8.1两点间的距离公式及中点公式(教学设计)电子教案
两点间的距离与线段中点坐标教案

【课题】8.1两点间的距离与线段中点坐标【学习目标】1、掌握平面内两点间的距离公式和中点公式2、能熟练应用平面内两点间距离公式和中点公式进行运算【学习重点】平面内两点的距离公式和中点公式的应用【学习难点】平面内两点的距离公式和中点公式的应用【课时安排】 2 课时【课堂过程】课前准备(预习46页一一48页,找出疑惑的地方)复习(如图)在数轴上有两点x i =巧公2=7,贝卩=新知1:两点间的距离公式平面直角坐标系中,已知两点P i(x i,yj , P2(X2,y2),两点距离公式为P1P2I =1(X2 —X i)2 +M -y i)2说明(1)如果P1和P2两点在X轴上或在平行于X轴的直线上,两点距离是x2 -x1⑵如果P i和P2两点在y轴上或在平行于y轴的直线上,两点距离是目2一*试一试1:求平面上两点A(6,2) , B(5,3)间的距离|AB =试一试2:求下列两点间的距离:(1) A(—2,0), B(2,0) ⑵A(0,3), B (0,-7)(3) A(—2,3), B(2,4) ⑷ A( —5,9), B (8,6)试一试3:已知A(a ,3),点B在y轴上,点B的纵坐标为10, AB =12= 12,求a的值新知2:线段的中点公式点RXy),P2(X2°2)之间所连线段的中点P坐标为% y2说明公式对于P i和P2两点在平面内任意位置都是成立的试一试3:求下列两点的中点坐标(1)A(-2,3), B(2,13 ) ⑵ A(-15,9), B(18 ,6)(二)典型例题: 已知三角形的顶点是,A (1,0), B (-2,1), C (0,3),求此三角形两条中线CE和AD的长度(解题过程在书4 8页)【自我检测】1、平面直角坐标系中,已知两点,P1(X1,yJ , p2(X2,y2)两点距离公式为2、点P1(X1,y1), p2(X2,y2)之间所连线段的中点P坐标为巩固练习:1、已知下列两点,求AB及两点的中点坐标(1) A (8, 6), B (2, 1) (2) A (-2 , 4) B (-2 , -2 )3、已知A(-4 , 4) , B(8, 10)两点,求两点间的距离AB4、已知下列两点,求中点坐标:(1) A (5, 10), B (-3 , 0) (2) A (-3 , -1 ), B (5, 7)5、已知点A (-1 , -1 ), B (b, 5),且 | AB =10,求b 的值6、已知A在y轴上,B (4, -6 ),且两点间的距离|AB =5,求点A 的坐标7、已知A (a, -5 ),点B在y轴上,点B的纵坐标为10, AB=17 求a。
§8.1两点间距离公式及中点公式

通过求向量的模得到向量两个端点间的距离,从而推导出平面上两点间的距离公式。
(一)平面上两点间的距离公式
设点P1(x1,y1),P2(x2,y2),则
就是平面上任意两点P1,P2间的距离公式这,简称为两点间距离公式.
解:设M点的坐标为(X,Y)
则根据中点坐标公式有:
即X=5,Y=6
所以M点的坐标为(5,6)
本节课主要学习了:
1)直角坐标系中两点间的距离公式.
2)直角坐标系中两点的中点公式.
1)书上68页习题1、2、3、4、5写在作业本上。
2)预习8.2直线的倾斜角和斜率。
(例题精讲)
四、课堂小结:
五、作业布置:
复习提问:(1)向量 的模是多少?
(2)
引入:如图所示.大海中有两个小岛,一个在灯塔东60 n mile偏北80 n mile的P1点处,另一个在灯塔西10 n mile偏北55 n mile的P2点处.
那么如何确定这两岛之间的距离呢?
组织学习讨论,并给往向量长度(模)上引导。
教学重点
两点间距离公式及其应用;中点公式及其应用.
教学难点
两点间距离公式的灵活应用
更新、补充、删节内容
课外作业
教学反思
授课主要内容或板书设计
8.1两点间距离公式及其中点公式
一、平面上两点间距离公式
二、中点坐标公式
课堂教学安排
教学过程
主要教学内容及步骤
一、温故知新、情境导授新课)
授课章节
名称
8.1两点间距离公式及中点公式
授课课时
2
授课形式
数形结合
§8-1两点间距离公式及中点公式(1)

