得最小值2, 而 f(x)={3x +1+m,x <−1−x −3+m,−1≤x ≤1−3x +m −1,x >1在x =−1处取得最大值m −2,所以要使二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,只需m −2≥2, 即m ≥4. 【考点】绝对值三角不等式 【解析】(1)将函数的解析式写成分段函数的形式,然后结合函数的单调性和不等式的特点即可确定不等式的解集;(2)首先求得二次函数的最小值和f(x)的最大值,据此得到关于实数m 的不等式,求解不等式即可求得最终结果. 【解答】当m =5时,f(x)={3x +6,x <−1−x +2,−1≤x ≤14−3x,x >1,由f(x)>2结合函数的单调性易得不等式解集为 (−43,0); 由二次函数的解析式可得该函数在对称轴x =−1处取得最小值2, 而 f(x)={3x +1+m,x <−1−x −3+m,−1≤x ≤1−3x +m −1,x >1在x =−1处取得最大值m −2,所以要使二次函数y =x 2+2x +3与函数y =f(x)的图象恒有公共点,只需m −2≥2,。

高三理科数学上期第二次月考试卷(屯溪一中含答案)

高三理科数学上期第二次月考试卷(屯溪一中含答案)

2019届高三理科数学上期第二次月考试卷(屯溪一中含答案)一、选择题(本大题共10小题;每小题5分,共50分。

)1.已知集合,则等于()A. B. C. D.2.已知命题p:,使;命题q:,都有.给出下列命题:(1)命题“ ”是真命题;(2)命题“ ”是假命题;(3)命题“ ”是真命题;(4)命题“ ”是假命题.其中正确的是( )A.(2)(3)B.(2)(4)C.(3)(4)D.(1)(4)3.设函数,则满足的x的取值范围是( )A. ,2]B.[0,2]C.[1,+ )D. [0,+ )4.设,则( )A、B、C、D、5.若函数是R上的奇函数,且对于,则的解集是( )A、B、C、D.6.在ΔABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sinA≤sinB”的( )A.充分不必要条件B.必要不充分条件C. 充要条件D.既不充分又不必要条件7.已知函数则方程f(x) =ax恰有两个不同的实根时,实数a的取值范围是( )A. B. C. D.8.已知函数,当x=a时, 取得最小值,则在直角坐标系中,函数的大致图象为9.对于集合M、N,定义M-N={x|x∈M且x N},M⊕N=(M-N)∪(N-M),设A={y|y=3x,x∈R},B={y|y=- ,x∈R},则A⊕B等于()A.[0,2)B.(0,2]C.(-∞,0]∪(2,+∞)D.(-∞,0)∪[2,+∞)10. 已知方程在(0,+∞)上有两个不同的解a,b(aA.sina=acosbB.sina=-acosbC.cosa=bsinbD.sinb=-bsina第二卷(共100分)二、填空题(本大题共5题,每题5分,共25分)11.若(a+1) (3-2a) ,则a的取值范围是__________.12. 设f(x)=lg2+x2-x,则的定义域为__________________.13.设函数f(x)= 的最大值为M,最小值为m,则M+m=_____.14.已知f(x)定义在(0,+∞)的可导函数,恒成立,则的解集是_______________.15. 非空集合G关于运算⊕满足:(1)对任意,都有;(2)存在,使得对一切,都有, 则称G关于运算⊕为“融洽集”。

