测控电路chapter2

合集下载

测控电路实验指导书

测控电路实验指导书

实验一差动放大器实验实验二信号放大电路实验实验三信号运算电路实验实验四电压比较器实验实验五电阻链分相细分实验实验六幅度调制及解调实验实验七移相电桥实验实验八脉宽调制电路实验实验九调频及鉴频实验实验十开关电容滤波器实验实验十一开关式相乘调制及解调实验实验十二精密全波整流及检波实验实验十三开关式全波相敏检波实验实验十四锁相环单元实验实验十五分频器单元实验实验十六锁相环应用实验––频率合成实验实验十七可控硅触发调压实验测控电路部分实验一差动放大器实验一、实验目的1.加深对差动放大器性能的理解。

2.学习差动放大器的主要性能指标的测试方法。

二、实验原理图1-1是差动放大器的实验电路图。

它由两个元件参数相同的基本共射放大电路组成。

当 开关K 拨向左边时,构成典型的差动放大器。

调零电位器Rp 用来调节T 1,T 2管的静态工作点,使得输入信号U i =0时,双端输出电压Uo=0。

图1-1差动放大器实验电路图当开关K 拨向右边时,构成具有恒流源的差动放大器。

它用晶体管恒流源代替发射极电阻Re ,可以进一步提高差动放大器抑制共模信号的能力。

1.静态工作点的估算典型电路: (认为U B1=U B2≈0);I C1=I C2=½I E 恒流源电路: ;C321C2C1I I I == 2.差模电压放大倍数和共模电压放大倍数当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。

双端输出:R E =∞,W 电位器在中心位置时,Pbe B CiOd R )1(21r R R U U A ββ+++-=∆∆=单端输出:diC1d1A 21U U A ==∆∆EBE EE E R U U I -≈||E3BEEE CC 212E3C3R U U U R R R I I -++≈≈|)|(d i C2d2A 21U U A -=∆∆=当输入共模信号时,若为单端输出,则有ECE p be B C iC1C2C12R R )2R R 2)(1(r R R U U A A -≈++++-=∆∆==ββ若为双端输出,在理想情况下 0U U A iOd2=∆∆=,实际上由于元件不可能完全对称,因此Ac 也不会绝对等于零。

测控电路(第7版)课件:传感器接口

测控电路(第7版)课件:传感器接口
测控电路
传感器接口电路
2.1传感器类型
2.2信号调理电路
2.3线性化
2.4传感器接口实例
本章知识点
无源传感器及有源传感器的基本原理及组成形式
电桥信号调理电路及调频信号调理电路
电压源信号调理电路及电流源信号调理电路
传感器接口电路的线性化技术
传感器接口电路
3
2.1传感器类型
2.1.1典型无源传感器
场阻力达到平衡时,接触热电势就会达到一个稳定值,电势由如下式子得出:
k—玻尔兹曼常数,k=1.381×10-23J/K;
kT nA T


e AB T
ln
e
nB T
e—电子电荷量,e=1.602×10-19C;
T—结点处的绝对温度(K);
nA(T) ,nB(T) —材料A,B在温度T时的自由电子浓度。
传感器接口电路
13
1. 热电效应传感器
将A,B两种不同导体材料两端相互紧密连接在一起,组成一个闭合回路,
这样就构成了一个热电偶。当两节点温度不同时,回路中就会产生电势。热
电偶温度保持不变一端成为自由端或冷端,另一端成为测量端或热端。通过
测量接触电势的大小推算测量端的温度。
A
T0
T
e AB T
Ra Rb
1/ Rn jwCn
LX Ra Rb Rn
Rb
RX
Ra
Rn
传感器接口电路
27
2.2.2.2调频信号调理电路
调频信号调理电路可以将无源传感器的阻抗变化量转换为基于振荡电路的频
率变化量。
• 振荡器电路通常根据其电路设计的不同产生特定频率的信号。低频振荡

