福建省厦门市2017-2018学年高二上学期质量检测数学(理)试题.pdf
福建省厦门市高二数学下学期期末试卷 理(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市高二(下)期末数学试卷(理科)一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.22.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.18264.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln36.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=108.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.249.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画11.函数f(x)=e|x|cosx的图象大致是()A. B.C.D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是(用数字填写答案).14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m ﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是.15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.2015-2016学年某某省某某市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘法运算化简复数z,又已知复数z是纯虚数,得到,求解即可得答案.【解答】解:复数z=(1+i)(a+2i)=(a﹣2)+(a+2)i,又∵复数z是纯虚数,∴,解得a=2.故选:D.2.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的方程求出一个顶点和渐近线,利用点到直线的距离公式进行求解即可.【解答】解:由双曲线的方程得a=1,b=,双曲线的渐近线为y=x,设双曲线的一个顶点为A(1,0),渐近线为y=x,即x﹣y=0,则顶点到一条渐近线的距离d==,故选:C.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.1826【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(﹣1<X<3)可求出P(X>3).【解答】解:∵随机变量X服从正态分布N(1,4),∴曲线关于x=1对称,∵P(﹣1<X<3)=0.6826,∴P(X>3)=0.5﹣0.3413=0.1587.故选:B.4.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.【考点】导数的运算.【分析】求函数的导数,直接令x=e进行求解即可.【解答】解:∵f(x)=2xf′(e)﹣lnx,∴函数的导数f′(x)=2f′(e)﹣,令x=e,则f′(e)=2f′(e)﹣,即f′(e)=,故选:D5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln3【考点】定积分在求面积中的应用.【分析】作出对应的图象,确定积分的上限和下限,利用积分的应用求面积即可.【解答】解:作出对应的图象,由得x=1,则阴影部分的面积S=∫(x﹣)dx=(x2﹣lnx)|=(﹣ln3)﹣(﹣ln1)=4﹣ln3,故选:A6.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°【考点】异面直线及其所成的角.【分析】取中点连接,由异面直线所成角的概念得到异面直线AC1与B1C所成的角,求解直角三角形得到三角形边长,再由余弦定理得答案.【解答】解:如图,分别取AC、B1C1、CC1、BC的中点E、F、G、K,连接EF、EG、FG、EK、FK,EK=,FK=,则EF=,EG=,.在△EFG中,cos∠EGF=.∴异面直线AC1与B1C所成的角的大小是90°.故选:C.7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=10【考点】独立性检验的应用.【分析】当ad与bc差距越大,两个变量有关的可能性就越大,检验四个选项中所给的ad与bc的差距,前三个选项都一样,只有第四个选项差距大,得到结果.【解答】解:根据观测值求解的公式可以知道,当ad与bc差距越大,两个变量有关的可能性就越大,选项A,|ad﹣bc|=200,选项B,|ad﹣bc|=500,选项C,|ad﹣bc|=800,选项D,|ad﹣bc|=1400,故选D8.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.24【考点】排列、组合及简单计数问题.【分析】间接法:先求所有可能分派方法,先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,相减可得结论.【解答】解:间接法:先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,∴不同的选择方案的种数是81﹣27=54.故选:A9.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】充要条件;函数的单调性与导数的关系.【分析】若函数y=x2+在[1,+∞)单调递增,则y′=2x﹣≥0在[1,+∞)上恒成立,求出m的X围,进而根据充要条件的定义,可得答案.【解答】解:∵函数y=x2+在[1,+∞)单调递增,∴y′=2x﹣≥0在[1,+∞)上恒成立,即m≤2,故“m<1”是“函数y=x2+在[1,+∞)单调递增”的充分不必要条件,故选:A.10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画【考点】进行简单的合情推理.【分析】由①开始,进行逐个判断,采用排除法,即可得到答案.【解答】解:由①可知:甲可能在画画或在听音乐,由③可知,乙在看书,丙在画画,甲只能在听音乐,由②丙可以听音乐或看书,乙只能看书或画画,结合①③可知:甲听音乐,乙画画,丙看书,所以甲一定在听音乐,故选:B.11.函数f(x)=e|x|cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】根据函数的奇偶性,排除B;根据函数在(0,)上,为增函数,在(,)上,为减函数,排除A;再根据在(,)上,为增函数,f()>f(),排除C,可得结论.【解答】解:由于函数函数f(x)=e|x|cosx为偶函数,它的图象关于y轴对称,故排除B.当x>0时,f(x)=e x•cosx,f′(x)=e x•cosx﹣e x•sinx=2x(cosx﹣sinx),故函数在(0,)上,f′(x)>0,f(x)为增函数;在(,)上,f′(x)<0,f(x)为减函数,故排除A.在(,)上,f′(x)>0,f(x)为增函数,且f()>f(),故排除C,只有D满足条件,故选:D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)【考点】双曲线的简单性质.【分析】利用待定系数法设出双曲线和椭圆的方程,根据双曲线和椭圆的定义得到a1=4+c,a2=4﹣c,然后利用离心率的公式进行转化求解即可.【解答】解:设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=8,∴8+2c=2a1,8﹣2c=2a2,即有a1=4+c,a2=4﹣c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c>8,可得c>2,即有2<c<4.由离心率公式可得+====,∵2<c<4,∴<<,则2<<4,即2<+<4,故+的取值X围是(2,4),故选:C二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是80 (用数字填写答案).【考点】二项式系数的性质.【分析】由题意可得:2n=32,解得n.再利用其通项公式即可得出.【解答】解:由题意可得:2n=32,解得n=5.∴的通项公式T r+1=(2x)5﹣r=25﹣r x5﹣2r,令5﹣2r=3,解得r=1.