江苏省高考数学 真题分类汇编 平面向量
高考数学真题汇编---平面向量(有解析)

高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。
江苏省各地市高考数学联考试题分类大汇编(7)平面向量

江苏省各地市高考数学最新联考试题分类大汇编第 7 部分: 平面向量一、填空题:13.(3 月苏、锡、常、镇四市高三数学教学情况调查一 ) 如图,在正方形ABCD 中, E 为 AB 的中点, P为以 A 为圆心、 AB 为半径的圆弧上的任意一点,设向量ACDEAP ,则的最小值为;13. 1【解析】 分别沿 AB, AD 方向分别建立x, y 轴,设正方体棱长为 2,设 P 2cos ,2sin,再由2ACDEAP得3sin 3 1求导数可得sin2cos'3si 'n 363s i 1 n30 于是当 0sin1sin2cos 2时,取最小值.2cos26 . ( 江苏省苏州市 1 月高三调研) 设 E,F 分别是Rt ABCBC上的两个三等 分点,已知的斜边AB 3, AC6,则 AEAF▲ .A6.10 【解析】 AE AFAB BE AC CFAB 1BCAC1BC33AB AC1 21 BCAC ABBEFCBC392 22 62 3210.BC396. ( 江苏省南京市高三第一次模拟考试) 已知平面向量 a, b 满足 | a | 1,|b |2 , a 与 b 的夹角为,以 a,b3为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为.6.3【解析 】如图所示:BD 21 42 1 2 cos3 ,所以 BD3313. (江苏省南京市高三第一次模拟考试) 在△ABC中,已知BC=2, AB AC 1 ,则△ABC面积的最大值是.13.26.( 江苏省徐州市高三第一次调研考试) 设 a ,b ,c 是单位向量,且 a b c ,则向量 a,b 的夹角等于▲.【解析】由已知得 c a22a b | b |2,则 a b16.b ,所以 |c |2(a b) | a |2,故夹角为 32 311. ( 江苏省苏北四市高三第一次调研)在△ABC中 , 点 M 满足MAM BMC 0 ,若ABAC mAM0 ,则实数 m 的值为▲ .11.【解析】由 MA MB MC 0知:点M 是三角形 ABC 的重心,设点 D 为 BC 的中点,ABAC2 AD 3AM ,又 ABAC mAM0 ,所以 m 3 .14. ( 江苏省泰州市高三年级第一次模拟) 已知 O 是锐角ABC 的外接圆的圆心,且A ,若cosB ABcosCAC 2mAO , 则 m。
2024年高考数学真题分类汇编03:复数和平面向量

复数和平面向量一、单选题1.(2024·全国)若1i 1zz =+-,则z =()A .1i--B .1i-+C .1i-D .1i+2.(2024·全国)已知向量(0,1),(2,)a b x ==,若(4)b b a ^-,则x =()A .2-B .1-C .1D .23.(2024·全国)已知1i z =--,则z =()A .0B .1C D .24.(2024·全国)已知向量,a b 满足1,22a a b =+=,且()2b a b -^,则b =()A .12B C D .15.(2024·全国)设z =,则z z ×=()A .-iB .1C .-1D .26.(2024·全国)设5i z =+,则()i z z +=()A .10iB .2iC .10D .2-7.(2024·全国)已知向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ^”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ^”的充分条件D .“1x =-”是“//a b ”的充分条件8.(2024·北京)已知i 1iz=-,则z =().A .1i-B .i-C .1i--D .19.(2024·北京)已知向量a ,b ,则“()()·0a b a b +-=”是“a b =或a b =-”的()条件.A .必要而不充分条件B .充分而不必要条件C .充分且必要条件D .既不充分也不必要条件二、填空题10.(2024·天津)已知i 是虚数单位,复数))i 2i ×=.11.(2024·天津)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r l m ,则l m +=;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×的最小值为.12.(2024·上海)已知()(),2,5,6,k a b k Î==R ,且//a b ,则k 的值为.13.(2024·上海)已知虚数z ,其实部为1,且()2z m m z+=ÎR ,则实数m 为.参考答案:1.C【分析】由复数四则运算法则直接运算即可求解.【解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.2.D【分析】根据向量垂直的坐标运算可求x 的值.【解析】因为()4b b a ^-,所以()40b b a ×-=,所以240b a b -×=即2440x x +-=,故2x =,故选:D.3.C【分析】由复数模的计算公式直接计算即可.【解析】若1i z =--,则z ==故选:C.4.B【分析】由()2b a b -^得22b a b =×,结合1,22a a b =+=,得22144164a b b b +×+=+=,由此即可得解.【解析】因为()2b a b -^,所以()20b a b -×=,即22b a b =×,又因为1,22a a b =+=,所以22144164a b b b +×+=+=,从而22=b .故选:B.5.D【分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【解析】依题意得,z =,故22i 2zz =-=.故选:D 6.A【分析】结合共轭复数与复数的基本运算直接求解.【解析】由5i 5i,10z z z z =+Þ=-+=,则()i 10i z z +=.故选:A 7.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【解析】对A ,当a b ^时,则0a b ×=,所以(1)20x x x ×++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b ==,故0a b ×=,所以a b ^,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =±B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误.故选:C.8.C【分析】直接根据复数乘法即可得到答案.【解析】由题意得()i i 11i z =-=--,故选:C.9.A【分析】根据向量数量积分析可知()()0a b a b +×-=等价于a b =,结合充分、必要条件分析判断.【解析】因为()()220a b a b a b +×-=-=,可得22a b =,即a b =,可知()()0a b a b +×-=等价于a b =,若a b =或a b =-,可得a b =,即()()0a b a b +×-=,可知必要性成立;若()()0a b a b +×-=,即a b =,无法得出a b =或a b =-,例如()()1,0,0,1a b ==,满足a b =,但a b ¹且a b ¹-,可知充分性不成立;综上所述,“()()0a b a b +×-=”是“a b ¹且a b ¹-”的必要不充分条件.故选:A.10.7【分析】借助复数的乘法运算法则计算即可得.【解析】))i 2i 527×=-+=.