测控电路

测控电路

测控电路测控技术是现代生产和高科技中的一项必不可少的基础技术。

本书主要介绍工业生产和科学研究中常用的测量与控制电路。

包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辩向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。

本教材不是一般意义上电子技术教程的深化与提高,而是着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其他要求来选用和设计电路。

"前言第一章绪论第一节测控电路的功用第二节对测控电路的主要要求一、精度高二、响应快三、转换灵活四、可靠性与经济性第三节测控电路的输入信号与输出信号一、模拟式信号二、数字式信号第四节测控电路的类型与组成一、测量电路的基本组成二、控制电路的基本组成第五节测控电路的发展趋势第六节课程的性质、内容与学习方法思考题与习题第二章信号放大电路第一节测量放大电路一、基本要求与类型.二、稳零放大电路三、高输入阻抗放大电路四、高共模抑制比较放大电路五、电桥放大电路六、电荷放大电路七、单片集成测量放大器第二节增益调整与切换以及线性化电路一、增益调整电路二、可编程增益放大电路三、线性化电路第三节隔离放大电路一、基本原理二、通用隔离放大电路三、程控增益隔离放大电路第四节功率放大电路一、基本电路二、组合式功率放大电路三、单片集成功率放大器思考题与习题第三章信号调制解调电路第一节调制解调的功用与类型第二节调幅式测量电路一、调幅原理与方法二、包络检波电路三、相敏检波电路第三节调频式测量电路一、调频原理与方法二、鉴频电路第四节调频式测量电路一、调频原理与方法二、鉴相电路第五节脉冲调制式测量电路一、脉冲调制原理与方法二、脉冲调制信号与方法三、脉冲调制测量电路应用举例思考题与习题第四章信号分离电路第一节滤波器的基本知识一、滤波器的类型二、模拟滤波器的传递函数与频率特性三、滤波器特性的逼近第二节 RC有源滤波电路一、压控电压源型滤波电路二、无限增益多路反馈型滤波电路三、双二阶环滤波电路四、有源滤波器设计第三节集成有源滤波器一、开关电容滤波原理二、集成有源滤波芯片介绍第四节跟踪滤波器一、压控跟踪滤波器二、变频跟踪滤波器第五节数字滤波器简介一、数字系统频域分析二、数字滤波原理简介三、数字滤波器的实现思考题与习题第五章信号运算电路第一节加减运算电路一、加法运算电路二、减法运算电路第二节对数、指数及乘除运算电路一、对数运算电路二、指数运算电路三、乘除和乘方、开方运算电路第三节微分积分运算电路一、积分运算电路二、微分运算电路三、PID电路第四节常用特征值运算电路一、绝对值运算电路二、平均值运算电路三、峰值运算电路四、有效值运算电路第五节复杂运算电路一、反函数运算电路二、任意函数电路三、解微分方程运算电路思考题与习题第六章信号转换电路第一节采样保持电路一、基本原理二、模拟开关三、采样保持实用电路第二节电压比较电路一、电平比较电路二、滞回比较电路三、窗口比较电路第三节电压频率转换电路一、V/f转换器二、f/V转换器第四节电压电流转换电路一、I/V转换器二、V/I转换器第五节模拟数字转换电路一、D/A转换器二、A/D转换器思考题与习题第七章信号细分与辨向电路第一节直传式细分电路一、四细分辨向电路二、电阻链分相细分三、微型计算机细分四、只读存储器细分第二节平衡补偿式细分一、相位跟踪细分二、幅值跟踪细分三、脉冲调宽型幅值跟踪细分四、频率跟踪细分——锁相倍频细分思考题与习题第八章逻辑控制电路第一节二值可控元件驱动电路一、功率开关驱动电路二、继电器与电磁阀驱动电路三、步进电动机驱动电路第二节可编程逻辑器件一、可编程阵列逻辑PAL二、通用阵列逻辑GAL思考题与习题第九章连续信号控制电路第一节导电角控制逆变器一、120°导电角控制逆变器二、180°导电角控制逆变器第二节脉宽调制(PWM)控制电路一、脉宽调制控制电路的工作原理二、典型脉宽调制电路三、PWM功率转换电路四、同步式与异步式脉宽调制控制电路第三节变频控制电路一、基本原理和分类二、控制方式和特性三、AC-AC变频器四、AC-DC-AC变频器五、脉宽调制型变频控制电路第四节程控电源一、程控相控型电源二、程控交流稳定电源思考题与习题第十章测控电路中的抗干扰技术第一节电磁干扰一、干扰与噪声源二、干扰与噪声的耦合方式三、干扰与噪声抑制的一般措施第二节屏蔽、接地、隔离、布线与灭弧技术一、屏蔽技术二、接地技术三、隔离技术四、布线技术五、灭弧技术第三节电源干扰的抑制一、电网干扰抑制技术二、电源稳定净化技术思考题与习题第十一章典型测控电路分析第一节温度测量与控制系统一、温度、压力测控仪二、半导体激光电源的温度控制电路第二节数控机床的速度、位移测控系统一、速度控制二、位置控制思考题与习题参考文献。