∴该二项展开式中x3的系数=24=80.故答案为:80.14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是(2,3).【考点】复合命题的真假.【分析】利用椭圆的标准方程、复数的几何意义、复合命题的真假的判定方法即可得出.【解答】解:p:方程+=1表示焦点在y轴上的椭圆,则m>2;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限,∴m﹣3<0,解得m<3.∵p∧q为真,∴p与q都为真命题.∴2<m<3.则m的取值X围是(2,3).故答案为:(2,3).15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是 3 .【考点】抛物线的简单性质.【分析】求出N,B的坐标,利用两点间的距离公式,即可得出结论.【解答】解:由题意,A(3,2),N(0,2),以点F为圆心,1为半径的圆的方程为(x﹣1)2+y2=1,直线AF的方程为y=(x﹣1)联立直线与圆的方程可得(x﹣1)2=,∴x=或,∴B(,),∴|NB|==3故答案为:3.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是a≤.【考点】利用导数研究函数的单调性.【分析】令g(x)=f(x)﹣x2,求出g(x)的单调性,问题等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,根据函数的单调性得到关于a的不等式,解出即可.【解答】解:令g(x)=f(x)﹣x2,则g′(x)=f′(x)﹣x,而f′(x)<x,∴g′(x)=f′(x)﹣x<0,故函数g(x)在R递减,∴f(1﹣a)﹣f(a)≤﹣a等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,即g(1﹣a)≤g(a),∴1﹣a≥a,解得a≤,故答案为:a≤.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.【考点】线性回归方程.【分析】(Ⅰ)由数据求得样本中心点,利用最小二乘法求得系数,由线性回归方程过样本中心点,代入即可求得,即可求得回归直线方程;(Ⅱ)分别求得1, 2…,5,根据相关指数公式求得相关指数R2,即可求得广告费用解释了百分之多少的销售量变化.【解答】解:(Ⅰ) =×(2+3+4+5+6)=5, =×(5+7+8+9+11)=11,==1.4,=﹣=8﹣1.4×4=2.4,∴回归直线方程=1.4x+2.4;(Ⅱ)由(Ⅰ)可知:=1.4×2+2.4=5.2;1=1.4×3+2.4=6.6;2=1.4×4+2.4=8;3=1.4×5+2.4=9.4;4=1.4×6+2.4=10.8;5R2=1﹣=0.98,∴广告费用解释了98%的销售量变化.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数得到f′(x)=x2+2ax+b,这样根据函数在切点处导数和切线斜率的关系以及切点在函数图象上便可得出关于a,b的方程组,解出a,b即可;(Ⅱ)上面已求出a,b,从而可以得出导函数f′(x),这样判断导数的符号,从而便可得出函数f(x)的极值.【解答】解:(Ⅰ)f′(x)=x2+2ax+b;由题意可得,切点为(2,0),切线斜率为k=﹣1;∴;解得;(Ⅱ)由上面得,f′(x)=x2﹣4x+3=(x﹣1)(x﹣3);∴x<1时,f′(x)>0,1<x<3时,f′(x)<0,x>3时,f′(x)>0;∴x=1时,f(x)取极大值,x=3时,f(x)取极小值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【分析】(I)取AB中点E,连PE、CE,由等腰三角形的性质可得PE⊥AB.再利用勾股定理的逆定理可得PE⊥CE.利用线面垂直的判定定理可得PE⊥平面ABCD.再利用面面垂直的判定定理即可证明.(II)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(Ⅰ)证明:如图1所示,取AB中点E,连PE、CE.则PE是等腰△PAB的底边上的中线,∴PE⊥AB.∵PE=1,CE=,PC=2,即PE2+CE2=PC2.由勾股定理的逆定理可得,PE⊥CE.又∵AB⊂平面ABCD,CE⊂平面ABCD,且AB∩CE=E,∴PE⊥平面ABCD.而PE⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z 轴,建立如图所示的空间直角坐标系.则A(0,﹣1,0),C(,0,0),D(,﹣2,0),P(0,0,1),=(,1,0),=(,0,﹣1),=(0,2,0).设是平面PAC的一个法向量,则,即.取x1=1,可得,.设是平面PCD的一个法向量,则,即.取x2=1,可得,.故,即二面角A﹣PC﹣D的平面角的余弦值是.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,求出相应的概率,即可求乙车间每天机器发生故障的台数的分布列;(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),求出甲乙的期望,比较,即可得出结论.【解答】解:(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=1)=C21××((1﹣)×(1﹣)2+(1﹣)×=,P(ξ=2)=C21××((1﹣)×+()2×(1﹣)=,P(ξ=3)=××=,∴乙车间每天机器发生故障的台数ξ的分布列;ξ0 1 2 3P(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),P(η=k)=(k=0,1,2,3),∴EX=2P(η=0)+1×P(η=1)+0×P(η=2)﹣3×P(η=3)=,由(Ⅰ)得EY=2P(ξ=0)+1×P(ξ=1)+0×P(ξ=2)﹣3×P(ξ=3)=,∵EX<EY,∴甲车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.【考点】直线与圆的位置关系.【分析】(Ⅰ)设点D的坐标为(x,y),求出A1、A2的坐标,由题意和斜率公式列出方程化简,可得点D的轨迹C2的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程和C2的方程消去y,由条件可得△=0并化简,联立直线l与圆C1的方程消去x,利用韦达定理写出表达式,由图象和三角形的面积公式表示出,化简后利用基本不等式求出△POA1与△QOA2的面积之和的最大值.【解答】解:(Ⅰ)设点D的坐标为(x,y),∵圆C1:x2+y2=4与x轴左右交点分别为点A1(﹣2,0),A2(2,0),且l1与l2斜率的乘积为﹣,∴,化简得,∴点D的轨迹C2方程是;(Ⅱ)设P(x1,y1),Q(x2,y2),联立得,(1+4k2)x2+8kmx+4m2﹣4=0,由题意得,△=64k2+16﹣16m2=0,化简得,m2=4k2+1,联立消去x得,(1+k2)y2﹣2my+1=0,∴△=4m2﹣4(1+k2)=12k2>0,y1+y2=,>0,则y1,y2同号,由r=2得,+=+====≤=,当且仅当3=1+4k2,即k=时取等号,∴的最大值是.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)求出函数的定义域,函数的导数,通过a≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增;a>0时,求出极值点,然后通过导数的符号,判断函数的单调性,从而求出函数的零点的个数;(Ⅱ)设x1>x2,求出关于c的表达式,利用分析法证明x1x2>e,转化为证明ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),利用函数的导数求解函数的最小值利用单调性证明即可.【解答】解:(Ⅰ)定义域为(0,+∞),f′(x)=﹣2cx=,当c≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增,x→0时,f(x)→﹣∞,x→+∞时,f(x)→+∞,f(x)有且只有1个零点;当c>0时,由f'(x)=0,得x=,当0<x<时,f'(x)>0,f(x)单调递增,当x>时,f'(x)<0,f(x)单调递减,∴f(x)最大值=f()=ln﹣,令ln﹣>0,解得:c>,∴c>时,f(x)有2个零点,c=时,f(x)有1个零点,0<c<时,f(x)没有零点,综上:c≤0或c=时,f(x)有1个零点,0<c<时,f(x)没有零点,c>时,f(x)有2个零点.(Ⅱ)证明:设x1>x2,∵lnx1﹣cx12=0,lnx2﹣cx22=0,∴lnx1+lnx2=cx12+cx22,lnx1﹣lnx2=cx12﹣cx22,则c=,欲证明x1x2>e,即证lnx1+lnx2>1,因为lnx1+lnx2=c(x12+x22),∴即证c>,∴原命题等价于证明>,即证:ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),∴g′(t)=≥0,∴g(t)在(1,+∞)单调递增,又因为g(1)=0,∴g(t)>g(1)=0,∴lnt>,所以x1x2>e.。