故答案为:7.11.43518-【分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE ,即可得l m +,设BF BEk =uu u r uur,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ×的最小值;解法二:建系标点,根据向量的坐标运算求BE ,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ×的最小值.【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Î,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èø,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèø,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëû22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èø,因为(),BE BA BC l m l m =+=-,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èø,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèø,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×取到最小值为518-;故答案为:43;518-.12.15【分析】根据向量平行的坐标表示得到方程,解出即可.【解析】//a b ,256k \=´,解得15k =.故答案为:15.13.2【分析】设1i z b =+,直接根据复数的除法运算,再根据复数分类即可得到答案.【解析】设1i z b =+,b ÎR 且0b ¹.则23222231i i 1i 11b b b z b m z b b b æöæö+-+=++=+=ç÷ç÷+++èøèø,mÎR,2232310 1bmbb bbì+=ïï+\í-ï=ï+î,解得2m=,故答案为:2.。
专题12 平面向量-2019年高考数学母题题源系列(江苏专版)(原卷版)

专题12 平面向量【母题来源一】【2019年江苏】如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是___________.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭, 得2213,22AB AC =即3,AB AC =故ABAC=【名师点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.【母题来源二】【2018年江苏】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为___________. 【答案】3【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D . 所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭, 由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a = 则点A 的横坐标为3.【名师点睛】以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.【母题来源三】【2017年江苏】如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,OA与OC 的夹角为α,且ta n α=7,OB 与OC 的夹角为45°.若O C m O A n O B=+(,)m n ∈R ,则m n +=___________.【答案】3【解析】由tan 7α=可得sin α=,cos α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩即2100n m +=⎪=,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==, 所以3m n +=.【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法. (3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.【命题意图】高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用. 【命题规律】1.平面向量的数量积一直是高考的一个热点,主要考查平面向量的数量积的运算、向量的几何意义、模与夹角、两向量的垂直等问题.一般在填空题中进行考查.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,一般以填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换. 【方法总结】(一)平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来. (2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.(二)用平面向量基本定理解决问题的一般思路:(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(三)平面向量数量积的类型及求法:(1)平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b 1212x x y y +.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. (3)两个应用:①求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.②确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. (四)平面向量的模及其应用的类型与解题策略:(1)求向量的模.解决此类问题应注意模的计算公式||==a ,或坐标公式||=a 的应用,另外也可以运用向量数量积的运算公式列方程求解. (2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围. (3)由向量的模求夹角.对于此类问题的求解,其实质是求向量模方法的逆运用. (五)向量与平面几何综合问题的解法:(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.1.【江苏省南通市通州区、海门市2019届高三第二次质量调研数学试题】在平面四边形 中,若 为 的中点, 则____________.2.【江苏省2019届高三第二学期联合调研测试数学试题】已知点P 是ABC △内一点,满足AP AB λ=+AC μ,且231λμ+=,延长AP 交边BC 于点D ,2BD DC =,则λμ+=____________.3.【江苏省如皋中学2019届高三第一学期期中数学模拟试题】已知向量()sin ,2θ=-a ,()1,cos θ=b ,且⊥a b ,则2sin 2cos θθ+的值为____________.4.【江苏省扬州市2019届高三第一学期期末检测数学】已知直线l :4y x =-+与圆C :22(2)(1)1x y -+-=相交于P ,Q 两点,则CP CQ ⋅=____________.5.