测控电路(第5版)第二章习题及答案

测控电路(第5版)第二章习题及答案

第二章 信号放大电路2-1 何谓测量放大电路?对其基本要求是什么?2-2 (1)利用一个741μA 和一只100k Ω的电位器设计可变电源,输出电压范围为1010S V u V -≤≤; (2)如果10S u V =时,在空载状态下将一个1k Ω的负载接到电压源上时,请问电源电压的变化量是多少?(741μA 参数:输入阻抗2d r =MΩ,差模增益200a V mV =,输出阻抗75o r =Ω)2-3 在图2-2所示的电路中,已知110R k =Ω,21R =MΩ,并令运算放大器的100B I n =A 和30OS I n =A ,在以下不同情况下,计算输出失调误差o u 。

(1)0P R =;(2)12P R R R =P ;(3)12P R R R =P ,并且把所有电阻阻值缩小为原来的10分之一;(4)在(3)条件的基础上,使用3OS I n =A 的运算放大器。

R R ou图2-2 题2-3图2-4 在图2-47所示的电路中,已知10R k =Ω,1C nF =和()00o u V =。

假设运算放大器有100B I n =A ,30OS I n =A 和输出饱和电压13sat V V ±=±,在不同情况下,计算运算放大器经过多长时间进入饱和。

(1)0P R =;(2)P R R =。

ou图2-47 题2-4图2-5 (1)在图2-48所示的电路中,运算放大器的10B I n =A ,所有电阻都为100R k =Ω,分析B I 对反相放大器性能的影响;(2)为了使o u 最小,在同相端上应该串联多大的电阻P R ?ou i图2-48 题2-5图2-6 图2-4b 所示中的运算放大器使用741μA ,电路增益为20V V A =-,为使电路输入电阻最大,求满足条件的电阻值(令输入失调可调范围为20mV ±,最大失调电流200OS I n =A ,最大失调电压6OS V mV =)。

测控电路课程设计

测控电路课程设计

测控电路课程设计一、课程目标知识目标:1. 让学生掌握测控电路的基本原理,理解常见传感器的工作机制;2. 使学生了解测控电路在工程领域的应用,熟悉各类测控系统的组成;3. 帮助学生掌握模拟、数字信号处理的基本方法,提高数据采集、处理和分析的能力。

技能目标:1. 培养学生运用所学知识设计简单的测控电路,具备实际操作和调试的能力;2. 提高学生利用测控设备进行数据采集、处理和分析的技能,具备解决实际问题的能力;3. 培养学生团队协作、沟通交流的能力,提高项目执行和项目管理水平。