人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
福建省厦门市2023-2024学年高二上学期期末考试物理

厦门市2023—2024学年第一学期高二年级质量检测物理试题满分:100分 考试时间:75分钟注意事项:1.本试卷分选择题和非选择题两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,用0.5mm 黑色签字笔作答,将答案写在答题卡上,写在本试卷上无效.一、单项选择题:本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,冰雪大世界里的冰雕闪烁着各色光芒,小厦同学发现冰面下方装有各色彩灯,冰块中还分布有气泡,则( )A .真空中红光的波长比绿光短B .冰块中红光的传播速度比绿光大C .冰面下方的灯,看起来比实际位置深D .冰块中气泡看起来更亮是由于光从气泡内部入射到冰时发生了全反射2.晓萌同学为研究浮漂在水中的振动情况,设计了如图甲所示的实验装置.浮漂下方绕上铁丝后放在静水中,将其向下缓慢按压后放手,浮漂上下振动,其运动近似为竖直方向的简谐振动,在水面形成波纹.已知水面波的传播速度为2m /s ,以竖直向上为正方向,从某时刻开始计时,浮漂振动图像如图乙所示,则( ) 甲 乙A .浮漂的回复力仅由浮力提供B .浮漂的振幅为8cmC .水面波的波长为0.8mD .0.10.2s ~内,浮漂的加速度减小3.智能 安装适当的软件后,利用 中的磁传感器可以测量磁感应强度B .如图所示,小廈同学在首门市某公园测量地磁场,将 水平放置后建立直角坐标系, 显示屏所在平面为xOy 面,屏幕朝上且y 轴正向指向北方.若忽略其他磁场的干扰,则所测得地磁场的磁感应强度(),,x y z B B B 可能为( ) А.()0,35.6T,10.9T μμ- B .()0,35.6T,10.9T μμC .()0,35.6T,10.9T μμ--D .()0,35.6T,10.9T μμ-4.如图甲所示,两等量正电荷水平固定,一光滑的绝缘细杆竖直放置在两电荷连线的中垂线上,杆上A 点与连线中点O 的距离为0h .一带正电小球套在杆上从A 点由静止释放,从A 运动到O 的过程中其动能k E 随下降距离h 变化的图像如图乙所示.若忽略空气阻力,则小球在此过程中( )甲 乙A .合外力先减小后增大B .电场力先增大后减小C .机械能先增大后减小D .电势能先减小后增大二、双项选择题:本题共4小题,每小题6分,共24分.每小题有两项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分.5.两点电荷M 和N 周围的电场线如图所示,A B 、是电场中的两点,则( )A .M N 、电荷量大小相等B .M 为负电荷,N 为正电荷C .A 点电势小于B 点电势D .A 点电场强度大于B 点电场强度6.如图所示,晓萌同学自制一种检测水位高度的装置,金属杠杆一端连接水箱中的浮球,另一端触点P 连接滑动变阻器R ,金属杆可绕O 点在竖直面内转动,水位高度表由电流表改装而成,R '为校准电阻,则水位( ) A .上升时,电路中的电流变小 B .上升时,电路中的电流变大C .测量值比真实值低时,应调小R 'D .测量值比真实值低时,应调大R '7.电子眼系统通过埋设在停止线下方的压电薄膜传感器来判断汽车的通过,当压电薄膜受到汽车压力时,薄膜两端产生电压,压力越大电压越大.图甲所示为压电薄膜与电容器C 、电阻R 组成的回路,取顺时针方向的电流为正值.红灯亮时,如果汽车的前、后轮先后经过压电薄膜上方,回路中产生如图乙所示的两脉冲电流,即视为“闯红灯”,电子眼即拍照记录,则( )A .12t t ~时间内电容器正在充电B .12t t ~时间内电容器上极板带负电C .车轮停在压电薄膜上时,电容器电压为0D .红灯亮时汽车前轮刚越过停止线后,又退回到线内,仍会被电子眼拍照8.如图甲所示,光滑水平面上两物块A B 、用轻质橡皮绳水平连接,橡皮绳恰好处于原长.0t =时,A 以水平向左的初速度0v 开始运动,B 初速度为0,AB 、运动的v t -图像如图乙所示.已知A 的质量为0,0m t ~时间内B 的位移为00,3x t t =时二者发生碰撞并粘在一起,则( )甲 乙A .B 的质量为2m B .橡皮绳的最大弹性势能为2016mv C .橡皮绳的原长为0013v t D .橡皮绳的最大形变量为0003v t x - 三、非选择题:共60分,其中911题为填空题,12、13为实验题,1416题为计算题.考生根据要求作答.9.(3分)图甲是降噪耳机的原理简化图,耳机收集环境噪声后,产生一列和噪声频率_____________(选填“不同”或“相同”)的声波,与噪声进行叠加合成,抵消噪声以达到降噪的目的.图乙所示为降噪耳机的理想降噪过程,该过程应用了波的_____________(选填“干涉”或“衍射”).10.(3分)如图所示,单色光Ⅰ和Ⅱ从半圆形玻璃砖正对圆心O 入射,当入射角为45︒时,单色光Ⅰ恰好发生了全反射,则单色光Ⅰ的折射率(选填“大于”“等于”或“小于”)单色光Ⅱ的折射率,单色光Ⅰ的折射率n =_____________.11.(3分)小厦、晓萌两位同学分别探究单摆周期T 与摆长l 的关系.在测量周期时,小厦误将29次全振动记为30次,其他操作无误,晓萌操作均无误,两同学绘制的2T l -图像如图甲所示,则小廈所测实验结果对应的图像是_____________(选填“A ”或“B ”);图乙所示为晓萌绘制的不同摆长单摆的振动图像,则两单摆周期之比:a b T T =_____________.甲 乙12.(6分)小厦同学通过如图所示的实验装置来验证动量守恒定律.(1)以下哪些说法符合实验要求_____________A .轨道一定要光滑B .轨道末端一定要保持水平C .入射小球A 的半径大于被碰小球B 的半径D .入射小球A 的质量大于被碰小球B 的质量(2)图中O 点是小球抛出点在水平地面上的垂直投影点.实验时,先将小球A 多次从斜轨上同一位置由静止释放,确定其落点的平均位置P ,测量其水平位移OP ;然后将小球B 静止放在轨道的末端,再将小球A 从斜轨上同一位置由静止释放,与小球B 相撞,并多次重复.以上实验步骤中缺少的必要步骤是_____________A .用天平测量AB 、两个小球的质量12m m 、B .测量小球A 开始释放高度hC .测量抛出点距地面的高度HD .确定A B 、相碰后落点的平均位置M N 、,并测量OM ON 、(3)若两球相碰前后的动量守恒,其表达式可用(2)中测量的量表示为_____________.13.(6分)某兴趣小组为测量一个表头G 的内阻,进行如下操作:(1)使用多用电表进行粗测,先机械调零,再将多用电表挡位调到“10⨯”挡,欧姆调零后,用_____________(选填“红”或“黑”)表笔与表头G 的“+”接线柱相连,另一支表笔与表头G 的“”接线柱相连(待测表头G 未超量程),测得的读数如图甲所示,可得表头G 的内阻为_____________Ω.甲(2)为了精确测量表头G 的内阻,小组成员设计了如图乙所示的电路.闭合开关S ,调节滑动变阻器滑片的位置,测得多组电压表与表头的示数U I 、,作出U I -图像,求得图像的斜率为k .已知定值电阻的阻值为0R ,则表头G 的内阻为_____________(用0,k R 表示).乙 丙(3)若发现(2)中表头内阻的测量值小于其实际值,可能的原因是_____________A .电压表读数小于电压表两端实际电压B .电压表读数大于电压表两端实际电压C .0R 的实际值小于其标称值D .0R 的实际值大于其标称值14.(11分)如图甲所示,质量1kg m =的物块静止在水平面上,0t =时,对其施加水平向右的推力F ,推力F 的大小随时间变化的规律如图乙所示.