2019届高三数学10月月考试题 理 人教版

2019届高三数学10月月考试题 理 人教版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三数学10月月考试题 理一、选择题(本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1、已知集合(){}(){}11lg 1,042<+<-==-=x x B x x x A ,则=⋂B A ( )A {}2,0B {}2,0,2-C {}0D {}22、若1sin 3α=,则cos 2α= ( )A 89B 79C 79-D 89- 3、已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+= ( ) A 1- B 1 C21 D 21- 4、ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =A 2πB 3πC 4πD 6π 5、定积分()=-⎰xxde x 12 ( )A e 2B e +2C eD e -26、若函数()()2ln 4,2--==x x x h x x g ,则函数()()()x h x g x f -=的所有零点之和为( )A 0B 2C 4D 8 7、已知πα<<0,51cos sin =+αα,则=α2tan ( ) A. 43-B. 43C. 724D. 724- 8、已知函数()222cos sin 2f x x x =-+,则 ( ) A ()f x 的最小正周期为π,最大值为3 B ()f x 的最小正周期为π,最大值为4 C ()f x 的最小正周期为2π,最大值为3D ()f x 的最小正周期为2π,最大值为49、已知函数()x f 是定义域为R 上的奇函数,且()x f 的图像关于直线1-=x 对称,当10≤≤x 时,()23x x x f -=,则()=2019f ( )A 2-B 2C 0D 310、若函数()xxax x f 4143++=,如果()65=f ,则()=-5f ( ) A 6- B 5- C 4- D 011、若直线b ax y +=与曲线()1ln -=x x f 相切,则=+b a 2ln 2 ( )A 4 B41C 4-D 2- 12、已知()()()x x x g ax x e x f x +-=++=-ln ,2,若对于任意0<x ,不等式()()x g x f ≥恒成立,则实数a 的取值范围是 ( ) A (]e ,∞- B (]1,+∞-e C [)+∞+,2e D (]2,+∞-e二、填空题(本大题共4小题,每小题5分,共20分) 13、求值:020sin 135cos 20cos -=_____________14、已知函数()xe xf x-=1,给出下列命题:①()x f 没有零点;②()x f 在()1,0上单调递增; ③()x f 的图象关于原点对称; ④()x f 没有极值其中正确的命题的序号是_____________ 15、若函数()32232--⎪⎭⎫ ⎝⎛=x ax x f 在R 上的最小值为49,则函数()x f 的单调递减区间为_____16、已知定义域为R 的函数()x f 的导函数为()x f ',且满足()()x f x f 2>',如果e f =⎪⎭⎫ ⎝⎛21,则不等式()2ln x x f <的解集为_________三、解答题(本大题共6小题,共70分) 17、(本小题满分12分)已知命题p :()aa x x f 2122+-=的定义域为R ;命题q :函数()122++=x ax x g 在⎪⎭⎫⎢⎣⎡+∞,21上单调递减;命题r :函数()()a kx x x h -+=2lg 的值域为R . (I )若命题p 是假命题,q 是真命题,求实数a 的取值范围;(II )若“命题q 是假命题”是“命题r 为真命题”的必要不充分条件,求实数k 的取值范围.18、(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b=2. (I )求c ;(II )设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.19、(本小题满分12分)已知∆ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a (sin A-sin B )=(c-b )(sin C+sinB ).(I )求角C ;(II )若c=7,∆ABC 的面积为233,求△ABC 的周长.20、(本小题满分12分)已知函数f (x )=sin(5π6-2x )-2sin(x -π4)cos(x +3π4).(I )求函数f (x )的最小正周期和单调递增区间;(II )若x ∈[π12,π3],且F (x )=-4λf (x )-cos(4x -π3)的最小值是-32,求实数λ的值.21、(本小题满分12分)设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R.(I)求f(x)的单调区间;(II)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=3.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22、[选修4-4:坐标系与参数方程](本小题满分10分)在直角坐标系xOy中,曲线C的参数方程为2cos,4sin,xθyθ=⎧⎨=⎩(θ为参数),直线l的参数方程为1cos,2sin,x tαy tα=+⎧⎨=+⎩(t为参数).(I)求C和l的直角坐标方程;(II)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.[选修4-5:不等式选讲](本小题满分10分)设函数()5|||2|f x x a x=-+--.(I)当1a=时,求不等式()0f x≥的解集;(II)若()1f x≤,求a的取值范围.高三年级月考考试数学试题(理科)答案16、选择题:ABDCDC CBABCD二、填空题:13、2- 14、①④ 15、(]1,-∞- 16、 ()e ,0三、解答题 17、23、解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0,得c =-6(舍去)或c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ·AD ·sin π612AC ·AD =1.19、解:(1)由a (sin A-sin B )=(c-b )(sin C+sin B )及正弦定理,得a (a-b )=(c-b )(c+b ),即a 2+b 2-c 2=ab. 所以cos C==,又C ∈(0,π),所以C=.(2)由(1)知a 2+b 2-c 2=ab ,所以(a+b )2-3ab=c 2=7.又S=21ab sin C=43ab=233,所以ab=6,所以(a+b )2=7+3ab=25,即a+b=5.所以△ABC 周长为a+b+c=5+7.20、解(1)∵f (x )=sin5π6-2x -2sin x -π4cos x +3π4=12cos2x +32sin2x+(sin x -cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin2x-π6, ∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为k π-π6,k π+π3(k ∈Z ).(2) F (x )=-4λf (x )-cos4x -π3=-4λsin2x -π6-1-2sin 22x -π6=2sin 22x -π6-4λsin2x -π6-1=2sin2x -π6-λ2-1-2λ2.∵x ∈π12,π3,∴0≤2x -π6≤π2,∴0≤sin2x -π6≤1.①当λ<0时,当且仅当sin2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.21、解:(1)由f (x )=(x-1)3-ax-b ,可得f'(x )=3(x-1)2-a.下面分两种情况讨论:(i)当a ≤0时,有f'(x )=3(x-1)2-a ≥0恒成立,所以f (x )的单调递增区间为(-∞,+∞). (ii)当a>0时,令f'(x )=0,解得x=1+33a 或x=1-33a .当x 变化时,f'(x ),f (x )的变化如下-∞,1- 1-,1+ 1+,+∞+所以f (x )的单调递减区间为1-,1+,单调递增区间为-∞,1-,1+,+∞.(2) 证明:因为f (x )存在极值点,所以由(1)知a>0,且x 0≠1.由题意,得f'(x 0)=3(x 0-1)2-a=0,即(x 0-1)2=3a ,进而f (x 0)=(x 0-1)3-ax 0-b=-32a x 0-3a -b.又f (3-2x 0)=(2-2x 0)3-a (3-2x 0)-b=38a (1-x 0)+2ax 0-3a-b=-32a x 0-3a -b=f (x 0),且3-2x 0≠x 0,由题意及(1)知,存在唯一实数x 1满足f (x 1)=f (x 0),且x 1≠x 0,因此x 1=3-2x 0, 所以x 1+2x 0=3.22、[选修4-4:坐标系与参数方程]解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t为参数).转换为直角坐标方程为:sinαx﹣cosαy+2cosα﹣sinα=0.(2)把直线的参数方程代入椭圆的方程得到:+=1整理得:(4cos2α+sin2α)t2+(8cosα+4sinα)t﹣8=0,则:,由于(1,2)为中点坐标,①当直线的斜率不存时,x=1.无解故舍去.②当直线的斜率存在时,利用中点坐标公式,,则:8cosα+4sinα=0,解得:tanα=﹣2,即:直线l的斜率为﹣2.23.[选修4-5:不等式选讲]解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).。