【江苏省徐州市2019届高三考前模拟检测数学试题】已知1e ,2e 是夹角为122=+a e e ,12k =-b e e ,若0⋅=a b ,则实数k 的值为____________.6.【江苏省扬州中学2019届高三4月考试数学试题】已知ABC △外接圆O 的半径为2,且2A B A CA O +=,||||AB AO =,则CA CB ⋅=____________.7.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研考试数学试题】如图,正六边形 中,若 ( , ),则 的值为____________.8.【江苏省南京市六校联合体2019届高三12月联考数学试题】ABC △中,为边 的中点,,则 的值为____________.9.【江苏省南通市基地学校2019届高三3月联考数学试题】如图,在平面直角坐标系xOy 中,点A 在以原点O 为圆心的圆上.已知圆O 与y 轴正半轴的交点为P ,延长AP 至点B ,使得90AOB ∠=︒,则BP OA ⋅=____________.10.【江苏省南通市2019届高三模拟练习卷(四模)数学试题】在平面直角坐标系xOy 中,已知()11,A x y ,()22,B x y 为圆221x y +=上两点,且121212x x y y +=-.若C 为圆上的任意一点,则CA CB ⋅的最大值为____________.11.【江苏省南通市2019届高三模拟练习卷(四模)数学试题】如图,在平面四边形ABCD 中,CBA ∠=90CAD ∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若AC AD AE λμ=+(,λμ∈R ),则λμ的值为____________.12.【江苏省苏州市2019届高三高考模拟最后一卷数学试题】如图,已知P是半径为2圆弧AB上一点,2⋅的最小值为____________.=,则PC PAB CA B13.【江苏省南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟考试数学试题】已知菱形ABCD中,对角线AC BD=1,P是AD边上的动点(包括端点),则PB PC⋅的取值范围为____________.14.【江苏省清江中学2019届高三第二次教学质量调研数学试题】在平面直角坐标系xOy中,已知点为圆上的两动点,且,若圆上存在点使得则正数的取值范围为____________.。
专题09 平面向量(解析版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题09平面向量考点三年考情(2022-2024)命题趋势考点1:平面向量线性运算2022年新高考全国I 卷数学真题平面向量数量积的运算、化简、证明及数量积的应用问题,如证明垂直、距离等是每年必考的内容,单独命题时,一般以选择、填空形式出现.交汇命题时,向量一般与解析几何、三角函数、平面几何等相结合考查,而此时向量作为工具出现.向量的应用是跨学科知识的一个交汇点,务必引起重视.预测命题时考查平面向量数量积的几何意义及坐标运算,同时与三角函数及解析几何相结合的解答题也是热点.考点2:数量积运算2022年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题2022年高考全国乙卷数学(理)真题2024年北京高考数学真题考点3:求模问题2023年新课标全国Ⅱ卷数学真题2024年新课标全国Ⅱ卷数学真题2023年北京高考数学真题2022年高考全国乙卷数学(文)真题考点4:求夹角问题2023年高考全国甲卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国II 卷数学真题考点5:平行垂直问题2024年上海夏季高考数学真题2024年新课标全国Ⅰ卷数学真题2022年高考全国甲卷数学(文)真题2023年新课标全国Ⅰ卷数学真题2024年高考全国甲卷数学(理)真题考点6:平面向量取值与范围问题2024年天津高考数学真题2023年高考全国乙卷数学(理)真题2022年新高考北京数学高考真题2022年新高考天津数学高考真题2022年新高考浙江数学高考真题2023年天津高考数学真题考点1:平面向量线性运算1.(2022年新高考全国I 卷数学真题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n- B .23m n-+C .32m n+ D .23m n+ 【答案】B【解析】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .考点2:数量积运算2.(2022年高考全国甲卷数学(理)真题)设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= .【答案】11【解析】设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= ,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= .故答案为:11.3.(2023年高考全国乙卷数学(文)真题)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A 5B .3C .25D .5【答案】B【解析】方法一:以{},AB AD为基底向量,可知2,0AB AD AB AD ==⋅=uu u r uuu r uu u r uuu r ,则11,22EC EB BC AB AD ED EA AD AB AD =+=+=+=-+uu u r uu r uu u r uu u r uuu r uu u r uu r uuu r uuu r uuu r ,所以22111143224EC ED AB AD AD AB AD ⎛⎫⎛⎫⋅=+⋅-+=-+=-+= ⎪ ⎪⎝⎭⎝⎭uu u r uu u r uu u r uuu r uu u r uuu r uu ur uuu r ;方法二:如图,以A 为坐标原点建立平面直角坐标系,则()()()1,0,2,2,0,2E C D ,可得()()1,2,1,2EC ED ==-uu u r uu u r,所以143EC ED ⋅=-+=uu u r uu u r;方法三:由题意可得:5,2ED EC CD ===,在CDE 中,由余弦定理可得2223cos 25255DE CE DC DEC DE CE +-∠==⋅⨯⨯,所以3cos 5535EC ED EC ED DEC ⋅=∠==uu u r uu u r uu u r uu u r .故选:B.4.(2022年高考全国乙卷数学(理)真题)已知向量,a b 满足||1,||3,|2|3a b a b ==-= ,则a b ⋅=()A .2-B .1-C .1D .2【答案】C【解析】∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,∴1a b ⋅= 故选:C.5.(2024年北京高考数学真题)设a ,b 是向量,则“()()·0a b a b +-=”是“a b =- 或a b = ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = ,若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:B.考点3:求模问题6.