已知物块与水平面的动摩擦因数0.1μ=,最大静摩擦力等于滑动摩擦力,重力加速度g 取210m /s ,求:甲 乙(1)物块开始运动的时刻及3s 末物块加速度的大小;(2)0~6s 内推力对物块冲量的大小;(3)6s 末物块动量的大小.15.(12分)飞行时间质谱仪可通过测量离子飞行时间得到离子的荷质比.如图所示,某时刻离子源P 逸出质量为m 、电荷量为q 的离子,离子自a 板小孔进入a b 、间的加速电场,从b 板小孔射出,沿中心线方向进入M N 、板间的偏转控制区,到达探测区域.已知a b 、板间电压为1U 、间距为1d ,极板M N 、间电压为2U 、长度为L 、间距为2d ,忽略离子重力及进入a 板时的初速度.(1)求离子从b 板小孔射出时速度的大小;(2)求离子到达探测区域时的侧移量;(3)离子从a 板运动到探测区域的时间为t ,写出荷质比q m与t 的关系式. 16.(16分)如图甲所示,一倾角为30︒足够长的绝缘斜面固定在水平地面上,质量为m 、电荷量为(0)q q ->的物块A 压缩轻质绝缘微型弹簧a 后锁定(A 与弹簧不拴接).空间中存在沿斜面向上、大小78mg E q=(g 为重力加速度)的匀强电场.质量为2m 、电荷量为q +的物块B 静止在斜面上端,B 左侧固定有处于原长的轻质绝缘弹簧,b A B 、与斜面的滑动摩擦力大小分别为11388mg mg 、,最大静摩擦力等于滑动摩擦力. 0t =时解除锁定,弹簧的弹性势能p E 瞬间全部转化为A 的动能,A 运动距离L 后于1t 时刻到达P 点,此时速度为1v 、加速度为0,且未与弹簧b 接触;2t 时刻,A 到达Q 点,速度达到最大值12v ,弹簧b 的弹力大小为92mg ,此过程中A 的v t -图像如图乙所示.已知A B 、的电荷量始终保持不变,两者间的库仑力等效为真空中点电荷间的静电力,静电力常量为k ,弹簧始终在弹性限度内.求:甲 乙(1)弹射过程弹簧a 对A 冲量的大小;(2)A 从开始运动到P 点的过程中,B 对A 库仑力所做的功;(3)A 到达P 点时,A 与B 之间的距离;(4)A 从P 点运动到Q 点的过程中,A B 、系统(含弹簧b )的电势能变化量与弹性势能变化量的总和.厦门市2023—2024学年第一学期高二年级质量检测物理试题参考答案一、单项选择题:本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、双项选择题:本题共4小题,每小题6分,共24分.每小题有两项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分.三、非选择题:共60分,其中911题为填空题,12、13为实验题,1416为计算题.9.相同 干涉 10.大于 11.B 3:212.(1)BD (2)AD (3)112m OP m OM m ON ⋅=⋅+⋅13.(1)黑 130()21.3010⨯(129131均给分) (2)0k R - (3)AC 14.(1)物块所受最大静摩擦m f mg μ=,可得m 1N f =由图可知,01s t =时11N F =,物块开始运动3s 时,23N F =对物块有:2F mg ma μ-=解得:22m /s a =(2)由图像可知2F 12202F I t F t +=+ 解得:F 13.5N s I =⋅(3)06s -内摩擦力的冲量为()f 021002m f I t mg t t t μ+⎡⎤=-++-⎢⎥⎣⎦对物块:F f 0I I p +=-解得:8kg m /s p =⋅解法二:16s -内,推力的冲量可得:13N s FI '=⋅ 对物块:()1020FI mg t t t p μ'--+=- 解得:8kg m /s p =⋅15.(1)在a b 、板间加速时:21012qU mv =解得:0v =(2)在M N 、板间偏转平行于板方向:02L v t = 垂直于板方向:22U q ma d = 解得:22124U L y U d = 甲 乙(3)在a b 、板间:0112v d t =总时间:12t t t =+ 解得:()212122L d q m U t +=(或(12t L d =+ 16.(1)弹射过程对A 有:2p 012E mv =解得:I =(2)从开始运动到P 点过程中,A 受力如图甲所示对A 有:()()()221011sin3022BA A W mgL qEL f L mv mv +-︒+-+-=- 由题意,18A f mg = 解得:21p 1322BA W mv E mgL =-+ (3)在P 点,A 所受合力为0,如图乙所示有:221sin A q f mg qE k r θ++=解得:1r = (4)在P 点时,对物块B 如图乙所示,有: 解得:138B f mg =,此时B 恰好开始滑动. 从P 到Q 的过程中,对于A B 、组成的系统,由于3sin A B qE mg f qE f θ++=+,系统所受合外力为0,动量守恒,因此有1122B mv m v mv =⋅+ 可得:112B v v =- 从P 到Q 的过程中,对于A B 、组成的系统,由动能定理,得: 得()217548A B W W mv mg x x +=++电弹 故()2175Δ48A B E mv mg x x =--+ (或从P 到Q 的过程中,对于A B 、组成的系统,总能量守恒,有: 解得:()2175Δ48A B E mv mg x x =--+) 丙在Q 点,A 所受合力为0,如图丙所示有:2229sin 2A q mg mg f qE k r θ+++=解得:2根据几何关系:。
福建省厦门市10-11学年度高二上期期末质量检查(数学文)扫描版

厦门市2010—2011学年度高二上学期期末质量检测数学文试题参考答案一、选择题:本大题共10小题,每小题5分,共50分. 1-5 ACBDC 6-10 DDBAC二、填空题:本大题共4小题,每小题4分,共16分. 11.2 12.17,5 13.12-14三、解答题:本大题共3小题,共34分. 15.(本题满分10分) 解:(1)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个. ┈┈┈┈┈┈┈┈┈┈┈┈2分从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个. 因此所求事件的概率为13. ┈┈┈┈┈┈┈┈┈┈┈┈5分(2)先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m, n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3), (3,4),(4,1),(4,2),(4,3),(4,4)共16个.┈┈┈┈7分 有满足条件n≥m+2 的事件为(1,3),(1,4),(2,4)共3个. 所以满足条件n ≥ m+2 的事件的概率为 P=316.故满足条件n<m+2 的事件的概率为313111616P -=-=.┈┈┈┈┈┈┈10分16.(本题满分12分) 解:由04≥-tx得tx 4≤,A =(-∞,t4]. ┈┈┈┈┈┈┈┈┈┈┈┈2分由24120x x --<得26x -<<,B =(2-,6). ┈┈┈┈┈┈┈┈┈┈┈3分 (1)当2t =时,A =(-∞,2],显然,4A -∈,但4B -∉, 而4B ∈,但4A ∉,∴p 是q 的既不充分也不必要条件. ┈┈┈┈┈┈┈┈┈┈┈┈6分 (2)若p 是q 的必要不充分条件,则B A Ø,∴64≥t 且t >0, ┈┈┈┈┈┈┈┈┈┈┈┈9分解得320≤<t 为所求实数t 的取值范围. ┈┈┈┈┈┈┈┈┈┈┈┈12分17.(本题满分12分)解:设所求圆G 的方程为222()()(0)x a y b r r -+-=>,则22230r r a a b +==-=⎧⎪⎪⎪⎨⎪⎪⎪⎩, ┈┈┈┈┈┈┈┈┈┈┈┈6分解得⎪⎩⎪⎨⎧===313r b a 或⎪⎩⎪⎨⎧=-=-=313r b a . ┈┈┈┈┈┈┈┈┈┈┈┈10分所求圆G 的方程为9)1()3(22=-+-y x 或9)1()3(22=+++y x .┈┈12分B 卷(共50分)甲 卷四、填空题:本大题共4小题,每小题4分,共16分. 18.50 19.[1,3]- 20.25421五、解答题:本大题共3小题,共34分.22.