章节
§8-1 两点间距离公式
___月___日第___周星期___ 课型
新授
教时
1
1. 知识目标:掌握两点间的距离公式; 2. 能力目标:能借助“数形结合”的方法,培养学生解决问题的能
教学目的
力并提高其计算能力; 3. 情感目标:通过学生自主的探索活动,获得新知识,让学生感受 到成功的喜悦,从中培养他们的创新意识。
教学重点
两点间距离公式
教学难点
两点间距离公式的实际运,了解学生预习情况
授课主要内容及板书设计
§8.1 两点间距离公式 1.两点间距离公式 | PP |= ( x2 x1 )2 ( y2 y1 )2 1 2 例 练习
教学札记
1
教学过程与内容
教法、学法
一、导入 过两个已知点 A,B 能唯一确定一条直线, 我们可以画出这条 直线 l,但却不会用某种数学形式来刻划出直线 l 的特性; 平面解析几何能把平面几何图形数字化, 即能用数字来描述 几何图形和它的特性; 本章将对最基本的几何图形——直线和圆 作出探求 研究直线前我们要先做些准备工作, 本节课我们来探讨如何 求两点间的距离。 二、新授 探究 P64 实际问题转化为数学问题,利用已知向量知识推导出两点 间距离公式。 1. 两点间的距离公式 已知平面内两点 P1 (x1,y1), P2 (x2,y2),则 | PP |= ( x2 x1 )2 ( y2 y1 )2 . 1 2 典型例题 例 1 P64 解题思路:直接运用两点间距离公式。 例 2 P64 解题思路:直接运用两点间距离公式。 注:本题可以画图,开始就帮助学生养成数形结合的思考习惯。 问题解决 P65 学生思考、解答 练习:P65 三、小结 两点间的距离公式 四、布置作业 熟记公式,预习
(完整word版)8.1两点间的距离公式及中点公式(教学设计)

【课题】8.1 两点间的距离公式及中点公式【教材说明】本人所用教材为江苏教育出版社,凤凰职教《数学·第二册》。
平面解析是用代数方法研究平面几何问题的学科,第八章《直线与圆的方程》属于平面解析几何学的基础知识.它侧重于数形结合的方法和形象思维的特征,综合了平面几何、代数、三角等知识.【学情分析】学生是一年级数控中专班,上课不能长时间集中注意力,计算能力不强,对抽象的知识理解能力不强,但是对直观的事物能够理解,对新事物也有较强的接受能力。
【教学目标】知识目标:1. 了解平面直角坐标系中的距离公式和中点公式的推导过程.2。
掌握两点间的距离公式与中点坐标公式.能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.情感目标:通过观察、对比体会数学的对称美和谐美,培养学生的思考能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度.【教学重点】两点间的距离公式与线段中点的坐标公式的运用.【教学难点】两点间的距离公式的理解.【教学备品】三角板.【教学方法】讨论合作法【课时安排】2课时.(90分钟)【教学设计】针对学生的情况,本人在教学中的引入尽量安排多个实例,多讲具体的东西,少说抽象的东西,以激发学生的学习兴趣。
在例题和练习的安排上多画图,努力贯彻数形结合的思想,让学生逐步接受和养成画图的习惯,用图形来解决问题。
这也恰恰和学生本身的专业比较符合,学生学过机械制图,数控需要编程,编程又需要对一些曲线方程有充分的了解.同时在教学中经常用分组讨论法,探究发现法,逐步培养学生的协作能力和独立思考的能力。
两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.大海中有两个小岛,PP的模离能不能用12教师在学生探究的投影距离公式,(教学设计)开始时的复习引入学生反应不是很好,前面的向量知识学生掌握不熟练,后面的公式推导不是很顺畅.所以在前面向量部分讲到这个知识点一定要强调,注重前后章节的联系。
两点间距离公式与线段中点的坐标上课讲义