(2023年新课标全国Ⅱ卷数学真题)已知向量a ,b满足3a b -= ,2a b a b +=- ,则b = .3【解析】法一:因为2a b a b +=- ,即()()222a ba b +=-,则2222244a a b b a a b b +⋅+=-⋅+r r r r r r r r ,整理得220a a b -⋅= ,又因为3a b -= ()23a b -= ,则22223a a b b b -⋅+==r r r r r ,所以3b = 法二:设c a b =-r rr ,则3,2,22c a b c b a b c b =+=+-=+r r r r r r r r r ,由题意可得:()()2222c b c b +=+r r r r ,则22224444c c b b c c b b +⋅+=+⋅+r r r r r r r r ,整理得:22c b =r r ,即3b c ==r r 37.(2024年新课标全国Ⅱ卷数学真题)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A .12B .22C .32D .1【答案】B【解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.8.(2023年北京高考数学真题)已知向量a b,满足(2,3),(2,1)a b a b +=-=- ,则22||||a b -= ()A .2-B .1-C .0D .1【答案】B【解析】向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B9.(2022年高考全国乙卷数学(文)真题)已知向量(2,1)(2,4)a b ==-,,则a b -r r ()A .2B .3C .4D .5【答案】D【解析】因为()()()2,12,44,3a b -=--=- ,所以()22435-=+-a b .故选:D考点4:求夹角问题10.(2023年高考全国甲卷数学(文)真题)已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A .117B .1717C 55D 255【答案】B【解析】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则225334,112a b a b +=+-=+= ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,342a b a b a b a b a b a b+⋅-+-==⨯+-.故选:B.11.(2023年高考全国甲卷数学(理)真题)已知向量,,a b c 满足1,2a b c === 0a b c ++=,则cos ,a c b c 〈--〉=()A .45-B .25-C .25D .45【答案】D【解析】因为0a b c ++=,所以a b c +=-r r r ,即2222a b a b c ++⋅= ,即1122a b ++⋅=r r ,所以0a b ⋅= .如图,设,,OA a OB b OC c ===,由题知,1,2,OA OB OC OAB === 是等腰直角三角形,AB 边上的高2222OD AD =所以22222CD CO OD =+=,1tan ,cos 310AD ACD ACD CD ∠==∠=,2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈--〉=∠=∠=∠-2421510=⨯-=.故选:D.12.(2022年新高考全国II 卷数学真题)已知向量(3,4),(1,0),t ===+ a b c a b ,若,,<>=<>a cbc ,则t =()A .6-B .5-C .5D .6【答案】C【解析】()3,4c t =+ ,cos ,cos ,a c b c =,即931635t t c c+++= ,解得5t =,故选:C考点5:平行垂直问题13.(2024年上海夏季高考数学真题))已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为.【答案】15【解析】//a b,256k ∴=⨯,解得15k =.故答案为:15.14.(2024年新课标全国Ⅰ卷数学真题)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A .2-B .1-C .1D .2【答案】D【解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.15.(2022年高考全国甲卷数学(文)真题)已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =.【答案】34-/0.75-【解析】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.16.(2023年新课标全国Ⅰ卷数学真题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D【解析】因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= ,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .17.(2024年高考全国甲卷数学(理)真题)设向量()()1,,,2a x x b x =+=,则()A .“3x =-”是“a b ⊥”的必要条件B .“3x =-”是“//a b ”的必要条件C .“0x =”是“a b ⊥”的充分条件D .“13x =-”是“//a b ”的充分条件【答案】C【解析】对A ,当a b ⊥时,则0a b ⋅= ,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅= ,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得13x =,即必要性不成立,故B 错误;对D ,当13x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.考点6:平面向量取值与范围问题18.(2024年天津高考数学真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+=;F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为.【答案】43518-【解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=;由题意可知:1,0BC BA BA BC ==⋅=,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭,可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅ 取到最小值518-;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=;因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭,可得()131,3,,122a AF a a DG a +⎛⎫=+-=--⎪⎝⎭,则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.19.