(本题满分10分) 解:(Ⅰ)依题意知:圆心为1l 与2l 的交点,由3010x y x y --=⎧⎨+-=⎩得21x y =⎧⎨=-⎩,∴圆心为(2,1)P -,┈┈┈┈┈┈┈┈┈┈┈┈2分∴22a -=,12b -=-得4a =-,2b =,∴方程22420x y x y c +-++=为圆的方程要求22(4)240c -+->得5c <, 综上得:(2,1)P -,实数c 的取值范围5c <. ┈┈┈┈┈┈┈┈┈┈┈┈5分 (Ⅱ)圆心为(2,1)P -,过点P 作PD y ⊥轴于D , ┈┈┈┈┈┈┈┈┈┈┈┈6分在R t P D B ∆中,060BPD ∠=,||2DP =,∴圆的半径||4r BP ==.又r =4=得11c =-. ┈┈┈┈┈┈┈┈┈┈┈┈10分23.(本题满分12分)解:(Ⅰ)由表可得:抽取的学生人数为16500.32=(人),┈┈┈┈┈┈┈┈┈1分∴④处数据为100.250=,①处数据为40.0850=,┈┈┈┈┈┈┈┈┈┈┈┈2分又因为①②③处的数据成等差数列,设公差为d ,则②处数据为0.08d +;③处数据为0.082d +,∴0.08(0.08)0.20.32(0.082)1d d ++++++=,解得0.08d =, ∴②处数据为0.16;③处数据为0.24, ┈┈┈┈┈┈┈┈┈┈┈┈4分 ∴本次参赛学生中,成绩在[60,90)分的学生约为:500(0.160.20.32)340⨯++=(人). ┈┈┈┈┈┈┈┈┈┈┈┈6分 (Ⅱ)总体的平均数约为:550.08650.16750.2850.32950.2479.5⨯+⨯+⨯+⨯+⨯=.┈┈┈┈┈┈┈10分24.(本小题满分12分) 解:(Ⅰ)设点(,)2a P y ,由点P 在椭圆上,得2234y b =.┈┈┈┈┈┈┈┈┈1分∴1||F P ==┈┈┈┈┈┈┈┈┈3分==2c a =+即1||2c F P a =+.┈┈┈┈┈┈┈┈┈┈5分(Ⅱ)12F F Q ∆的面积是1121||||sin 2F Q F F θ122sin 2a c θ=⨯⨯⋅2sin ac θ=,┈┈7分 若存在12F F Q ∆,使得它的面积等于2b ,则2sin ac θ=2b , ∴2sin 12bacθ=≤,即2212a c ac-≤, ┈┈┈┈┈┈┈┈┈┈┈┈10分 ∴2210e e +-≥,∴12e ≥=.即椭圆离心率的取值范围是1e ≥. ┈┈┈┈┈┈┈┈┈┈┈┈12分乙 卷四、填空题:本大题共4小题,每小题4分,共16分. 18.5 19.[1,3]- 20.25421.8±五、解答题:本大题共3小题,共34分. 22.(本题满分10分) 解:(Ⅰ)圆220x y ax by c ++++=的圆心P (,)22a b --在恒在直线10x y +-=上,得1022a b ---=,即2b a =--, ┈┈┈┈┈┈┈┈┈┈┈┈2分2240a b c +->,222211()((2))44c a b a a <+=+--21[(1)1]2a =++,∴12c <.即实数c 的取值范围是12c <. ┈┈┈┈┈┈┈┈┈┈┈┈5分(Ⅱ)半径4r =,∴221644abc +-=即221644abc =+-.过点P 作PD y ⊥轴于D ,在R t P D B ∆中,060BPD ∠=,||4BP =, ∴||2DP =,即||22a -=,4a =或4a =-,┈┈┈┈┈┈┈┈┈┈┈┈7分 当4a =时,6b =-,∴2216344a b c =+-=-;当4a =-时,2b =,∴22161144abc =+-=-. ┈┈┈┈┈┈┈┈┈10分 综上,实数c 的值为3-或11-.23.(本题满分12分) 解:(Ⅰ)由表可得:抽取的学生人数为16500.32=(人), ┈┈┈┈┈┈1分 ∴④处数据为100.250=,①处数据为40.0850=,┈┈┈┈┈┈┈┈┈┈2分 又因为①②③处的数据成等差数列,设公差为d ,则②处数据为0.08d +;③处数据为0.082d +,∴0.08(0.08)0.20.32(0.082)1d d ++++++=,解得0.08d =, ∴②处数据为0.16;③处数据为0.24, ┈┈┈┈┈┈┈┈┈┈┈┈4分 ∴本次参赛学生中,成绩在[60,90)分的学生约为:500(0.160.20.32)340⨯++=(人). ┈┈┈┈┈┈┈┈┈┈┈┈6分 (Ⅱ)中位数约为频率分布直方图中面积等分线的横坐标,而前三组频率和为0.080.160.20.44++=,0.50.440.06-=,┈┈┈┈9分∴面积等分线位于第四组中,且占据频率为0.06, ∴中位数约为:0.06801081.8750.32+⨯=, ┈┈┈┈┈┈┈┈┈┈┈┈12分∴估计总体的中位数约为:81.875. 24.(本小题满分12分) 解:(Ⅰ)设点(,)2a P y ,由点P 在椭圆上,得2234y b =.┈┈┈┈┈┈┈┈1分∴1||F P ==┈┈┈┈┈┈┈┈┈┈┈┈3分==2c a =+即1||2cF P a =+ .┈┈┈┈┈┈┈┈┈5分(Ⅱ)曲线C 上存在00(,)M x y ,使12F M F ∆的面积2S b = 那么2220020(1)12||(2)2x y a c y b ⎧+=⎪⎨⋅=⎪⎩┈┈┈┈┈7分 由⑵得20||b y c =,∴4222202()()0b b b x a a a c c c =-=-+≥, 所以当且仅当2b a c ≥时存在点M 使12F M F ∆的面积2S b =.┈┈┈┈┈9分 ∴2ac b ≥即22ac a c ≥-, ∴210e e +-≥,又01e <<,∴2e ≥即椭圆离心率的取值范围是2e ≥ ┈┈┈┈┈┈┈┈┈┈┈┈12分。
福建省厦门市第十一中学2024-2025学年九年级上学期期中质量检测数学试卷

福建省厦门市第十一中学2024-2025学年九年级上学期期中质量检测数学试卷一、单选题1.如图所示图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是()A .()1,4--B .()1,4-C .()1,4D .()1,4-3.抛物线22y x =-+的顶点坐标为()A .()0,2B .()0,2-C .()2,0-D .()2,04.如图,点A ,B ,C 均在O 上,80AOB ∠=︒,则ACB ∠的度数为()A .80︒B .60︒C .50︒D .40︒5.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为()A .16-B .4-C .4D .166.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72︒,若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是()A .2m 10πB .2m 5πC .22m 5πD .24m 5π7.某校开展课外阅读活动,经过两年,2021级的学生人均阅读量从七年级的每年36万字增长到九年级时的每年49万字,设2021级的学生人均阅读量年平均增长率为x ,根据题意列出方程,正确的是()A .()236149x +=B .()362149x ⨯+=C .()361249x +=D .()()236136149x x +++=8.已知O 的半径是3cm ,点O 到同一平面内直线l 的距离为一元二次方程2340x x --=的根,则直线l 与O 的位置关系是()A .相交B .相切C .相离D .无法判断9.如图,二次函数21y ax bx =-的图象与正比例函数2y kx =的图象交于点()3,2A ,与x 轴交于点()2,0B ,若120y y <<,则x 的取值范围是()A .02x <<B .03x <<C .0x <或3x >D .23x <<10.如图,在平面直角坐标系中,有()1,0A -,()0,1B ,()3,2P -三点,若点C 是以点P 为圆心,1为半径的圆上一点,则ABC V 的面积最大值为()A .22+B .22-C .2D .2二、填空题11.二次函数2y 2(x 1)3=-+的图象的对称轴是直线.12.若O 的半径为2,M 为平面内一点,3OM =,则点M 在O .(填“上”、“内部”或“外部”)13.已知1x =是方程230x mx -+=的解,则m 的值为.14.我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图1所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图2所示,在平面内固定两个钉子A ,B ,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C 的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理:.15.