情感态度价值观目标:1. 激发学生对测控技术领域的兴趣,培养其探索精神和创新意识;2. 引导学生关注测控技术在现实生活中的应用,提高社会责任感和使命感;3. 培养学生严谨、务实的科学态度,树立正确的价值观。

本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。

通过本课程的学习,使学生不仅掌握测控电路的基本知识和技能,还能在实际应用中发挥所学,为我国测控技术的发展贡献自己的力量。

同时,注重培养学生的团队协作能力和创新精神,提升其综合素质。

二、教学内容1. 测控电路基本原理:介绍传感器的工作机制、信号转换方法,分析常见传感器的特点及应用场景。

教材章节:第一章 测控电路基础2. 常见测控电路设计:讲解模拟电路、数字电路的设计方法,分析典型测控电路的原理和功能。

教材章节:第二章 常见测控电路设计3. 数据采集与处理:介绍数据采集系统组成、工作原理,讲解模拟信号、数字信号处理方法。

教材章节:第三章 数据采集与处理4. 测控系统应用案例分析:分析实际工程中的测控系统案例,讲解其设计思路、实施步骤及优化方法。

教材章节:第四章 测控系统应用案例5. 测控电路实践:组织学生进行实际操作,设计简单的测控电路,进行数据采集、处理和分析。

教材章节:第五章 测控电路实践6. 项目管理与团队协作:培养学生项目管理意识,提高团队协作能力,完成课程设计任务。

测控电路重点内容复习

测控电路重点内容复习

uo2
R2 R2 (1 )ui2 ui1 R0 R0
R5 R R R6 R 5 uo1 (1 5 ) )uo2 uo2 5 uo1 R3 R3 R3 R4 R6 R3 R5 uo ( uo2 uo1 ) K d2 ( uo2 uo1 ) 取 R3=R4,R5=R6, R3 uo (1
高共模抑制比放大电路
自动调零放大电路 高输入阻抗放大电路
隔离放大电路.
电桥放大电路
线性化电路
7
2.2 典型测量放大电路 一、 高共模抑制比放大电路

作用:用来抑制传感器输出的共模电压 (包括干扰电压) ,
提高共模抑制比 。

应用场合:要求共模抑制比大于100dB的场合,例如人体 心电测量,信号很微弱,而干扰很大。
R1 R2 uo2 uo1 (1 )( ui2 ui1 ) K d1 ( ui2 ui1 ) R0
差模增益:K d K d1 K d2
R1 R2 R5 (1 ) R0 R3
通常取:R1=R2,R3=R4,R5=R6 —— 外接电阻平衡对称。
电路特点:输入阻抗高;增益调整方便;对于理想运放, 共模抑制比趋向无限大。
第三节
第四节
测控电路的输入信号与输出信号
测控电路的类型与组成
第五节
测控电路的发展趋势
2
第一章 绪论
(1)什么是测控系统?
测量与控制系统的简称。 广义上:测量系统、控制系统和测控系统。
(2)测控系统的构成
笼统地讲
传感器 测控电路 执行机构
第一章 绪论
本章基本概念
1.
2.
3.
对测控电路的主要要求(精度高;响应速度快和动态失 真小;转换灵活;可靠性与经济性); 影响测控电路精度的主要因素(噪声与干扰★;失调与 漂移,主要是温漂★;线性度与保真度;输入与输出阻 抗的影响); 为什么说测控电路是测控系统中最灵活的环节,它体现 在哪些方面?(模数转换与数模转换;信号形式的转换; 量程的变换;信号的选取;信号处理与运算等);

《测控电路》课后答案+复习重点归纳+3套考题

第一章绪论1、测控系统主要由传感器(测量装置)、测量控制电路(测控电路)、执行机构组成2、测控电路的主要要求:精、快、灵、可靠3、测控电路的特点:精度高、动态性能好、高的识别和分析能力、可靠性高、经济性好4、为了提高信号的抗干扰能力,往往需要对信号进行调制。