(2023年高考全国乙卷数学(理)真题)已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若2PO =,则PA PD ⋅的最大值为()A .122+B .1222+C .12+D .22+【答案】A【解析】如图所示,1,2OA OP ==,则由题意可知:π4APO ∠=,由勾股定理可得221PA OP OA =-=当点,A D 位于直线PO 异侧时或PB 为直径时,设=,04OPC παα∠≤<,则:PA PD⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭222sin 22ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-122224πα⎛⎫=-- ⎪⎝⎭04πα≤<,则2444πππα-≤-<∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设,04OPC παα∠<<,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+122224πα⎛⎫=++ ⎪⎝⎭,04πα≤<,则32444πππα≤+<∴当242ππα+=时,PA PD ⋅有最大值122.综上可得,PA PD ⋅的最大值为122.故选:A.20.(2022年新高考北京数学高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-【答案】D【解析】依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动,设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=-- ,()cos ,4sin PB θθ=-- ,所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈- ;故选:D21.(2022年新高考天津数学高考真题)在ABC 中,,CA a CB b == ,D 是AC 中点,2CB BE = ,试用,a b表示DE 为,若AB DE ⊥ ,则ACB ∠的最大值为【答案】3122b a - 6π【解析】方法一:31=22DE CE CD b a -=- ,,(3)()0AB CB CA b a AB DE b a b a =-=-⊥⇒-⋅-= ,2234b a a b +=⋅ 222333cos 244a b a b b a ACB a b a b a b⋅+⇒∠==≥= 3a b = 时取等号,而0πACB <∠<,所以(0,]6ACB π∠∈.故答案为:3122b a - ;6π.方法二:如图所示,建立坐标系:(0,0),(1,0),(3,0),(,)E B C A x y ,3(,),(1,)22x y DE AB x y +=--=-- ,23()(1)022x y DE AB x +⊥⇒-+ 22(1)4x y ⇒++=,所以点A 的轨迹是以(1,0)M -为圆心,以2r =为半径的圆,当且仅当CA 与M 相切时,C ∠最大,此时21sin ,426r C C CM π===∠=.故答案为:3122b a - ;6π.22.(2022年新高考浙江数学高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++ 的取值范围是.【答案】[122,16]+【解析】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y轴建立平面直角坐标系,如图所示:则1345726222222(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,82222A ⎛⎫ ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++ ,因为cos 22.5||1OP ≤≤ ,所以221cos 4512x y +≤+≤ ,故222128PA PA PA +++ 的取值范围是[1222,16]+.故答案为:[1222,16]+.23.(2023年天津高考数学真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b == ,用,a b 表示AE = ;若13BF BC = ,则AE AF ⋅ 的最大值为.【答案】1142a b + 1324【解析】空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED AD AE EC AC⎧+=⎪⎨+=⎪⎩ ,两式相加,可得到2AE AD AC =+ ,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC AC AF FB AB ⎧+=⎪⎨+=⎪⎩,得到()22AF FC AF FB AC AB +++=+ ,即32AF a b =+ ,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭ .记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅ 有最大值1324.故答案为:1142a b + ;1324.。
江苏省扬州中学高考数学平面向量多选题与热点解答题组合练及答案

江苏省扬州中学高考数学平面向量多选题与热点解答题组合练及答案一、平面向量多选题1.Rt △ABC 中,∠ABC =90°,AB =BC =1,0PA PB PC PAPBPC++=,以下正确的是( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC【答案】ABCD 【分析】根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵0PA PB PC PAPBPC++=,即0PM PN PG ++=,即0PQ PG +=,∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,∴120CE CB ECA BCD CA CD =⎧⎪∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CDPCA P CD ∠=∠⎧⎪=⎨⎪'∠=∠⎩,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即12BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP ACCP BC==2,即AP =2PC ,故D 正确. 故选:ABCD.【点睛】关键点点睛:根据已知条件及向量的数量关系确定P 为Rt △ABC 的费马点,结合相似三角形及费马点的性质判断各项的正误.2.已知直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,线段AB 是圆()()22:114C x y +++=的一条动弦,G 为弦AB 的中点,23AB =( )A .弦AB 的中点轨迹是圆B .直线12,l l 的交点P 在定圆()()22222x y -+-=上 C .线段PG 长的最大值为421 D .PA PB ⋅的最小值642+ 【答案】ABC 【分析】对于选项A :设()00,G x y ,利用已知条件先求出圆心到弦AB 的距离CG ,利用两点之间的距离公式即可得到结论;对于选项B :联立直线的方程组求解点P 的坐标,代入选项验证即可判断;对于选项C :利用选项A B 结论,得到圆心坐标和半径,利用1112max PG PG r r =++求解即可;对于选项D :利用平面向量的加法法则以及数量积运算得到23PA PB PG ⋅==-,进而把问题转化为求1112min PG PG r r =--问题,即可判断.【详解】对于选项A :设()00,G x y ,23AB =G 为弦AB 的中点, 3GB ∴=,而()()22:114C x y +++=,半径为2,则圆心到弦AB 的距离为1CG ==,又圆心()1,1C --,()()2200111x y ∴+++=,即弦AB 的中点轨迹是圆. 