如图,在ABC V 和ADE V 中,40AB AC BAC DAE =∠=∠=︒,,将ADE V 绕点A 顺时针旋转一定角度,当AD BC ∥时,BAE ∠的度数是.16.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是.三、解答题17.解方程:2430x x -+=.18.如图,AB 是O 的直径,CD 是O 的弦,CD AB ⊥于点E ,点F 在O 上且CF CA =,连接AF .求证:AF CD =;19.先化简、再求值:2221111a a a -⎛⎫÷- ⎪-+⎝⎭,其中a =20.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”学校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆200人次,进馆人次逐月增加,到第三个月来进馆288人次.若进馆人次的月平均增长率相同,求进馆人次的月平均增长率.21.按照下列要求作出图形(不写作法,保留作图痕迹).(1)尺规作图:将图1中的破轮子复原(2)如图2,矩形ABCD 的顶点A 在圆上,顶点B ,C ,D 在圆内,请仅用无刻度的直尺画出图2中的圆心O .22.如图,以点O 为圆心,AB 长为直径作圆,在O 上取一点C ,延长AB 至点D ,连接DC ,DCB DAC ∠=∠,过点A 作AE AD ⊥交DC 的延长线于点E .(1)求证:CD 是O 的切线;(2)若42CD DB ==,,求AE 的长.23.如图,已知二次函数2y x bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,其中()()2,0,0,2A C --.(1)求二次函数的表达式;(2)若P 是二次函数图象上的一点,且点P 在第二象限,线段PC 交x 轴于点,D PDB △的面积是CDB △的面积的2倍,求点P 的坐标.24.在ABC V 中,AB AC =,120BAC ∠=︒,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60︒得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE BC ⊥;(2)当BD CD ≠时(图2中BD CD <,图3中BD CD >),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形.②猜想AFE ∠的大小,并证明.25.【问题提出】在绿化公园时,需要安装一定数量的自动喷洒装置,定时喷水养护,某公司准备在一块边长为18m 的正方形草坪(如图1)中安装自动喷洒装置,为了既节约安装成本,又尽可能提高喷洒覆盖率,需要设计合适的安装方案.说明:一个自动喷洒装置的喷洒范围是半径为()m r 的圆面.喷洒覆盖率k sρ=,s 为待喷洒区域面积,k 为待喷洒区域中的实际喷洒面积.【数学建模】这个问题可以转化为用圆面覆盖正方形面积的数学问题.【探索发现】(1)如图2,在该草坪中心位置设计安装1个喷洒半径为9m 的自动喷洒装置,该方案的喷洒覆盖率ρ=______.(2)如图3,在该草坪内设计安装4个喷洒半径均为9m 2的自动喷洒装置;如图4,设计安装9个喷洒半径均为3m 的自动喷洒装置;⋅⋅⋅⋅⋅⋅,以此类推,如图5,设计安装2n 个喷洒半径均为9m n 的自动喷洒装置.与(1)中的方案相比,采用这种增加装置个数且减小喷洒半径的方案,能否提高喷洒覆盖率?请判断并给出理由.(3)如图6所示,该公司设计了用4个相同的自动喷洒装置喷洒的方案,且使得该草坪的喷洒覆盖率1ρ=.已知正方形ABCD 各边上依次取点F ,G ,H ,E ,使得AE BF CG DH ===,设()m AE x =,1O 的面积为()2my ,求y 关于x 的函数表达式,并求当y 取得最小值时r 的值.【问题解决】(4)该公司现有喷洒半径为的自动喷洒装置若干个,至少安装几个这样的喷洒装置可使该草坪的喷洒覆盖率1ρ=?(直接写出结果即可)。
福建省厦门市、泉州市五校2024-2025学年高二上学期11月期中联考试题 数学含答案

厦泉五校2024-2025学年高二年级第一学期期中联考数学试题(答案在最后)(考试时间:120分钟满分:150分命题人:)试卷分第I 卷(选择题)和第II 卷(非选择题)两部分第I 卷(选择题,共58分)一、单选题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知(1,1,0),(1,1,2)a b ==- ,则a b ⋅= ()A.1- B.0C.1D.22.椭圆221259x y +=上一点P 到左焦点的距离为6,则P 到右焦点的距离为()A.5B.6C.4D.123.“3a =”是“直线20x y +-=与圆C :()()228x a y a -+-=相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分条件也不必要条件4.下列命题中,不正确的命题是()A.空间中任意两个向量一定共面B.若a b ∥,则存在唯一的实数λ,使得a bλ=C.对空间中任一点O 和不共线的三点A ,B ,C ,若243OP OA OB OC =-+,则P ,A ,B ,C 四点共面D.若{},,a b c 是空间的一个基底,m a c =+,则{},,a b m 也是空间的一个基底5.平行六面体1111ABCD A B C D -的底面ABCD 是边长为2的正方形,且1160A AD A AB ∠=∠=︒,13AA =,M 为11A C ,11B D 的交点,则线段BM 的长为()A.B.C.3D.6.在平面直角坐标系xOy 中,直线l :0mx y m +-=被圆M :224210x y x y +--+=截得的最短弦的长度为()A.B.2C. D.47.已知12,F F 分别为椭圆()2222:10x y E a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且122PF PF =,则椭圆E 的离心率为()A.102B.104 C.53D.568.如图是一个棱数为24是由一个正方体截去八个一样的四面体所得.若点E 为线段BC 上的动点,则直线DE 与直线AF 所成角的余弦值的取值范围是()A.132⎡⎢⎣⎦,B.132⎡⎢⎣⎦,C.122⎡⎢⎣⎦, D.1,22⎡⎢⎢⎥⎣⎦二、多选题:(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.空间直角坐标系O xyz -中,已知()1,2,2A -,()0,1,1B ,下列结论正确的有()A.()1,1,3AB =--B.点A 关于xOy 平面对称的点的坐标为()1,2,2-C.若()2,1,1m =,则⊥m ABD.若(),2,6n a =- ,n BA∥,则2a =-10.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱11A D ,1AA ,CD 的中点,则()A.直线BE 与CD 所成角的余弦值为53B.点F 到直线BE 的距离为1C.1B G ⊥平面BEFD.点1A 到平面BEF 的距离为4311.已知椭圆22:1259x y C +=,12,F F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有()A.存在P 使得12π2F PF ∠=B.椭圆C 的弦MN 被点()1,1平分,则925MN k =-C.12PF PF ⊥,则12F PF 的面积为9D.直线PA 与直线PB 斜率乘积为定值925第Ⅱ卷(非选择题,共92分)三、填空题:(本题共3小题,每小题5分,共15分.)12.已知直线l 的一个方向向量为()1,5-,则直线l 的斜率为_______.13.已知F 为椭圆22:14x C y +=的一个焦点,点M 在C 上,O 为坐标原点,若||||OM OF =,则OMF的面积为________.14.古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()221:24C x y m -+-=()0m >,在圆上存在点P 满足2PA PB =,则实数m 的取值范围是______.四、解答题:(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知ABC V 的顶点()4,3A ,AB 边上的高所在直线为30x y --=,D 为AC 中点,且BD 所在直线方程为370x y +-=.