在紧密测量中希望从信号一形成就成为已调制信号,因此常在传感器中进行调制。

5用电感传感器测量工件轮廓形状时—这是一个幅值按被测轮廓调制的已调制信号---称为调幅信号6、用应变片测量梁的变形,并将应变片接入交流电桥。

这时电桥的输出也是调幅信号,载波信号的频率为电桥供电频率,电桥输出信号的幅值为应变片的变形所调制。

7、采用光栅、激光干涉法等测量位移时时传感器的输出为增量码信号。

8、增量码信号是一种反映过程的信号,或者说是一种反映变化增量的信号。

它与被测对象的状态并无一一对应的关系。

9、绝对码信号是一种与状态相对应的信号。

10、开关信号可视为绝对码信号的特例,当绝对码信号只有一位编码时,就成了开关信号。

开关信号只有0和1两个状态。

11、控制方式可分为开环控制与闭环控制。

12、闭环控制的特点:它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定电路的输出相比较,当发现他们之间有差异时,进行调节补充:1、信息时代的标志——高性能计算机的发展,速度和容量为其主要标志2、影响测控电路精度的主要因素有哪些?其中那几个因素是最基本的?(1)、噪声与干扰★(2)、失调与漂移,主要是温漂★(3)、线性度与保真度(4)、输入与输出阻抗的影响第二章信号放大电路1、输入失调电压u0s:对于理想运算放大器,输入电压为零,输出电压也必然为零。

然而,实际运算放大器中,前置级的差动放大器并不一定完全对称,必须在输入端加上某一直流电压后才能使输出为零,这一直流电压称之。

2、零点漂移:失调电压随时间和温度而变化,即零点在变动,称之3、输出失调电压u0=(1+R2/R1)u0s4、输出端产生的失调电压u02=-R2I b1+(1+R2/R1)R3I b2若取R3=R1//R2,则u02=R2(I b2-I b1)=R2I0s I0s称为输入失调电流5、绝大部分的运算放大器都是用于反馈状态6、由于运算放大器通常使用在负反馈状态,本来就有1800的相位差,再加上外接和内部电路的RC网络,有可能出现3600的相位差,使电路振荡。

测控电路李醒飞第五版第二章习题答案文件-精选

第二章信号放大电路2-1 何谓测量放大电路?对其基本要求是什么?在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。

对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。

2-2 (1)利用一个741 和一只100k 的电位器设计可变电源,输出电压范围为10V u S 10V ;(2)如果u S 10V 时,在空载状态下将一个1k 的负载接到电压源上时,请问电源电压的变化量是多少?(741 参数:输入阻抗r 2 ,差模增益da V mV ,输出阻抗r o 75 )200(1)电路设计如图X2-1 所示:15V25ku sI100kNL25kRL 15V图X2-1(2)由于电压跟随器属于输入串联、输出并联型结构,该结构下的输入、输出阻抗为:5 R r 1 T r 1 a 2 1 2 0 0 0 0V0 V 1 4 1 0i d dR r 1 T r 1 a 75 1 200000V V 1 0.375mo o o由上式我们可以看出,电压跟随器中的反馈增大了等效输入阻抗,减小了等效输出阻抗,可以达到阻抗变换的效果。

进一步计算得:I u R 10V 1k 10mL S Lu R I 0.375 m10m 3.75 VS o L12-3 在图2-2 所示的电路中,已知R1 10k ,R2 1 ,并令运算放大器的I B 100n 和I OS 30n ,在以下不同情况下,计算输出失调误差u o 。

(1) RP 0 ;(2) R P R1 R2 ;(3) R P R1 R2 ,并且把所有电阻阻值缩小为原来的10 分之一;(4)在(3)条件的基础上,使用I OS 3n 的运算放大器。

