有限元八种三维单元介绍

合集下载

三维问题有限元分析(包括轴对称问题)

三维问题有限元分析(包括轴对称问题)
平衡方程
建立每个有限元的平衡方程,通过求解这些方程来得到近似解。
离散化
将连续的问题离散化,将整个求解域划分为有限个小的子域(称为有限元),每个子域上定义节点。
有限元方法的基本原理
解方程
通过求解整体矩阵的方程,得到各个节点的值,从整体矩阵,用于表示整个求解域上的问题。
详细描述
三维弹性力学问题的有限元分析
总结词
详细描述了三维热传导问题有限元分析的基本原理、方法和应用。
详细描述
三维热传导问题是有限元分析的另一个重要领域,主要研究热量在物体中的传递和分布。通过将连续的物体离散化为有限个小的单元,可以建立单元之间的热量传递关系,从而得到整个物体的温度分布。这种方法广泛应用于工程领域,如传热学、热能工程等。
边界条件处理
轴对称问题的有限元方法
轴对称问题有限元分析的实现流程
建立系统方程
根据有限元近似解法,将微分方程转化为离散化的系统方程。
划分网格
根据问题的几何形状和特点,将求解区域划分为一系列离散的网格单元。
建立数学模型
根据实际问题,建立相应的数学模型,包括物理方程、边界条件和初始条件。
求解系统方程
采用适当的数值方法(如直接法、迭代法等),求解离散化的系统方程,得到每个离散单元上的近似解。
轴对称问题具有旋转对称性,即其解在绕对称轴旋转时保持不变。
轴对称问题的定义和特性
特性
定义
将连续的物理问题离散化为有限个离散的单元,每个单元具有特定的形状和大小。
离散化
在每个离散单元上,使用近似函数来逼近真实解。常用的近似函数包括多项式、样条函数等。
近似解法
对于轴对称问题,边界条件通常与对称轴相关。需要对边界条件进行特殊处理,以确保离散化后的系统方程满足原始问题的约束。

有限元分析基础知识

有限元分析基础知识

2000,4
ANSYS单元分类
1. 杆单元,包括二维杆单元和三维杆单元,线性调节 元,主要包括: LINK1,LINK8,LINK10,LINK11,LINK180等。 2. 弹簧阻尼单元,包括COMBIN系列: COMBIN7,COMBIN14,COMBIN37,COMBIN40等。 3. 质量元,MASS21。
ANSYS/Structural求解功能
ANSYS/Structural求解功能
Static -- 结构静力问题(包括线性和非线性问题) Modal -- 模态振动特性计算分析(结构固有频率和振型) Harmonic -- 谐波分析 Transient -- 瞬态分析 Spectrum -- 谱分析 Eigen Buckling -- 特征值屈曲分析(线性) Substructural -- 子结构分析 。。。。。。
2000,4
有限元分析步骤(续)
• 集合所有单元的平衡方程,集合依据的是所有相邻 单元在公共节点 处的位移相等;建立总体的有限元方程组。 • 引入边界条件 • 求解有限元方程组,得到未知节点位移 • 计算单元应力,对不同的单元,对应力的处理还有不同的方法
2000,4
ANSYS文件结构
二进制文件 Jobname.db (数据库文件) Jobname.dbb (备份文件) Jobname.rst (结构分析结果文件) Jobname.rth (热分析结果文件) Jobname.rmg (电磁场分析结果文件) Jobname.rfl (流体分析结果文件) Jobname.tri (三角化刚度矩阵文件) Jobname.emat (单元矩阵文件) Jobname.esav (单元保存文件)
2000,4
简例(续)

三维问题有限元分析(包括轴对称问题)