(1)求AB 边所在的直线方程;(2)求顶点B 的坐标.16.已知空间三点()2,0,1A ,()2,4,3B -,()1,1,1C .(1)求向量AB 与AC夹角的余弦值;(2)求ABC V 的面积.17.已知圆C 的圆心M 在直线2y x =-上,并且经过点(0,1)P -,与直线10x y --=相切.(1)求圆C 的方程;(2)经过点(2,1)的直线l 与圆C 相交于A ,B 两点,若||2AB =,求直线l 的方程.18.已知椭圆C 的中心在坐标原点,左焦点为F10),点12M ⎫⎪⎭在椭圆上.(1)求椭圆C 的标准方程;(2)过点P (1,0)的直线l 交椭圆C 于两个不同的点A 、B ,若△AOB (O 是坐标原点)的面积S =45,求直线AB 的方程.19.已知O 为坐标原点,圆O :221x y +=,直线l :y x m =+(01m ≤<),如图,直线l 与圆O 相交于A (A 在x 轴的上方),B 两点,圆O 与x 轴交于,M N 两点(M 在N 的左侧),将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AMN )与y 轴负半轴和x 轴所确定的半平面(平面BMN )互相垂直,再以O 为坐标原点,折叠后原y 轴负半轴,原x 轴正半轴,原y 轴正半轴所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.(1)若0m =.(ⅰ)求三棱锥A BMN -的体积;(ⅱ)求二面角A BN M --的余弦值.(2)是否存在m ,使得AB 折叠后的长度与折叠前的长度之比为306?若存在,求m 的值;若不存在,请说明理由.厦泉五校2024-2025学年高二年级第一学期期中联考数学试题(考试时间:120分钟满分:150分命题人:)试卷分第I 卷(选择题)和第II 卷(非选择题)两部分第I 卷(选择题,共58分)一、单选题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知(1,1,0),(1,1,2)a b ==- ,则a b ⋅= ()A.1- B.0C.1D.2【答案】B 【解析】【分析】根据空间向量数量积的坐标运算求值即可.【详解】因为()()()1,1,01,1,21111020a b ⋅=⋅-=⨯-+⨯+⨯=.故选:B2.椭圆221259x y +=上一点P 到左焦点的距离为6,则P 到右焦点的距离为()A.5 B.6 C.4D.12【答案】C 【解析】【分析】根据椭圆的定义求解即得.【详解】由225a =,则5a =,所以210a =,根据椭圆的定义,点P 到右焦点的距离为1064-=.故选:C.3.“3a =”是“直线20x y +-=与圆C :()()228x a y a -+-=相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分条件也不必要条件【答案】A 【解析】【分析】根据相切关系可得1a =-或3,结合充分、必要条件分析判断.【详解】圆C :()()228x a y a -+-=的圆心为(,)C a a ,半径为,若直线20x y +-=与圆C =,解得1a =-或3,且{}3是{}1,3-的真子集,所以“3a =”是“直线20x y +-=与圆C :()()228x a y a -+-=相切”的充分不必要条件.故选:A.4.下列命题中,不正确的命题是()A.空间中任意两个向量一定共面B.若a b ∥,则存在唯一的实数λ,使得a bλ= C.对空间中任一点O 和不共线的三点A ,B ,C ,若243OP OA OB OC =-+,则P ,A ,B ,C 四点共面D.若{},,a b c 是空间的一个基底,m a c =+,则{},,a b m 也是空间的一个基底【答案】B 【解析】【分析】根据共面向量、向量平行、四点共面、基底等知识对选项进行分析,从而确定正确答案.【详解】A 选项,空间中任意两个向量可以通过平移的方法平移到同一个平面,所以空间中任意两个向量一定共面,A 选项正确.B 选项,若a b ∥,可能a 是非零向量,b是零向量,此时不存在λ,使a b λ=,所以B 选项错误.C 选项,对于243OP OA OB OC =-+,有()2431+-+=,所以,,,P A B C 四点共面,所以C 选项正确.D 选项,若{},,a b c 是空间的一个基底,m a c =+,假设m xa yb =+ ,(),1a c xa yb c x a yb +=+=-+,则,,a b c 共面,与已知矛盾,所以,,a b m不共面,所以{},,a b m是基底,所以D 选项正确.故选:B5.平行六面体1111ABCD A B C D -的底面ABCD 是边长为2的正方形,且1160A AD A AB ∠=∠=︒,13AA =,M 为11A C ,11B D 的交点,则线段BM 的长为()A.B.C.3D.【答案】A 【解析】【分析】由11122BM AA AD AB =+-平方即可求解.【详解】由题意可知:()11111111111112222BM BB B D BB A D A B AA AD AB =+=+-=+-,则2222211111111122442BM AA AD AB AA AD AB AA AD AA AB AB AD⎛⎫=+-=+++⋅-⋅-⋅ ⎪⎝⎭11911323201122=+++⨯⨯-⨯⨯-=,所以BM =.故选:A.6.在平面直角坐标系xOy 中,直线l :0mx y m +-=被圆M :224210x y x y +--+=截得的最短弦的长度为()A.B.2C. D.4【答案】C 【解析】【分析】先求出直线l 过定点()1,0A ,由圆的几何性质可知,当AM ⊥直线l 时,弦长最短,求解即可.【详解】直线l :0mx y m +-=过定点()1,0A ,圆M :()()22214x y -+-=,圆心()2,1M ,半径2R =因为点()1,0A 在圆M 内,由圆的几何性质可知,当AM ⊥直线l 时,弦长最短为==故选:C7.已知12,F F 分别为椭圆()2222:10x y E a b a b+=>>的两个焦点,P 是椭圆E 上的点,12PF PF ⊥,且122PF PF =,则椭圆E 的离心率为()A.2B.4 C.3D.6【答案】C 【解析】【分析】利用椭圆的定义结合勾股定理,易得等式求出离心率.【详解】由椭圆定义得:122PF PF a +=,又因为122PF PF =,所以解得:1242,33PF a PF a ==,再由于12PF PF ⊥,122F F c =,结合勾股定理可得:()22242233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得2259c a =,所以椭圆E 的离心率为3,故选:C.8.如图是一个棱数为24是由一个正方体截去八个一样的四面体所得.若点E 为线段BC 上的动点,则直线DE 与直线AF 所成角的余弦值的取值范围是()A.1232⎡⎢⎣⎦, B.1332⎡⎢⎣⎦, C.1222⎡⎢⎣⎦, D.13,22⎡⎢⎢⎥⎣⎦【答案】C 【解析】【分析】在原正方体中建立空间直角坐标系,由空间向量求解【详解】由题意得该几何体有6282的等边三角形,在原正方体中建立如图所示的空间直角坐标系,原正方体边长为2,则(2,1,0)A ,(2,2,1)F ,(1,2,2)D ,设(,1,2),01E t t t -≤≤,(0,1,1)AF = ,(1,1,0)DE t t =---,则直线DE 与直线AF 所成角的余弦值2222212112cos 121212(1)(1)t t t t t t t θ++===+++⋅-+--,而01t ≤≤,故[]220,11t t ∈+,12cos [,]22θ∈,故选: C.二、多选题:(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.空间直角坐标系O xyz -中,已知()1,2,2A -,()0,1,1B ,下列结论正确的有()A.()1,1,3AB =--B.点A 关于xOy 平面对称的点的坐标为()1,2,2-C.若()2,1,1m =,则⊥m AB D.若(),2,6n a =- ,n BA∥,则2a =-【答案】ACD 【解析】【分析】根据空间向量的坐标运算计算判断A .由对称点的性质判断B ,由向量的数量积是否为0判断C ,由向量平行的坐标表示求参判断D ,【详解】由题意(0,1,1)(1,2,2)(1,1,3)AB =--=--,A 正确;关于xOy 平面对称的点的坐标,x y 坐标相同,z 坐标相反,因此点A 关于xOy 平面对称的点的坐标为(1,2,2),B 错,若()2,1,1m = ,则2130m AB ⋅=--+= ,所以⊥ m AB ,C 正确;若(),2,6n a =- 且n BA∥,则23116a -==--,解得2a =-,D 正确,故选:ACD .10.