屯溪区一中2018-2019学年上学期高三数学10月月考试题

屯溪区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20482. 设复数z 满足z (1+i )=2,i 为虚数单位,则复数z 的虚部是( )A1 B ﹣1 Ci D ﹣i3. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .24. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .5. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 6. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .77. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1) C .(0,e ﹣1)D .(1,e )8. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位9. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 10.已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2=,则=QF ( ) A .6B .3C .38D .34 第Ⅱ卷(非选择题,共100分)11.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)12.在极坐标系中,圆的圆心的极坐标系是( )。

安徽省黄山市屯溪第一中学2019届高三上学期第二次月考

屯溪一中2019届高三10月月考数学试卷一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出四个选项中,只有一项是符合题目要求的)1.已知R是实数集,M={x|2x<1},N={y|y=x-1+1},则N∩∁R M( )A.(1,2) B.[0,2]C.∅D.[1,2]2.下列函数中,定义域是R且为增函数的是( )A.y=e-x B.y=x3C.y=ln x D.y=|x|3.已知集合A={x|x>2},集合B={x|x>3},以下命题正确的个数是( )①∃x0∈A,x0∉B;②∃x0∈B,x0∉A;③∀x∈A都有x∈B;④∀x∈B都有x∈A.A.4 B.3C.2 D.14.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图像正确的是( )5.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0 B.1C.2 D.36.“a2=1” 是“函数f(x)=ln(1+ax)-ln(1+x)为奇函数”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件7.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( )A.5或8B.-1或5C.-1或-4D.-4或88.已知函数y=f(x)是R上的偶函数,设a=ln 1π,b=(ln π)2,c=ln π,当对任意的x1,x2∈(0,+∞)时,都有(x1-x2)·[f(x1)-f(x2)]<0,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )9.设函数y =f (x )(x ∈R )为偶函数,且∀x ∈R ,满足f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )等于( ) A .|x +4| B .|2-x | C .2+|x +1| D .3-|x +1| 10.设x ,y ,z 为正数,且2x=3y=5z,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z11.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数称为狄利克雷函数,则关于函数f (x )有以下四个命题:① f (f (x ))=1; ②函数f (x )是偶函数;③任意一个非零有理数T ,f (x +T )=f (x )对任意x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形. 其中真命题的个数是( )A .4B .3C .2D .112.函数f (x )在定义域(0,+∞)内恒满足:①f (x )>0;②2f (x )<xf ′(x )<3f (x ),其中f ′(x )为f (x )的导函数,则( )A.14<f (1)f (2)<12B. 116<f (1)f (2)<18C. 13<f (1)f (2)<12D. 18<f (1)f (2)<14 二、填空题(本大题共4小题,每小题5分,共20分.)13.已知函数h (x )(x ≠0)为偶函数,且当x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4,若h (t )>h (2),则实数t 的取值范围为________.14.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是______________.15.定义在R 上的函数f (x )满足f (x )+f (x +5)=16,当x ∈(-1,4]时,f (x )=x 2-2x,则函数f (x )在区间[0,2 016]上的零点个数是________.16.给出下列四个命题:①命题“∀x ∈R ,cos x >0”的否定是“∃x ∈R ,cos x ≤0”; ②若0<a <1,则函数f (x )=x 2+a x-3只有一个零点; ③函数y =sin(2x -π3)的一个单调增区间是[-π12,5π12];④对于任意实数x ,有f (-x )=f (x ),且当x >0时,f ′(x )>0,则当x <0时,f ′(x )<0. 其中真命题的序号是________(把所有真命题的序号都填上).三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知p :A ={a |关于x 的不等式x 2+2ax +4>0在R 上恒成立}, q :B ={a |1<a +k2<2}.(1)若k =1,求A ∩(∁R B );(2)若“非p ”是“非q ”的充分不必要条件,求实数k 的取值范围.18.