故选项A 正确; 对于选项B :由310310mx y m x my m --+=⎧⎨+--=⎩,得222232113211m m x m m m y m ⎧++=⎪⎪+⎨-+⎪=⎪+⎩, 代入()()2222x y -+-整理得2, 故选项B 正确;对于选项C :由选项A 知:点G 的轨迹方程为:()()22111x y +++=,由选项B 知:点P 的轨迹方程为:()()22222x y -+-=,()()11121,1,1,2,2,G r P r ∴--=所以线段1112max 11PG PG r r =++=+=,故选项C 正确; 对于选项D :()()PA PB PG GA PG GB ⋅=+⋅+ ()2PG PG GA GB GA GB =+⋅++⋅ 22203PG PG GB PG =+⋅-=-,故()()2minmin3PA PBPG ⋅=-,由选项C知:1112min 11PG PG r r =--=-=,所以()()2min136PA PB⋅=-=-,故选项D 错误; 故选:A B C. 【点睛】关键点睛:本题考查了求圆的轨迹问题以及两个圆上的点的距离问题.把两个圆上的点的距离问题转化为两个圆的圆心与半径之间的关系是解决本题的关键.3.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y =C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x y -的最大值为1- 【答案】BCD 【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ 1153(2)222OB OB AB OA OB =+-+=-+,故B 对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.4.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅< D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确;因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.5.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.6.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭【答案】AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.7.已知,a b 是单位向量,且(1,1)a b +=-,则( ) A .||2a b += B .a 与b 垂直C .a 与a b -的夹角为4π D .||1a b -=【答案】BC 【分析】(1,1)a b +=-两边平方求出||2a b +=;利用单位向量模长为1,求出0a b ⋅=;||a b -平方可求模长;用向量夹角的余弦值公式可求a 与a b -的夹角.【详解】由(1,1)a b +=-两边平方,得2222||21(12|)|a b a b ++⋅=+-=, 则||2a b +=,所以A 选项错误;因为,a b 是单位向量,所以1122a b ++⋅=,得0a b ⋅=,所以B 选项正确; 则222||22a b a b a b -=+-⋅=,所以||2a b -=,所以D 选项错误;2()cos ,2||||1a a b a a b a a b ⋅-〈-〉====-⨯, 所以,a 与a b -的夹角为4π.所以C 选项正确; 故选:BC. 【点睛】本题考查平面向量数量积的应用. 求向量模的常用方法:(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式2+a x y =(2)若向量a b , 是以非坐标形式出现的,求向量a 的模可应用公式22•a a a a ==或2222||)2?(a b a b aa b b ==+,先求向量模的平方,再通过向量数量积的运算求解.判断两向量垂直:根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 解两个非零向量之间的夹角:根据公式•a bcos a b ==求解出这两个向量夹角的余弦值.8.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+ D .AD CD CD CB +=-【答案】BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.9.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD 【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果. 【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()3A a ,(),0B a -,(),0C a ,则()3PA x a y =--,(),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=- 即()2,2PB x y PC --+= 所以()()()32,2x a PA PB P y x y C =--⋅--⋅+则()PA PB PC ⋅+22223xy ay =+-即()PA PB PC ⋅+2223222x y a ⎛⎫=+- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥- 故选:BCD. 【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.10.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C D 【答案】BCD 【分析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =-若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--2390k ∴-+-=解得113k =若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--()130k k ∴-+-=解得k =综合可得,k 的值可能为211,33-故选:BCD 【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.。
【十年高考】24-2013年高考数学真题分类汇编(教师自己整理):平面向量

平面向量一、选择填空题1.(江苏2003年5分)O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P 满足[)(),0,,AB AC OP OA P AB ACλλ=++∈+∞则的轨迹一定通过ABC 的【】A .外心B .内心C .重心D .垂心【答案】B 。
【考点】向量的线性运算性质及几何意义。
【分析】∵AB AB、AC AC 分别表示向量AB 、AC 方向上的单位向量,∴AB ACAB AC +的方向与∠BAC 的角平分线一致。
再由()AB ACOP OA AB ACλ=++可得到()AB AC OP OA AB AC λ-=+ ,即()AB ACAP AB ACλ=+可得答案:向量AP 的方向与∠BAC的角平分线一致。
∴一定通过△ABC 的内心。
故选B 。
2.(江苏2004年4分)平面向量b a ,中,已知a =(4,-3),b =1,且b a ⋅=5,则向量b = ▲ . 【答案】43, 53⎛⎫- ⎪⎝⎭。
【考点】平面向量数量积的运算。
【分析】∵a =(4,-3),∴5a =。
又∵b =1,b a ⋅=5,∴5cos , 151a b a b a b ⋅===⨯⋅。
∴, a b 同向。