三维问题有限元分析(包括轴对称问题)
2
空间问题简介
工程实际中的很多问题难于简化为平面问题,如受任意 空间载荷作用的任意形状几何体,受对称于轴线载荷作 用的回转体,这类问题经典弹性力学往往无能为力。在 FEM中,空间问题只要求0阶连续,因此构造单元方便
➢空间问题的主要困难: (1)离散化不直观;————(网格自动生成) (2)分割的单元数量多,未知量的数目剧增。— ——— (对某些问题简化)——— ——— (轴对称问题) ➢空间分析的优点
p
s
C
(6-16)
e 1
e 1
式中
F e ——单元上集中力等效结点载荷列向量;
p
F e ——单元上表面力等效结点载荷列向量;
S
F e ——单元上体积力等效结点载荷列向量;
F e
——单元结点载荷列向量。
C
等效结点力公式为 Fe NTF p
式中
Fe SSeNTpSds
Fe VeNTpvdV
如同平面等参单元一样,需要通过雅克比矩阵来实现,由偏导法则
N i N xi x N yi y N zi z
同理可得
N i , N i
写成矩阵
Ni
x
y
z
Ni x
Ni x
Ni
x
y
z
Ni y
J
Ni y
Ni
x
y
z
Ni z
ui vi wi
(6-18)
式中
xi、yi、zi——结点i的坐标; ui、vi、wi——结点i沿x、y、z方向的位移; Ni——对应于i结点的形状函数。
在自然坐标系(局部坐标系)中,各结点的形状函数可写成如
下形式, 对于8个顶角结点( i=1,2,……,8)

有限元分析中常用单元类型与单位制

有限元分析中常用单元类型与单位制

SOLID453-D结构实体单元产品:MP ME ST <> <> PR <> <> <> PP EDSOLID45单元说明solid45单元用于构造三维实体结构.单元通过8个节点来定义,每个节点有3个沿着xyz方向平移的自由度.单元具有塑性,蠕变,膨胀,应力强化,大变形和大应变能力。

有用于沙漏控制的缩减积分选项。

有关该单元的细节参看ANSYS, 理论参考中的SOLID45部分。

类似的单元有适用于各向异性材料的solid64单元。

Solid45单元的更高阶单元是solid95。

图 45.1 SOLID45几何描述SOLID45输入数据该单元的几何形状、结点位置、坐标系如图45.1: "SOLID45 几何描述"所示。

该单元可定义8个结点和正交各向异性材料。

正交各向异性材料方向对应于单元坐标方向。

单元坐标系方向参见坐标系部分。

单元荷载参见结点和单元荷载部分。

压力可以作为表面荷载施加在单元各个表面上,如图45.1: "SOLID45 几何描述"所示。

正压力指向单元内部。

可以输入温度和流量作为单元节点处的体载荷。

节点 I 处的温度 T(I) 默认为 TUNIF。

如果不给出其它节点处的温度,则默认等于 T(I)。

对于任何其它的输入方式,未给定的温度默认为 TUNIF。

对于流量的输入与此类似,只是默认值用零代替了TUNIF。

KEYOPT(1)用于指定包括或不包括附加的位移形函数。

KEYOPT(5)和KEYOPT(6)提供不同的单元输出选项(参见单元输出部分)。

当KEYOPT(2)=1时,该单元也支持用于沙漏控制的均匀缩减(1点)积分。

均匀缩减积分在进行非线性分析时有如下好处:∙相对于完全积分选项而言,单元刚度集成和应力(应变)计算需要更少的CPU时间,而仍能获得足够精确的结果。

∙当单元数量相同时,单元历史存储记录(.ESAV 和 .OSAV)的长度约为完全积分(2×2×2)的1/7。

有限元分析方法

有限元分析方法

百度文库- 让每个人平等地提升自我第1章有限元分析方法及NX Nastran的由来有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。

数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。

有限单元法的形成近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。

这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。

许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。

CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:❑CAE仿真可有效缩短新产品的开发研究周期。

❑虚拟样机的引入减少了实物样机的试验次数。

❑大幅度地降低产品研发成本。

❑在精确的分析结果指导下制造出高质量的产品。

❑能够快速对设计变更作出反应。

❑能充分和CAD模型相结合并对不同类型的问题进行分析。

❑能够精确预测出产品的性能。

❑增加产品和工程的可靠性。

❑采用优化设计,降低材料的消耗或成本。

❑在产品制造或工程施工前预先发现潜在的问题。

❑模拟各种试验方案,减少试验时间和经费。

❑进行机械事故分析,查找事故原因。

当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。

其中最为著名的是由美国国1百度文库 - 让每个人平等地提升自我2家宇航局(NASA )在1965年委托美国计算科学公司和贝尔航空系统公司开发的Nastran 有限元分析系统。