(本小题满分12分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.19.(本小题满分12分)已知p :对于m ∈[-1,1],不等式a 2-5a -3≥m 2+8恒成立; q :不等式x 2+ax +2<0有解,若p ∨q 为真,且p ∧q 为假,求a 的取值范围.20.(本小题满分12分)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.21.(本小题满分12分)已知函数f (x )=x 2+2a ln x .(1)若函数f (x )的图象在(2,f (2))处的切线斜率为1,求实数a 的值; (2)求函数f (x )的单调区间;(3)若函数g (x )=2x+f (x )在[1,2]上是减函数,求实数a 的取值范围.22. (本小题满分12分)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.参考答案:1.[答案] D[解析] M ={x |2x <1}={x |2-xx<0}={x |x (x -2)>0}={x |x >2或x <0},N ={y |y =x -1+1}={y |y ≥1},∴∁R M ={x |0≤x ≤2},∴N ∩(∁R M )={x |1≤x ≤2},故选D.2.[答案] B[解析] A 为减函数,C 定义域为(0,+∞),D 中函数在(-∞,0)上递减,在(0,+∞)上递增. 3.答案 C解析 因为A ={x |x >2},B ={x |x >3},所以B ⊆A ,即B 是A 的子集,①④正确,②③错误,故选C. 4.[答案] B[解析] 由图可知y =log a x 图象过(3,1),∴log a 3=1,∴a =3,∵y =3-x为减函数,∴排除A ;∵y =(-x )3当x >0时,y <0,∴排除C ;∵y =log 3(-x )中,当x =-3时,y =1,∴排除D ,∴选B.5.[答案] D[解析] 本题考查导数的基本运算及导数的几何意义. 令f (x )=ax -ln(x +1),∴f ′(x )=a -1x +1. ∴f (0)=0,且f ′(0)=2.联立解得a =3,故选D. 6.答案 B解析 当a =1时,f (x )=0(x >-1)为非奇非偶函数, 当a =-1时,f (x )=ln(1-x )-ln(1+x )为奇函数, 故为必要不充分条件.7.[答案] D当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-1,x +a -1,-a 2≤x ≤-1,-3x -a -1,x <-a2,如图1可知,当x =-a2时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=a2-1 =3,可得a =8;当a <2时,f (x )=⎩⎪⎨⎪⎧3x +a +1,x >-a2,-x -a +1,-1≤x ≤-a 2,-3x -a -1,x <-1,如图2可知,当x =-a2时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=-a2+1=3,可得a =-4.综上可知,答案为D.8.答案 D解析 由(x 1-x 2)[f (x 1)-f (x 2)]<0可知,f (x 1)-f (x 2)(x 1-x 2)<0,所以y =f (x )在(0,+∞)上单调递减.又因为函数y =f (x )是R 上的偶函数,所以y =f (x )在(-∞,0)上单调递增,由于a =ln 1π=-ln π<-1,b =(ln π)2,c =ln π=12ln π,所以|b |>|a |>|c |, 因此f (c )>f (a )>f (b ),故选D. 9.答案 D解析 由f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,可得f (x +2)=f (x ),则当x ∈[-2,-1]时,x +4∈[2,3],f (x )=f (x +4)=x +4=x +1+3;当x ∈[-1,0]时,-x ∈[0,1],2-x ∈[2,3],f (x )=f (-x )=f (2-x )=2-x =3-x -1,故选D.10.答案 D解析 令t =2x=3y=5z,∵x ,y ,z 为正数,∴t >1.则x =log 2t =lg t lg 2,同理,y =lg t lg 3,z =lg tlg 5.∴2x -3y =2lg t lg 2-3lg t lg 3=lg t (2lg 3-3lg 2)lg 2×lg 3=lg t (lg 9-lg 8)lg 2×lg 3>0,∴2x >3y .又∵2x -5z =2lg t lg 2-5lg t lg 5=lg t (2lg 5-5lg 2)lg 2×lg 5=lg t (lg 25-lg 32)lg 2×lg 5<0,∴2x <5z ,∴3y <2x <5z .故选D. 11.答案 A解析 由f (x )是有理数⇒f (f (x ))=1,故命题①正确;易得f (-x )=f (x )⇒f (x )是偶函数,故②正确;易得f (x +T )=f (x ),故③正确;取A ⎝ ⎛⎭⎪⎫1-33,0,B ()1,1,C ⎝ ⎛⎭⎪⎫1+33,0,可得△ABC 为等边三角形,故④正确,综上真命题的个数为4. 12.答案 D 解析 令g (x )=f (x )x 2,x ∈(0,+∞), g ′(x )=xf ′(x )-2f (x )x 3,∵∀x ∈(0,+∞),2f (x )<xf ′(x )<3f (x ), ∴f (x )>0,g ′(x )>0,∴函数g (x )在x ∈(0,+∞)上单调递增, ∴g (1)<g (2),即4f (1)<f (2),f (1)f (2)<14. 令h (x )=f (x )x 3,x ∈(0,+∞), h ′(x )=xf ′(x )-3f (x )x 4,∵∀x ∈(0,+∞),2f (x )<xf ′(x )<3f (x ),∴h ′(x )<0,∴函数h (x )在x ∈(0,+∞)上单调递减, ∴h (1)>h (2),即f (1)>f (2)8,18<f (1)f (2), 故选D.13.答案 (-2,0)∪(0,2)解析 因为当x >0时,h (x )=⎩⎪⎨⎪⎧-x 24,0<x ≤4,4-2x ,x >4.