两点间距离公式与线段中点的坐标【课题】8.1 两点间的距离与线段中点的坐标【教学目标】知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.【教学重点】两点间的距离公式与线段中点的坐标公式的运用【教学难点】两点间的距离公式的理解【教学设计】两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.例1是巩固性练习题.题目中,两个点的坐标既有正数,又有负数.讲授时,要强调两点间的距离公式的特点特别是坐标为负数的情况.例2是中点公式的知识巩固题目.通过连续使用公式(8.2),强化学生对公式的理解与运用.例3是本节两个公式的综合性题目,是知识的简单综合应用.要突出“解析法”,进行数学思维培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间 *揭示课题8.1 两点间的距离与线段中点的坐标*创设情境 兴趣导入【知识回顾】平面直角坐标系中,设111(,)P x y ,222(,)P x y ,则122121(,)=--PP x x y y .介绍质疑引导 分析了解思考启发 学生思考0 15*动脑思考 探索新知 【新知识】我们将向量12PP 的模,叫做点1P 、2P 之间的距离,记作12PP ,则 22121212122121||()()===-+-PP PP PP PP x x y y (8.1) 总结 归纳思考 记忆 带领 学生 分析25 *巩固知识 典型例题例1 求A (−3,1)、B (2,−5)两点间的距离. 解 A 、B 两点间的距离为 []22||(32)1(5)61AB =--+--=说明 强调引领讲解 说明 观察思考主动求解通过例题进一步领会第1题图01⎨-=⎩y y +x过 程行为 行为 意图 间一般地,设111(,)P x y 、222(,)P x y 为平面内任意两点,则线段1P 2P 中点000(,)P x y 的坐标为121200,.22x x y y x y ++== (8.2) *巩固知识 典型例题例2 已知点S (0,2)、点T (−6,−1),现将线段ST四等分,试求出各分点的坐标.分析 如图8-2所示,首先求出线段ST 的中点Q 的坐标,然后再求SQ 的中点P 及QT 的中点R 的坐标.解 设线段ST 的中点Q 的坐标为(,)Q Q x y ,则由点S (0,2)、点T (−6,−1)得0(6)32Q x +-==-,2(1)122Q y +-==.即线段ST 的中点为Q 13,2-(). 同理,求出线段SQ 的中点P 35,24-(),线段QT 的中点91,24R --(). 故所求的分点分别为P 35,24-()、Q 13,2-()、91,24R --(). 例3 已知ABC ∆的三个顶点为(1,0)A 、(2,1)B -、(0,3)C ,试求BC 边上的中线AD 的长度.解 设BC 的中点D 的坐标为(,)D D x y ,则由(2,1)B -、(0,3)C 得 (2)012D x -+==-,1322D y +==,故 22||(11)(20)22,AD =--+-= 即BC 边上的中线AD 的长度为22.说明 强调引领讲解 说明引领分析观察思考主动 求解观察通过例题进一步领会 注意观察学生是否理解 知识 点图8-2【教师教学后记】。
8.1 两点间距离公式及中点公式

课 堂 教 学 安 排【教学过程】第一课时:两点间距离公式(一) 问题情境问题:设A ,B 为平面上两点,A ,B 两点间的距离?1、 若A ,B 都在x 轴(数轴)上,且坐标为A (x 1,0), B (x 2,0),初中我们已经学过,数轴上A ,B 两点的距离为|AB |=|x 2-x 1|.同理,若A ,B 都在y 轴上坐标为A (0,y 1), B (0,y 2),则A ,B 间的距离|AB |=|y 2-y 1|.2、若A ,B 至少有一点不在坐标轴上,设A , B 的坐标为A (x 1,y 1), B (x 2,y 2).法1:|AC |=|y 2-y 1|,|BC |=|x 2-x 1|,由勾股定理|AB |=22BC AC +=221221)()(y y x x -+-.法2:(二)新知探究平面内两点间的距离公式:已知平面内两点A (x 1,y 1), B (x 2,y 2),则 |AB |=221221)()(y y x x -+-. (公式1)(三)例题评析分析: x 1=1, y 1=-2;x 2=3, y 2=5,应用公式1,|AB |=)()(21221y y x x -+-例2、已知△ABC 的顶点分别为 A (2,6)B (-4,3)C (1,0),求△ABC 三条边的长。
分析:根据两点间距离公式,课内练习1:P652121(,),(AB x x y y ABx =--=-则1(1,2)(3,5)AB .A B -例、已知点,,求线段的长度第二课时:中点坐标公式(一)问题情境问题:设P 1(x 1,y 1),P 2(x 2,y 2)为平面直角坐标系内的任意两点,P(x,y)为线段P 1P 2的 中点坐标,则点P(x,y)?分析:(二)新知探究中点坐标公式:已知平面内两点A (x 1,y 1), B (x 2,y 2),P (x,y )为线段AB 的中点 则2,22121y y y x x x +=+= (三)例题评析例3、例4、 已知线段MN ,它的中点坐标是(3,2),端点N 的坐标是(1,-2),求另一个端点M 的坐标。
中职数学教案:两点间距离公式及中点公式