测控电路课后答案(张国雄_第四版) 2

第一章绪论1-1为什么说在现代生产中提高产品质量与生产效率都离不开测量与控制技术?为了获得高质量的产品,必须要求机器按照给定的规程运行。

例如,为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。

为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。

为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。

为了保证产品质量,除了对生产过程的检测与控制外,还必须对产品进行检测。

这一方面是为了把好产品质量关,另一方面也是为了检测机器与生产过程的模型是否准确,是否在按正确的模型对机器与生产过程进行控制,进一步完善对生产过程的控制。

生产效率一方面与机器的运行速度有关,另一方面取决于机器或生产系统的自动化程度。

为了使机器能在高速下可靠运行,必须要求机器本身的质量高,其控制系统性能优异。

要做到这两点,还是离不开测量与控制。

产品的质量离不开测量与控制,生产自动化同样一点也离不开测量与控制。

特别是当今时代的自动化已不是本世纪初主要靠凸轮、机械机构实现的刚性自动化,而是以电子、计算机技术为核心的柔性自动化、自适应控制与智能化。

越是柔性的系统就越需要检测。

没有检测,机器和生产系统就不可能按正确的规程自动运行。

自适应控制就是要使机器和系统能自动地去适应变化了的内外部环境与条件,按最佳的方案运行,这里首先需要的是对外部环境条件的检测,检测是控制的基础。

智能化是能在复杂的、变化的环境条件下自行决策的自动化,决策的基础是对内部因素和外部环境条件的掌握,它同样离不开检测。

1-2试从你熟悉的几个例子说明测量与控制技术在生产、生活与各种工作中的广泛应用。

为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。

为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。

测控电路


Dennis Gabor The Nobel Prize in Physics 1971 "for his invention and development of the holographic method"
9
部分因从事仪器科学与技术研究获得诺贝尔物理学奖 的科学家
Ernst Ruska The Nobel Prize in Physics 1986 "for his fundamental work in electron optics, and for the design of the first electron microscope"
Frits Zernike The Nobel Prize in Physics 1953 "for his demonstration of the phase contrast method, especially for his invention of the phase contrast microscope"
11
第一节 测控电路的功用


当今时代是信息时代。 信息技术包括:信息获取、处理、传输、 存储、执行(控制)。 测量是信息的源头。 信息时代的标志:高性能计算机,速度、 容量,大规模集成电路,离不开测控。
第一节 测控电路的功用



现代战争离不开测控。 仪器仪表的测量控制精度决定了武器的 打击精度,测试速度、控制反应速度决 定了武器的反应能力。 载人飞船成功发射,测控也有至关重要 作用。 生产、生活、科技、国防都离不开测控。
第一节 测控电路的功用
传感器
测量控 制电路
图1-1 测控系统的组成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ui2
第二节 典型放大电路设计
(六)自举式高输入阻抗放大电路
何谓自举电路?
自举电路是利用反馈使输入电阻的两端近似为等电位,减
小向输入回路索取电流,从而提高输入阻抗的电路。
■是不是所有情况下都要求放大电路具有高的输入 阻抗?
测试电路如图2-9所示。
第一节 集成信号运算放大电路概论
图 2-9
第一节 集成信号运算放大电路概论 静态功耗Pco:在无外接负载的情况下, 对于额定的电源电压,运算放大器本身 所消耗的正、负电源的总功率叫静态功 耗。
测试方法:测量时,给被测放大器加上规定的正、负电 源电压VCC和VEE,从串在电源回路中的直流电流表 上分别读出正、负电源的电流ICC和IEE,则PC0由下式 求出: PC0 = VCC ICC + VEE IEE 测试电路如图2-10所示。
测试电路如图2-1所示。
V OS
V 1 R R
O
2 1
第一节 集成信号运算放大电路概论
图 2-1
第一节 集成信号运算放大电路概论
4、集成运算放大器的主要参数及测试方法 输入失调电流IOS:当输入信号为零时, 运算放大器两输入静态输入电流之差叫 输入失调电流。
第一节 集成信号运算放大电路概论 测试方法:
VO R1 R2 Ao Vn R1
第一节 集成信号运算放大电路概论
图 2-14
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法 单位增益带宽GB:运算放大器在1:1的比例 放大状态下,当闭环增益下降到0.707时的 频率叫单位增益带宽。 测试电路如图2-15所示。
R3=R1∥R2
R7 =R4∥R5∥R6
高共模抑制比放大电路
2、同相串联结构型 uo1=(1+R2/R1) ui1 ui2 (uo1–ui2)/R3= (ui2–uo)/R4 uo=(1+R4/R3) ui2 -(1+R2/R1)(R4/R3)ui1 为了获得零共模增益,可取 ui1 R1/R2=R4/R3
设计步骤:
1.根据(4)计算最佳反馈电阻Rf 2.根据(1)计算Rr 3.根据(3)计算平衡电阻Rp
第二节 典型放大电路设计
特点: 1.输出信号与输入信号反相 2.闭环增益在低频范围内理论上可以0~∞, 实际应用常选G≤100。 3.输入阻抗很低。 4.输出阻抗低,带负载能力强。