易知函数h (x )在(0,+∞)上单调递减,因为函数h (x )(x ≠0)为偶函数,且h (t )>h (2), 所以h (|t |)>h (2),所以0<|t |<2,所以⎩⎪⎨⎪⎧t ≠0,|t |<2,即⎩⎪⎨⎪⎧t ≠0,-2<t <2,解得-2<t <0或0<t <2.综上,所求实数t 的取值范围为(-2,0)∪(0,2). 14.答案 (0,1]∪[3,+∞)解析 在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2与g (x )=x +m 的大致图象. 分两种情形:(1)当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意.(2)当m >1时,0<1m<1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m -1)2,解得m ≥3或m ≤0(舍去).综上所述,m ∈(0,1]∪[3,+∞).15.答案 605解析 因为f (x )+f (x +5)=16,则f (x +5)+f (x +10)=16,所以f (x )=f (x +10),所以该函数的周期是T =10.由于函数y =f (x )在(-1,4]上有三个零点,因此在区间(-1,9)上只有三个零点,而2 016÷5=403+1,故在区间[0,2 016]上共有(403×3+1)÷2=(1 209+1)÷2=605(个)交点. 16.[答案] ①③④[解析] ①正确;令f (x )=x 2+a x -3=0,则a x =3-x 2,在同一坐标系中作出函数y =a x (0<a <1)与y =3-x 2的图象知,两图象有两个交点,故②错;当x ∈[-π12,5π12]时,-π2≤2x-π3≤π2,故③正确;∵对任意实数x ,有f (-x )=f (x ),∴f (x )为偶函数,又x >0时,f ′(x )>0,∴f (x )在(0,+∞)上为增函数,∴f (x )在(-∞,0)上为减函数,因此,当x <0时,f ′(x )<0,故④真.17.[解析] 依题意,可得A ={a |4a 2-16<0}={x |-2<a <2},B ={a |2-k <a <4-k }. (1)当k =1时,由于B ={a |1<a <3},则∁R B ={a |a ≤1或a ≥3},所以A ∩(∁R B )={a |-2<a ≤1}.(2)由“非p ”是“非q ”的充分不必要条件,可知q 是p 的充分不必要条件.只需⎩⎪⎨⎪⎧2-k ≥-2,4-k ≤2,解得2≤k ≤4.所以实数k 的取值范围是[2,4].18.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.19.解 ∵m ∈[-1,1],∴m 2+8∈[22,3].∵对m ∈[-1,1],不等式a 2-5a -3≥m 2+8恒成立,可得a 2-5a -3≥3, ∴a ≥6,或a ≤-1.故命题p 为真时,a ≥6,或a ≤-1. 命题p 为假时,-1<a <6. 又命题q :x 2+ax +2<0有解, ∴Δ=a 2-8>0.∴a >22,或a <-2 2. 从而命题q 为真时a >22,或a <-22,q 为假时-22≤a ≤2 2.依题意p ∨q 为真,p ∧q 为假, ∴p 与q 必有一真一假.当p 真q 假时,a 的取值范围是-22≤a ≤-1; 当p 假q 真时,a 的取值范围是22<a <6.综上,a 的取值范围是[-22,-1]∪[22,6). 20.解:(1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].21.[解析] (1)f ′(x )=2x +2a x =2x 2+2ax.由已知f ′(2)=1,解得a =-3. (2)函数f (x )的定义域为(0,+∞).①当a ≥0时,f ′(x )>0,f (x )的单调递增区间为(0,+∞); ②当a <0时f ′(x )=2x +-ax --ax.当x 变化时,f ′(x ),f (x )的变化情况如下:). (3)由g (x )=2x +x 2+2a ln x ,得g ′(x )=-2x 2+2x +2ax,由已知函数g (x )为[1,2]上的单调减函数,则g ′(x )≤0在[1,2]上恒成立,即-2x 2+2x +2a x≤0在[1,2]上恒成立. 即a ≤1x-x 2在[1,2]上恒成立. 令h (x )=1x -x 2,x ∈[1,2],则h ′(x )=-1x 2-2x =-(1x 2+2x )<0, ∴h (x )在[1,2]上为减函数.h (x )min =h (2)=-72, ∴a ≤-72,故a 的取值范围为(-∞,-72]. 22.(1)解 f (x )的定义域为(0,+∞),设g (x )=ax -a -ln x ,则f (x )=xg (x ),f (x )≥0等价于g (x )≥0,因为g (1)=0,g (x )≥0,故g ′(1)=0,而g ′(x )=a -1x,g ′(1)=a -1=0,得a =1. 若a =1,则g ′(x )=1-1x. 当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以x =1是g (x )的极小值点,故g (x )≥g (1)=0.综上,a =1.(2)证明 由(1)知f (x )=x 2-x -x ln x , f ′(x )=2x -2-ln x ,设h (x )=2x -2-ln x ,则h ′(x )=2-1x. 当x ∈⎝ ⎛⎭⎪⎫0,12时,h ′(x )<0, 当x ∈⎝ ⎛⎭⎪⎫12,+∞时,h ′(x )>0. 所以h (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增. 又h (e -2)>0,h ⎝ ⎛⎭⎪⎫12<0,h (1)=0, 所以h (x )在⎝ ⎛⎭⎪⎫0,12上有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞上有唯一零点1,当x ∈(0,x 0)时,h (x )>0; 当x ∈(x 0,1)时,h (x )<0;当x ∈(1,+∞)时,h (x )>0.因为f ′(x )=h (x ),所以x =x 0是f (x )的唯一极大值点. 由f ′(x 0)=0,得ln x 0=2 (x 0-1), 故f (x 0)=x 0(1-x 0).由x 0∈⎝ ⎛⎭⎪⎫0,12,得f (x 0)<14. 因为x =x 0是f (x )在(0,1)上的最大值点, 由e -1∈(0,1),f ′(e -1)≠0,得f (x 0)>f (e -1)=e -2. 所以e -2<f (x 0)<2-2.。