江苏省XY中等专业学校2021-2022-2教案编号:教学内容2. 数轴上的距离公式探究一如图,填空:(1)图中点A的坐标是,B的坐标是,C的坐标是,点D的坐标是;(2)点A与B之间的距离= ,点C与A 之间的距离= ,点B与C之间的距离= ;(3)你能找出数轴上两点间距离与两个点坐标之间的关系吗?一般的,设点(,)、(,)为直角坐标系平面上的任意两点,则=(,), =(,),以为始点,为终点,作向量,则由,得(),那么、两点间的距离就是向量的模。
由向量内积的性质,有:=()()222121x x y y-+-这就是平面上任意两点、间的距离公式,简称两点间距离公式。
x0 1 2 3 4-1-2-3-4●●C A D●●B教学内容三例题讲解例1已知点M(8,10),N(12,22),求线段MN 的长度。
解:根据两点间距离公式,得:|MN|=()()221282210=410-+-例2 已知 ABC的顶点A(2,6)、B(-4,3)C(1,0),求 ABC三边长。
解:根据两点间距离公式,可得 ABC三条边的长度为:四练习巩固P65 练习T11.填空(1)原点O(0,0)到点P(2,-2)的距离是_______。
(2)已知两点A(1,3)和B(2,0),则线段AB的长度是______。
(3)已知两点(-6,-2)、(-4,5),则、间的距离是_______。
(4)已知点M(0,8)和N(2.-1),则线段MN的长度是_______。
问题解决:P65。
8.1两点间距离公式与线段中点的坐标-推荐下载

*巩固知识 典型例题
例 1 求 A(−3,1)、B(2,−5)两点间的距离.
解 A、B 两点间的距离为
| AB | (3 2)2 1 (5)2 61
*运用知识 强化练习 1.请根据图形,写出 M、N、P、Q、R 各点的坐标.
2.在平面直角坐标系内,描出下列各点:
B(3, 4) 、 C(5, 7) .并计算每两点之间的距离.
.
3 第 8 章 直线和圆的方程(教案) 侯 瑞 民
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】8.1 两点间的距离公式及中点公式
【教材说明】
本人所用教材为江苏教育出版社,凤凰职教《数学·第二册》。
平面解析是用代数方法研究平面几何问题的学科,第八章《直线与圆的方程》属于平面解析几何学的基础知识。
它侧重于数形结合的方法和形象思维的特征,综合了平面几何、代数、三角等知识。
【学情分析】
学生是一年级数控中专班,上课不能长时间集中注意力,计算能力不强,对抽象的知识理解能力不强,但是对直观的事物能够理解,对新事物也有较强的接受能力。
【教学目标】
知识目标:
1. 了解平面直角坐标系中的距离公式和中点公式的推导过程.
2. 掌握两点间的距离公式与中点坐标公式.
能力目标:
用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.
情感目标:
通过观察、对比体会数学的对称美和谐美,培养学生的思考能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度.
【教学重点】
两点间的距离公式与线段中点的坐标公式的运用.
【教学难点】
两点间的距离公式的理解.
【教学备品】
三角板.
【教学方法】
讨论合作法
【课时安排】
2课时.(90分钟)
【教学设计】
针对学生的情况,本人在教学中的引入尽量安排多个实例,多讲具体的东西,少说抽象的东西,以激发学生的学习兴趣。
在例题和练习的安排上多画图,努力贯彻数形结合的思想,让学生逐步接受和养成画图的习惯,用图形来解决问题。
这也恰恰和学生本身的专业比较符合,学生学过机械制图,数控需要编程,编程又需要对一些曲线方程有充分的了解。
同时在教学中经常用分组讨论法,探究发现法,逐步培养学生的协作能力和独立思考的能力。
两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式
给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.
122(=PP x 1.两点间距离公式探究一大海中有两个小岛,在灯塔东60P 12PP 的模,叫做点212)y y -
的位置。
12PP 如何表示,
是多少?
两个小岛的距离能
12PP 的模表示。
教师在学生探究的基础上,投影距离公式,并让学生记忆. 教师引导学生探究依
开始时的复习引入学生反应不是很好,前面的向量知识学生掌握不熟练,后面的公式推导不是很顺畅。
所以在前面向量部分讲到这个知识点一定要强调,注重前后章节的联系。
教学中能够画图的,尽量画图,不断灌输数形结合的思想,让学生养成画图解决问题的习惯。