第二节 典型放大电路设计
∞ + - N2
+
uo R4 R3
∞ + + - N1
uo1
R2 R1
高共模抑制比放大电路
(二)三运放高共模抑制比放大电路
ui1
∞ uo R3 + + - N1 1 R1 IR RP ∞ R2 + + N2 uo2 R4 R5 R7 ∞ + + N3 R6
RP
1
uo
-
R8
IR=(uo2–ui2)/R2=(ui1–uo1)/R1=(ui2–ui1)/Rp uo1=ui1(1+R1/Rp)–ui2R1/Rp ,uo2=ui2(1+R2/Rp)–ui1R2/Rp uo =(uo2–uo1)R5 /R3
V R R A R V
i f O o
1
测试电路如图2-11所示。
第一节 集成信号运算放大电路概论

2-11
第一节 集成信号运算放大电路概论
共模抑制比CMRR:运算放大器的差模电压增 益与共模电压增益之比较共模抑制比。 测试方法:在被测放大器的二输入端加上低频 共模信号VC,测量辅助放大器的输出信号电 压VO,则共模抑制比由下式求得:
第一节 集成信号运算放大电路概论
图 2-13
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法
开环带宽fBW :运算放大器的开环电压增益随信 号频率的升高而下降。当开环增益下降到直 流增益的0.707(-3dB)时的信号频率叫放大器 的开环带宽。 测试电路如图2-14所示。
第一节 集成信号运算放大电路概论
图 2-15
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法 电源电压抑制比SVR:运算放大器供电电源 的单位电压变化引起的等效输入失调电压 的变化叫电源电压抑制比,用符号SVR表 示。 测试电路如图2-16所示。
第一节 集成信号运算放大电路概论

AD620
第二节 典型放大电路设计
(四)加减运算电路

1、加法运算电路
第二节 典型放大电路设计
2、减法运算电路 (1)利用加法运算电路实现减法运算

第二节 典型放大电路设计
(2)用单一运算放大器实现减法运算
第二节 典型放大电路设计
(3)加减混合运算
1 1 U o Ui1 Ui 2 Ui 5 Ui1 Ui2 Ui5 5 5
第二节 典型放大电路设计
Rf
(一)反相比例放大器 (1)Af= uo / ui = –Rf / Rr (2)Rin=Rr (3)Rp= Rr // Rf (4)最佳
ui
Rr -
∞ +
uo
Rf
Ri Ro (1 A f ) 2
Rp
+ N1
其中Rin、R o为运放本身输入输出电阻
第二节 典型放大电路设计
第一节 集成信号运算放大电路概论
图 2-21
第一节 集成信号运算放大电路概论
4、集成运算放大器的主要参数及测试方法 最大输入共模电压Vicm:放大器的正常工作 状态不被破环而在输入端所能承受的最大 共模电压叫最大输入共模电压。 测试电路如图2-22所示。
第一节 集成信号运算放大电路概论
图 2-22
-
uo
uic ud/2
+ N1
R2 R4
+ N1
+
uo
基本电路
共模与差模输入
第二节 典型放大电路设计
ud= ui1﹣ui2 , uic=(ui1+ ui2)/2 由等效电路可得
uo=R4(1+R3/R1)/(R4+R2)ui2﹣(R3/R1)ui1 ui1 ui2 R4
R1
R2
0
R3
uo
若R1=R2,R3=R4,则uo=﹣(R3/R1) ud 即只对差模信号进行放大 假设放大器只有共模信号作用时
第一节 集成信号运算放大电路概论
④低的输入失调电压和输入失调电流以及低的漂移; ⑤足够的带宽和转换速率; ⑥高共模输入范围和高共模抑制比; ⑦可调的闭环增益; ⑧线性好、精度高; ⑨成本低。
第一节 集成信号运算放大电路概论
3、测量放大电路的类型
差动直接耦合式 调制式 自动稳定式