屯溪区第一中学2018-2019学年上学期高三数学10月月考试题

屯溪区第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .22. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.3. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .24. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. 复数i i -+3)1(2的值是( )A .i 4341+-B .i 4341-C .i 5351+-D .i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.6. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( )A .6B .3C .38 D .34 第Ⅱ卷(非选择题,共100分)7. 已知是虚数单位,若复数)(3i a i +-(R a ∈)的实部与虚部相等,则=a ( )A .1-B .2-C .D . 8. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.9. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣310.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 11.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形12.点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )A .B .C .D .二、填空题13.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= . 14.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.15.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 . 16.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .三、解答题17.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ). (Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.18.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.19.对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.若集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω. 如当n=2时,E 2={1,2},P 2=.∀x 1,x 2∈P 2,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,所以P 2具有性质Ω.(Ⅰ)写出集合P 3,P 5中的元素个数,并判断P 3是否具有性质Ω. (Ⅱ)证明:不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.20.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)21.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.22.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.屯溪区第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】解:∵复数(2+ai)2=4﹣a2+4ai是实数,∴4a=0,解得a=0.故选:C.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.2.【答案】B3.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.4.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5. 【答案】C【解析】i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+.6. 【答案】A解析:抛物线C :y x 82=的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .7. 【答案】A考点:复数运算. 8. 【答案】A【解析】9. 【答案】B【解析】解:若f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数, 则f (0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f (x )=|x ﹣1|﹣|x ﹣1|=0,此时为偶函数,不满足条件, 当m=﹣1时,f (x )=|x+1|﹣|x ﹣1|,此时为奇函数,满足条件,作出函数f (x )的图象如图: 则函数在上为增函数,最小值为﹣2, 故正确的是B , 故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.10.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 11.【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 12.【答案】A【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.由图可得面积S==+=+2.故选:A .【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.二、填空题13.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2}, ∴C U A={3,4}, 又B={2,3},∴(C U A )∪B={2,3,4}, 故答案为:{2,3,4}14.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.15.【答案】【解析】试题分析:因为ABC ∆中,2,60AB BC C ===︒2sin A=,1sin 2A =,又BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1232ABC S AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R等等. 16.【答案】3a ≤- 【解析】试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质.三、解答题17.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f (x )=4x 2+2x ﹣lnx ,x ∈(0,+∞),.…(1分)由x ∈(0,+∞),令f ′(x )=0,得.xf ′(x ) ﹣+f (x ) ↘ 极小值 ↗ 故函数f (x )在单调递减,在单调递增,…(3分)f (x )有极小值,无极大值.…(4分) (Ⅱ),令f ′(x )=0,得2ax 2+2x ﹣1=0,设h (x )=2ax 2+2x ﹣1.则f ′(x )在(0,1)有唯一的零点x 0等价于h (x )在(0,1)有唯一的零点x 0 当a=0时,方程的解为,满足题意;…(5分)当a >0时,由函数h (x )图象的对称轴,函数h (x )在(0,1)上单调递增,且h (0)=﹣1,h (1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.18.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 19.【答案】【解析】解:(Ⅰ)∵对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.∴集合P 3,P 5中的元素个数分别为9,23,∵集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω,∴P 3不具有性质Ω.…..证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}.因为1∈E15,所以1∈A∪B,不妨设1∈A.因为1+3=22,所以3∉A,3∈B.同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾.所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..解:(Ⅲ)因为当n≥15时,E15⊆P n,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B.若n=14,当b=1时,,取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.20.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.21.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin(2x﹣)…3分周期T=π,因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,所以函数f(x)的单调递减区间为,,k∈Z…7分(2)当,2x﹣∈,…9分sin(2x﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f(x)取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.22.【答案】【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=.…(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…P(X=0)==;P(X=1)==;P(X=2)==;P(X=3)==;P(X=4)==.…XEX=0×+1×+2×+3×+4×=.…【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.。