∴()1143 4, 3, 5553b a ⎛⎫==-=- ⎪⎝⎭ 。
3.(江苏2005年4分)在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则OA (OB OC )⋅+的最小值是 ▲ 【答案】-2。
【考点】向量与解析几何的综合应用。
【分析】如图,由向量的运算法则,得OA (OB OC)2OA OM 2OA OM ⋅+=⋅⋅=-⋅。
设OA x = ,则由AM=2得,OM 2x =-。
则()()22OA (OB OC)2224212x x x x x ⋅+=--=-=-- 。
∴当x =1时,OA (OB OC)⋅+有最小值-2。
4.(江苏2006年5分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN ||MP |MN NP 0⋅+⋅=,则动点P (x ,y )的轨迹方程为【 】(A )x y 82= (B )x y 82-= (C )x y 42= (D )x y 42-= 【答案】B 。
江苏十年高考试题总汇编03第三部分 平面向量

第三部分平面向量一.填空题(共10小题)1.(2008•江苏)已知向量和的夹角为120°,,则= .2.(2009•江苏)已知向量和向量的夹角为30°,,则向量和向量的数量积= .3.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.4.(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.5.(2011•江苏)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.6.(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.7.(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.8.(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.9.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.10.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= .二.解答题(共3小题)11.(2010•江苏)在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()•=0,求t的值.12.(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.13.(2014•陕西)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(1)若++=,求||;(2)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.第三讲平面向量参考答案与试题解析一.填空题(共10小题)1.(2008•江苏)已知向量和的夹角为120°,,则= 7 .【解答】解:由题意得,=,∴=7.故答案为:7.2.(2009•江苏)已知向量和向量的夹角为30°,,则向量和向量的数量积= 3 .【解答】解:由题意知:=2×=3,故答案为:3.3.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.4.(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3 .【解答】解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.5.(2011•江苏)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.【解答】解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:6.(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.【解答】解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:7.(2013•江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=AB ,BE=BC ,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.【解答】解:由题意结合向量的运算可得=====,又由题意可知若=λ1+λ2,故可得λ1=,λ2=,所以λ1+λ2=故答案为:8.(2014•江苏)如图,在平行四边形ABCD 中,已知AB=8,AD=5,=3,•=2,则•的值是 22 .【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.9.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:10.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n= 3 .【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.二.解答题(共3小题)11.(2010•江苏)在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足()•=0,求t的值.【解答】解:(1)(方法一)由题设知,则.所以.故所求的两条对角线的长分别为、.(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4)故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(﹣2,﹣1),.由()•=0,得:(3+2t,5+t)•(﹣2,﹣1)=0,从而5t=﹣11,所以.或者:,,12.(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.【解答】解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣cosβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0.所以.即;(2)由得,①2+②2得:.因为0<β<α<π,所以0<α﹣β<π.所以,,代入②得:.因为.所以.所以,.13.(2014•陕西)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.(Ⅰ)若++=,求||;(Ⅱ)设=m+n(m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.【解答】解:(Ⅰ)∵A(1,1),B(2,3),C(3,2),++=,∴(1﹣x,1﹣y)+(2﹣x,3﹣y)+(3﹣x,2﹣y)=0∴3x﹣6=0,3y﹣6=0∴x=2,y=2,即=(2,2)∴(Ⅱ)∵A(1,1),B(2,3),C(3,2),∴,∵=m+n,∴(x,y)=(m+2n,2m+n)∴x=m+2n,y=2m+n∴m﹣n=y﹣x,令y﹣x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m﹣n的最大值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、平面向量
(一)填空题
1、(2008江苏卷5)a r ,b r 的夹角为120︒,1a =r ,3b =r 则5a b -=r r .