nastran单元类型

nastran单元类型

nastran单元类型Nastran是一款广泛使用的有限元分析软件,广泛应用于航空航天、汽车工程、结构工程等领域。

在Nastran中,不同类型的单元用于模拟不同种类的物理情况和结构问题。

本文将介绍Nastran中常用的单元类型及其应用。

1. 杆单元 (Beam elements)杆单元通常用于模拟线性材料的柱形或梁形结构。

它们是一维元素,适用于在某一方向上承受轴向、剪切力和弯曲力的构件。

常见的杆单元包括一维梁单元、梁壳单元和混合梁单元。

杆单元广泛应用于建筑结构、桥梁设计和机械设备等领域。

2. 壳单元 (Shell elements)壳单元用于模拟薄壁结构,例如壳体、板和薄膜。

壳单元是二维元素,具有较高的计算效率和适用性。

Nastran提供了多种类型的壳单元,如四节点和八节点壳单元,用于模拟不同形状和性质的结构。

壳单元广泛应用于汽车车身、飞机机翼和各种外壳设计中。

3. 固体单元 (Solid elements)固体单元用于模拟三维实体结构,例如实体零部件、机械设备和建筑物。

它们是三维元素,能够有效地处理复杂的力学特性和变形行为。

Nastran提供了多种类型的固体单元,如六面体单元和四面体单元,用于模拟不同类型的实体结构。

固体单元广泛应用于汽车发动机、建筑结构分析和材料研究等领域。

4. 声振单元 (Acoustic elements)声振单元用于模拟声学特性和振动问题。

它们是一种特殊类型的元素,适用于分析声场传播、噪声控制和声学振动等问题。

Nastran提供了声压、声速和声强等不同类型的声振单元。

声振单元广泛应用于汽车噪声、航空航天设备噪声和声学材料研究等领域。

5. 连接单元 (Connector elements)连接单元用于模拟不同结构之间的连接和约束关系,如焊缝、螺栓和弹簧等。

连接单元允许模拟结构件之间的刚性连接或柔性连接,以便更好地分析结构件之间的相互作用。

Nastran提供了多种类型的连接单元,用于模拟不同类型的连接关系。

有限元分析及应用习题答案

有限元分析及应用习题答案

有限元分析及应用习题答案有限元分析及应用习题答案有限元分析是一种广泛应用于工程领域的数值计算方法,可以用来解决各种结构力学问题。

在学习有限元分析的过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高应用能力。

本文将给出一些有限元分析及应用的习题答案,希望对读者有所帮助。

1. 什么是有限元分析?有限元分析的基本步骤是什么?有限元分析是一种通过将结构划分为有限数量的子域,然后对每个子域进行数值计算,最终得到整个结构的应力、应变等力学参数的方法。

其基本步骤包括:建立有限元模型、选择适当的数学模型、进行数值计算、分析计算结果。

2. 有限元分析的优点是什么?有限元分析具有以下优点:- 可以处理任意形状的结构,适用范围广。

- 可以考虑材料非线性、几何非线性等复杂情况。

- 可以对结构进行优化设计,提高结构的性能。

- 可以得到结构的应力、应变等力学参数分布,为工程实际应用提供参考。

3. 有限元分析中的单元是什么?常见的有哪些类型?有限元分析中的单元是指将结构划分为有限数量的子域,每个子域称为一个单元。

常见的单元类型有:- 一维单元:如梁单元、杆单元等,适用于解决一维结构问题。

- 二维单元:如三角形单元、四边形单元等,适用于解决平面或轴对称问题。

- 三维单元:如四面体单元、六面体单元等,适用于解决立体结构问题。

4. 如何选择适当的单元类型?选择适当的单元类型需要考虑结构的几何形状、边界条件、材料性质等因素。

一般来说,对于简单的结构,可以选择较简单的单元类型;对于复杂的结构,需要选择更复杂的单元类型。

此外,还需要根据具体问题的要求和计算资源的限制进行选择。

5. 有限元分析中的边界条件有哪些类型?有限元分析中的边界条件包括:- 位移边界条件:指定某些节点的位移或位移的导数。

- 力边界条件:施加在结构上的外力或力矩。

- 约束边界条件:限制某些节点的位移或位移的导数为零。

6. 有限元分析中的材料模型有哪些?有限元分析中常用的材料模型有:- 线性弹性模型:假设材料的应力与应变之间存在线性关系。

有限元单元介绍

有限元单元介绍

第二章单元在显式动态分析中可以使用下列单元:·LINK160杆·BEAM161梁·PLANE162平面·SHELL163壳·SOLID164实体·COMBI165弹簧阻尼·MASS166质量·LINK167仅拉伸杆本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。