屯溪区高级中学2018-2019学年上学期高三数学10月月考试题

屯溪区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5C .9D .272. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=3. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 4. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .25. 如图,四面体D ﹣ABC的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A. B .2 C. D .36. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是( )A .5B .3C .2D .7. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 8. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .13 B .23C .1D .2 9. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( )A. ),0(+∞B. )2,(-∞C. ),2(+∞D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 10.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④11.已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .20152212.如图所示,阴影部分表示的集合是( )A.(∁U B)∩A B.(∁U A)∩B C.∁U(A∩B)D.∁U(A∪B)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知点M(x,y)满足,当a>0,b>0时,若ax+by的最大值为12,则+的最小值是.14.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.15.设幂函数()f x kxα=的图象经过点()4,2,则kα+= ▲.16.在直角坐标系xOy中,已知点A(0,1)和点B(﹣3,4),若点C在∠AOB的平分线上且||=2,则=.三、解答题(本大共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学精品复习资料2019.5屯溪一中高三第一次月考试题(理数)本试卷分选择题、填空题和解答题三部分,共21个小题,时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 请将正确答案的代号填在答卷上. 1.设U 为全集,对集合X Y 、,定义运算“⊕”,满足()U X Y C X Y ⊕=,则对于任意集合X Y Z 、、,则()X Y Z ⊕⊕= A .()()U X Y C Z B .()()U X Y C Z C .[()()]U U C X C Y ZD .()()U U C X C Y Z2.若实数a ,b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补.记(),a b a b ϕ=-,那么(),0a b ϕ=是a 与b 互补的:A. 必要而不充分的条件B. 充分而不必要的条件C. 充要条件D. 既不充分也不必要的条件3. 已知133,log 3,log sin3a b c πππ===,则,,a b c 大小关系为:A .a b c >>B .b c a >>C .c a b >>D .c a b =>4.已知函数()()()f x x a x b =--(其中a b >)的图象如图1所示,则函数()x g x a b =+的图象是图2中的:5.已知函数(1)y f x =+为奇函数,若()y f x =与()y g x =图象关于y x =对称, 若120x x +=,则12()()g x g x +=A .2B .2-C .1D .1-6.如图,函数y=()f x 的图象在点P 处的切线方程是y=-x+8,则f (5)+f ’(5)= A .12B .1C .2D .07.设()f x 是定义在R 上的奇函数,且f (2)=0,当x>0时,有()()f x x的导数<0恒成立,则不等式2()0x f x >的解集是:A .(一2,0)(2,+ ∞)B .(一2,0)(0,2)C .(-∞,-2)(2,+ ∞)D .(-∞,-2)(0,2)8.设函数)(x f y =是定义在R 上以1为周期的函数,若x x f x g 2)()(-= 在区间]3,2[上的值域为]6,2[-,则函数)(x g 在[12,12]-上的值域为 :A .]6,2[- B.[20,34]- C.[22,32]- D. [24,28]- 9.已知函数()y f x =的周期为2,当[0,2]x ∈时,2()(1)f x x =-,如果()()5log |1|g x f x x =--则函数()y g x =的所有零点之和为:A .2B .4C .6D .810.若函数()()y f x x R =∈满足(2)()f x f x +=,且x ∈[-1,1]时, f (x ) =l —x 2,函数lg (0)(),1(0)x x g x x x>⎧⎪=⎨-<⎪⎩则函数h (x )=f (x )一g (x )在区间[-5,5]内的与x 轴交点的个数为:A .5B .7C .8D .10二、填空题:本大题共5小题,共26分.把答案填在答题卡对应题号后的横线上.11.若曲线t t y t x (122⎩⎨⎧+-=+=为参数)与曲线θθθ(sin 3cos 31⎩⎨⎧=+-=y x 为参数)相交于A ,B 两点,则|AB|= 。

12.在极坐标系中,定点A (2,π),动点B 在直线sin()42πρθ+=上运动。

则线段AB 的最短长度为:13.若命题2:[1,3],250p x x ax ∀∈-+>是假命题,则实数a 的取值范围是 14.设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则称()f x 为M 上的“l 高调函数”.现给出下列命题:①函数xx f 2)(=为R 上的“1高调函数”; ②函数()sin 2f x x =为R 上的“π高调函数”;③如果定义域为[1,)-+∞的函数2()f x x =为[1,)-+∞上“m 高调函数”,那么实数m 的取值范围 是[2,)+∞;其中正确的命题是 .(写出所有正确命题的序号) 15. 已知函数12()f x log x =与函数()g x 的图象关于y x =对称,(1)若()()2,0,0,g a g b a b =<<且则41a b+的最大值为 (2)设()h x 是定义在R 上的偶函数,对任意的x ∈R ,都有(2)(2)h x h x -=+,且当[2,0]x ∈-时,()()1h x g x =-,若关于x 的方程()log (2)0a h x x -+=()0,1a a >≠且在区间(2,6]-内恰有三个不同实根,则实数a 的取值范围是三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)已知集合A=)]13()[2({+--a x x x }0<,集合B=⎭⎬⎫⎩⎨⎧<+--0)1(22a x ax x 。

(1) 当a =2时,求B A ;(2) 当a 31>时,若元素x A ∈是x B ∈的必要条件,求实数a 的取值范围。

17.(本题满分12分)1)c P y x -=∞设命题:函数在(0,+上为减函数,2:ln(221)Q y cx x =++命题的值域为R, 2ln(221)T y cx x =++命题:函数定义域为R,(1)若命题T 为真命题,求c 的取值范围。

(2)若P 或Q 为真命题,P 且Q 为假命题,求c 的取值范围.18、(本题满分12分)设函数是定义在上的减函数,并且满足,(1)求,,的值,(2)如果,求x 的取值范围。