【解析】本小题考查向量的线性运算.()2222552510a b a b a a b b -=-=-+r r r r r r r r g
=2
2125110133492⎛⎫⨯-⨯⨯⨯-+= ⎪⎝⎭,5a b -=r r 7 2、(2008江苏卷13)若AB=2, AC=2BC ,则ABC S ∆的最大值 .
【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设BC =x ,则AC =2x , 根据面积公式得ABC S ∆=21sin 1cos 2
AB BC B x B =-g ,根据余弦定理得 2222242cos 24AB BC AC x x B AB BC x +-+-==g 2
44x x
-=,代入上式得 ABC S ∆=()2
221281241416x x x x --⎛⎫--= ⎪⎝⎭ 由三角形三边关系有2222x x x x
⎧+>⎪⎨+>⎪⎩解得222222x -<<+,
故当22x =时取得ABC S ∆最大值22
3、(2009江苏卷2)已知向量a r 和向量b r 的夹角为30o ,||2,||3a b ==r r ,则向量a r 和向量b r 的
数量积a b ⋅r r = 。
【解析】 考查数量积的运算。
32332a b ⋅=⋅⋅=r r
4、(2011江苏卷10).已知→
→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→
→b a ,则k 的值为 .
【解析】 因为2212121122(2)()(12)2a b e e k e e k e k e e e →→→→→→→→→→⋅=-⋅+=+-⋅-
且12||||1e e →→==,12e e →→⋅=-12,所以2k -12-2=0,即k =54. 5、(2012江苏卷9)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD 上,若2AB AF =u u u r u u u r g AE BF u u u r u u u r g 的值是 .
C F D
【解析】根据题意,→
→→+=DF BC AF 所以 ()cos 022,AB AF AB BC DF AB BC AB DF AB DF AB DF DF →→→→→→→→→→→→→→
•=•+=•+•=•=⋅︒==从而得到1=→DF ,又因为→→→→→→+=+=CF BC BF DF AD AE ,,所以
2180cos 00)()(2
=⋅+++=+•+=•︒→→→→→→→→→CF DF BC CF BC DF AD BF AE .
【点评】本题主要考查平面向量的基本运算,同时,结合平面向量的数量积运算解决.设法找到1=→DF ,这是本题的解题关键,本题属于中等偏难题目.
6、(2013江苏卷10)10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 2
1=,BC BE 3
2=
,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为 。
答案:10.12 (二)解答题
1、(2010江苏卷15)(本小题满分14分)
在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(2)设实数t 满足(OC t AB -)·OC =0,求t 的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。
满分14分。
(1)(方法一)由题设知(3,5),(1,1)AB AC ==-u u u r u u u r ,则(2,6),(4,4).AB AC AB AC +=-=u u u r u u u r u u u r u u u r
所以||210,||4 2.AB AC AB AC +=-=u u u r u u u r u u u r u u u r 故所求的两条对角线的长分别为42、210。
(方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:
E 为B 、C 的中点,E (0,1)又E (0,1)为A 、D 的中点,所以D (1,4)
故所求的两条对角线的长分别为BC=42AD=10
(2)由题设知:OC u u u r =(-2,-1),(32,5)AB tOC t t -=++u u u r u u u r 。
由(OC t AB -)·OC =0,得:(32,5)(2,1)0t t ++⋅--=,从而511,t =-所以115t =-。
或者:2· AB OC tOC =u u u r u u u r u u u r ,(3,5),AB =u u u r 2115||AB OC t OC ⋅==-u u u r u u u r u u u r
2、(2013江苏卷15)15.本小题满分14分。
已知(cos ,sin )(cos ,sin )a b ααββ=r r =,
,παβ<<<0。
(1)若||2a b -=r r ,求证:a b ⊥r r ;(2)设(0,1)c =r ,若a b c +=r r r ,求βα,的值。
15.解:(1)∵2||=
-b a ∴2||2=-b a 即()22222=+-=-b b a a b a , 又∵1sin cos ||2222=+==ααa a ,1sin cos ||2222=+==ββb b ∴222=-b a ∴0=b a ∴b ⊥a
(2)∵)1,0()sin sin ,cos (cos b a =++=+βαβα ∴⎩
⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=β
αβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴2
1sin =α ∵παβ<<<0 ∴πβπα6
1,65==。