第一节 集成信号运算放大电路概论
第一节 集成信号运算放大电路概论

2-10
第一节 集成信号运算放大电路概论
开环电压增益Ao:运算放大器在开环时,输出电压 增量与输入差模电压增量之比叫开环电压增益。
测试方法:给被测放大器(AUT)加上规定的供电电源及 负载电阻RL,在辅助放大器的输入端加额定频率的交流 信号电压Vi,在A1的输出端测量输出信号电压Vo,则开 环电压增益A0有下式求得 :
高共模抑制比放大电路
(一)双运放高共模抑制比放大电路
1、反相串联结构型 uo=(R2/R1)(R6/R4)ui1-(R6/R5)ui2 当R2/R1=R4/R5,ui1=ui2时, uo=0 ui1 R1 通常取R1=R5,R2=R4
ui2
R2 ∞ + R4 R5
R6 ∞ uo
+ N1
+ +(三)差动放大器 什么是差动放大器? 差动放大器是把二个输入信号分别输入到运算放 大器的同相和反相二个输入端,然后在输出端取 出二个信号的差模成分,而尽量抑制二个信号的 共模成分。
第二节 典型放大电路设计
R3 ud/2 R1 ∞
R3 ui1 R1 R2 ui2 R4 ∞ + -
4、集成运算放大器的主要参数及测试方法
运算放大器是一种高增益的直接耦合放大器 理想的运放的输入和输出满足(2-1)的关系: Vo=Ao(Vp-Vn) ---- (2-1)
第一节 集成信号运算放大电路概论
4、集成运算放大器的主要参数及测试方法
输入失调电压VOS:在运算放大器的输入端外加一直流补偿电压,使放大器的输 出端为零电位,则所加的补偿电压值即等于输入失调电压。 测试方法:首先,接入被测放大器(AUT),再测量其输出端的直流电压Vo, 则Vos可有下式求得:
CMRR V V
C
Rf 1 R1 o
测试电路如图2-12所示。
第一节 集成信号运算放大电路概论
图 2-12
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法 最大输出幅度Vom:在规定的电源电压和负 载电阻下,运算放大器能够输出的最大峰峰电压值加最大输出幅度。 测试电路如图2-13所示。
图 2-16
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法 差模输入电阻Ri:运算放大器在开环时,二 输入端之间的差模电压变化量与由它引起 的输入电流变化量之比叫差模输入电阻。 测试电路如图2-17所示。
第一节 集成信号运算放大电路概论
图2-17
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法
测试电路如图2-19所示。
第一节 集成信号运算放大电路概论
图2-19
第一节 集成信号运算放大电路概论 4、集成运算放大器的主要参数及测试方法 建立时间Ts:当运算放大器接成1:1的合反 馈组态,且加入大信号阶跃电压时,输 出电压达到其与终值相比误差小于规定 值δ时所需的时间叫建立时间。 测试电路如图2-21所示。
相关文档
最新文档