除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。

因此,实体单元和壳体单元的缺省算法采用单点积分。

当然,这两种单元也可以采用全积分算法。

详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。

这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。

因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。

线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。

值得注意的是,显单元不直接和材料性能相联系。

例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。

如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。

参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。

也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。

2.1实体单元和壳单元2.1.1 SOLID164SOLID164单元是一种8节点实体单元。

缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。

单点积分的优点是省时,并且适用于大变形的情况下。

当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于SOLID164的详细描述,请参见《ANSYS Element Reference》和《LS-DYNA Theoretical Manual》中的§3.3节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元八种三维单元介绍
有限元三维体单元常见单元有四面体4、10节点单元、六面体8、20、27节点单元、三棱柱6、15节点单元。

我们在2000年新问世的四面体20节点单元。

下面分别介绍如下:
1 四面体4节点单元(常应变单元、一次单元),见图一。

单元内部的位移插值函数为一次多项式,即只含常数项和Z Y X ,,四项。

应变是位移的偏导数,故在单元内部,应力和应变为常数,位移和应力收敛速度都很慢,是非常落后的单元。

图一 四面体4节点单元(常应变单元)
2 四面体10节点单元(二次单元),见图二。

用体积坐标定义的单元:单元内位移插值函数为二次完全多项式,即含常数项和Z Y X ,,,YZ XZ XY Z Y X ,,,,,222十项,在单元内部,应力和应变为一次完全多项式,位移收敛速度很快,但应力收敛速度仍较慢。

由于整体加密使用的节点数太多,而局部加密生成的单元奇异,刚度阵病态,故应力集中问题中很难得到精度较高的解,在不考虑应力集中、疲劳寿命的问题中,由于该单元使用节点较少、几何适应性强,被人们经常使用。

用直角坐标定义的单元:由六面体20节点单元通过节点重合退化得到。

这种单元误差较大,无法求节点应力,只能求出 GAUSS 积分点的应力值,不推荐使用。

3 四面体20节点单元(三次单元),见图三。

用体积坐标定义的单元,单元内位移插值函数为完全三次多项式,即含常数项和Z Y X ,,, YZ XZ XY Z Y X ,,,,,222,XYZ Y Z X Z Z Y X Y Z X Y X Z Y X ,,,,,,,,,222222333二十项,在单元内部,应力和应变为完全二次多项式,位移和应力收敛速度都很快,精度最高、几何适应性强,在应力集中、疲劳寿命分析问题中使用是非常有用和令人放心的单元。

4 三棱柱6节点单元(一次单元),见图四。

与四面体4 节点单元类似。

5 三棱柱15节点单元(二次单元),见图四。

与四面体10 节点单元类似。

图二四面体10节点单元(二次单元)
图三四面体20节点单元(三次单元),四个面上形心处的节点未画出
图四 三棱柱6节点单元(一次单元),每条棱加上一个中节点变为15节点单元
6 六面体8节点单元(一次单元),见图五。

用直角坐标定义的单元,单元内位移插值函数含常数项和Z Y X ,,,XYZ ZX YZ XY ,,,八项,收敛速度慢,不推荐常用。

7 六面体20节点单元(二次单元),见图六。

用直角坐标定义的单元,单元内位移插值函数含常数项和Z Y X ,,,YZ XZ XY Z Y X ,,,,,222,XYZ Y Z X Z Z Y X Y Z X Y X ,,,,,,222222,XY Z ZX Y YZ X 222,,二十项,位移收敛速度很快,但应力应变是不完全二次多项式(缺少222,,Z Y X 三项),收敛速度仍不够快。

几何适应能力不强,但使用节点较少,因而是经常使用的单元。

图五 六面体 8 节点单元(一次单元)
8 六面体27节点单元(二次单元),见图七。

用直角坐标定义的单元,单元内位移插值函数含常数项和Z Y X ,,,YZ XZ XY Z Y X ,,,,,222,XYZ Y Z X Z Z Y X Y Z X Y X ,,,,,,222222,XY Z ZX Y YZ X 222,,…等二十七项,虽然比六面体20节点单元增加了七项,但仍没有333,,Z Y X 项,位移收敛速度很快,应力应变仍是不完全二次多项式(缺少222,,Z Y X 三项),收敛速度仍不够快。

由于使用节点较多,形成的总刚度阵带宽大,不推荐使用。

图六 六面体 20 节点单元(二次单元) 图七 六面体 27 节点单元(二次单元)。

相关文档
最新文档