19.(本题满分12分)设函数b x ax x f ++=1)((a ,b 为常数),且方程x x f 23)(=有两个实根为2,121=-=x x .(1)求)(x f y =的解析式;(2)证明:曲线)(x f y =的图像是一个中心对称图形,并求其对称中心.20.(本大题13分)设A 、B 为函数3([1,1])2y x x =∈- 图象上不同的两个点,且 AB ∥x 轴,又有定点3(1,)()2M m m > ,已知M 是线段BC 的中点. ⑴ 设点B 的横坐标为t ,写出ABC ∆的面积S 关于t 的函数()S f t =的表达式;⑵ 求函数()S f t =的最大值,并求此时点C 的坐标。

21.(本题满分13分)已知)(x f 是定义在(,0)(0,)-∞+∞上的奇函数,当(0,)x ∈+∞时,()2ln ,()f x ax x a R =+∈(1)求)(x f 的解析式;(2)是否存在负实数a ,使得当)(,)0,[x f e x 时-∈的最小值是4?如果存在,求出a 的值;如果不存在,请说明理由。

(3)对,x D ∈如果函数()F x 的图像在函数()G x 的图像的下方,则称函数()F x 在D 上被函数()G x 覆盖。

求证:若1a =时,函数)(x f 在区间()x ∈+∞1,上被函数3()g x x =覆盖。

1-10: DCAAA CDBDC11.4 12.2 13., 14. ①②③ 15.-9)2.16. 解:(1)当a=2时,A =72{<<x x } B =54{<<x x } ∴ B A =54{<<x x }(2)∵ a 2+1-2a=(a-1)2≥0 ∴ B =12{2+<<a x a x }当a>31时,3a+1>2 ∴A=132{+<<a x x } ∵ B ⊆ A ∴ 2a ≥2 且 a 2+1 ≤ 3a+1∴ 1≤a ≤317.解:(1)若命题T 为真命题,则014802c c c >⎧⇒>⎨∆=-<⎩。

(5分) (2)若P 为真 ,则c<1;若Q 为真,则c=0, 或者0480c c >⎧⇒⎨∆=-≥⎩ 102c ≤≤;由题意有,命题P 、Q 中必有一个是真命题,另一个为假命题。

(7分)若P 为真,Q 为假时,则1,10,2c c <⎧⎪⎨<⎪⎩或c>,即1012c c <<<或;。

(9分) 若P 为假,Q 为真时,则1102c c c ≥⎧⎪⇒∈∅⎨≤≤⎪⎩。

(11分) 所以C 的取值范围为1(,0)(,1)2-∞⋃。

(12分)18、解:(1)令,则,∴……1分令, 则, ∴………2分∴ …………4分∴ …………… 6分(2)∵,又由是定义在R +上的减函数,得:……… 8分解之得:………… 12分19.解:(Ⅰ)由⎪⎩⎪⎨⎧=++-=+-+-3212,2311b a b a 解得11a b =⎧⎨=-⎩,, 故1()1f x x x =+-.(II )证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x =+也是奇函数,其图像是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图像沿x 轴方向向右平移1个单位,再沿y 轴方向向上平移1个单位,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形.20.解:⑴ 如图,设3(,)2B t t ,由M 是线段 BC 的中点,且3(1,)()2M m m >,可推得点C 的坐标为3(2,2)2C t m t --.∴ 1332[(2)](23)222S t m t t t m t =⋅⋅--=-即:(]23()32(0,1,)2S f t t m t t m ==-+∈>…(6分)⑵ 由上知:(]2223()323()(0,1,)332m m f t t m t t t m =-+=--+∈>① 当 1332mm ⎧≤⎪⎪⎨⎪>⎪⎩ 即 332m <≤ 时,令3m t =,()f t 有最大值 23m ,此时,点C 的坐标为3(2,)32m C m ±; ② 当 1332mm ⎧>⎪⎪⎨⎪>⎪⎩ 即 3m > 时,令1t =,()f t 有最大值 23m -,此时,点C的坐标为 3(1,2)2C m - 或 3(3,2)2C m -…….(12分)纵上,当332m <≤时,()f t 有最大值23m ,此时,点C 的坐标为3(2,)32m C m ±;当3m >时,()f t 有最大值23m -,此时,点C 的坐标为3(1,2)2C m - 或3(3,2)2C m -…(13分)()()()[)()[)()()()()()()()''min min 20,2ln ,0222,,0,0,2222,-e,,024,222,-e,062-e 4,a f x ax x x e a x a f x a x e f x x x x ae af x a e a a f x f a ea e a f x a ef x f a e e<=--∈-⎛⎫- ⎪⎝⎭∴=-=∈-==⎛⎫⎛⎫>-<- ⎪ ⎪⎝⎭⎝⎭⎛⎫∴===- ⎪⎝⎭≤-≥-∴===-<-假设存在满足题意,,令当即时,在减,在增解得当即0>时,在上增解得矛盾!综上所诉2.a e =-,存在满足题意()()()()()()()()()()()()()332'22'332ln 1,2ln 113322311,10,332001,11002ln 1,.x x x x h x x x x x x x x h x x x xx x x x h x x x h x h h x x x x x >+∈+∞=-->-++∴=--=>∴->++>∴>∈+∞∴>>=∴>⇔>+∈+∞证明:由题意知,只需证对恒成立令对恒成立时,对恒成立即原命题得证。

相关文档
最新文档