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱11A D ,1AA ,CD 的中点,则()A.直线BE 与CD 所成角的余弦值为3B.点F 到直线BE 的距离为1C.1B G ⊥平面BEFD.点1A 到平面BEF 的距离为43【答案】BC 【解析】【分析】建系,利用空间向量求异面直线夹角、点到线的距离、判断线面垂直以及点到面的距离.【详解】如图,以D 为坐标原点建立空间直角坐标系,则()()()()()()()1112,0,0,2,2,0,0,2,0,0,0,0,2,0,22,2,2,0,0,2A B C D A B D ,且E ,F ,G 分别为棱11A D ,1AA ,CD 的中点,可知()()()1,0,2,2,0,1,0,1,0E F G ,可得()()()()()111,2,2,0,2,1,0,2,0,2,1,2,0,0,1=--=-===uur uu u r uuu r uuu r uuu rBE BF DC GB FA ,对于选项A :因为42cos ,323⋅-===-⨯⋅uur uuu ruur uuu r uur uuu r BE DC BE DC BE DC,所以直线BE 与CD 所成角的余弦值为23,故A 错误;对于选项B :因为BF 在BE方向上的投影向量的模长为2⋅=uu u r uuruur BF BE BE,且5BF = 点F 到直线BE ()22521-=,故B 正确;对于选项C :因为110GB BE GB BF ⎧⋅=⎪⎨⋅=⎪⎩,可得11GB BE GB BF ⊥⎧⎨⊥⎩,且BE BF B = ,,BE BF ⊂平面BEF ,所以1B G ⊥平面BEF ,故C 正确;对于选项D :因为平面BEF 的法向量可以为()12,1,2=uuu rGB ,点1A 到平面BEF 的距离为11123⋅=uuu r uuu r uuur FA GB GB ,故D 错误;故选:BC.11.已知椭圆22:1259x y C +=,12,F F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中正确的有()A.存在P 使得12π2F PF ∠=B.椭圆C 的弦MN 被点()1,1平分,则925MN k =-C.12PF PF ⊥,则12F PF 的面积为9D.直线PA 与直线PB 斜率乘积为定值925【答案】ABC 【解析】【分析】根据余弦定理结合余弦定理求出12F PF ∠的范围判断A ;根据点差法求中点弦的斜率判定B ;根据勾股定理和面积公式求解判断C ;根据斜率公式及点P 在椭圆上求解斜率之积判断D.【详解】对于A .由余弦定理知()2222212122112211212122cos 22PF PF PF PF F F PF PF F F F PF PF PF PF PF +-⋅-+-∠==()()22222122112212212122711122522PF PF F F PF PF F F b PF PF a PF PF +-+-=-≥-=-=-⎛⎫+ ⎪⎝⎭,当且仅当11PF PF =时,等号成立,因为cos y θ=在(0,π)上递减,所以此时21F PF ∠为钝角最大,所以存在P 使得12π2F PF ∠=,所以A 正确;对于B .当直线MN 的斜率不存在,即直线1x =时,1,,1,55M N ⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭,()1,1不是线段MN 的中点,所以直线MN 的斜率存在.设()()1122,,,M x y N x y ,则222211221,1259259x y x y +=+=,两式相减并化简得12121212925y y y y x x x x +--=⋅+-,所以1212925MN y y k x x -==--,所以B 正确;对于C .12210PF PF a +==,1228F F c ==,因为12PF PF ⊥,所以222121264PF PF F F +==,因为()2221212122PF PF PF PF PF PF +=++,解得1218PF PF =.因为12PF PF ⊥,所以1212192F PF S PF PF ==△,所以C 正确;对于D .()()5,0,5,0A B -,设()()000,5P x y x ≠±,则22001259x y +=,整理得()202092525x y -=-,可得直线PA ,PB 的斜率分别为0000,55PA PB y yk k x x ==+-,所以()20200022000092592555252525PA PB x y y yk k x x x x --⋅=⨯===-+---,所以D 错误.故选:ABC.第Ⅱ卷(非选择题,共92分)三、填空题:(本题共3小题,每小题5分,共15分.)12.已知直线l 的一个方向向量为()1,5-,则直线l 的斜率为_______.【答案】5-【解析】【分析】根据直线的方向向量与直线斜率之间的关系分析求解即可.【详解】由题意可知,直线l 的斜率为551k ==--.故答案为:5-.13.已知F 为椭圆22:14x C y +=的一个焦点,点M 在C 上,O 为坐标原点,若||||OM OF =,则OMF的面积为________.【答案】12##0.5【解析】【分析】法一:直接设出M 坐标为00(,)x y ,利用M 在椭圆上以及||||OM OF =得到关于00,x y 的方程组,从而解出0||y ,进而求出OMF 的面积.法二:利用||||OM OF =,推导出M 与两焦点构成的三角形为直角三角形,再求出该直角三角形面积,从而利用几何关系得出OMF 的面积.【详解】法一:设椭圆上()00,M x y ,则2203x y +=,又220014x y +=,联立解得2013y =,03y =,则01112232OMF S OF y === .法二:设椭圆的另一焦点F ',OF OF OM '==,则焦点F MF '△为直角三角形,设||FM m =,||F M n '=,则24m n a +==,2222||12m n FF '+===,解得2mn =,所以112F MF S mn '==△.则1122OMFF MF S S '==△△.故答案为:1214.古希腊数学家阿波罗尼奥斯(约公元首262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点()1,0A -,()2,0B ,圆()()221:24C x y m -+-=()0m >,在圆上存在点P 满足2PA PB =,则实数m 的取值范围是______.【答案】52122⎤⎢⎥⎣⎦【解析】【分析】设s ,根据2PA PB =求出点P 的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设s ,因为点()1,0A -,()2,0B ,2PA PB =,=22650x y x +-+=,所以()2234x y -+=,可得圆心()3,0,半径2R =,由圆()()221:24C x y m -+-=可得圆心()2,C m ,半径12r =,因为在圆C 上存在点P 满足2PA PB =,所以圆()2234x y -+=与圆()()221:24C x y m -+-=有公共点,所以112222-≤≤+,整理可得:2925144m ≤+≤,解得22m ≤≤,所以实数m的取值范围是,22⎣⎦,故答案为:,22⎣⎦.四、解答题:(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知ABC V 的顶点()4,3A ,AB 边上的高所在直线为30x y --=,D 为AC 中点,且BD 所在直线方程为370x y +-=.(1)求AB 边所在的直线方程;(2)求顶点B 的坐标.【答案】(1)70x y +-=;(2)(0,7)B .【解析】【分析】(1)利用垂直关系求出直线AB 的斜率,进而求出其方程.(2)求出直线的交点坐标即可.【小问1详解】由AB 边上的高所在直线30x y --=的斜率为1,得直线AB 的斜率为1-,又直线AB 过()4,3A ,所以直线AB 的方程为()34y x -=--,即70x y +-=.【小问2详解】由直线BD 的方程为370x y +-=,而顶点B 为直线AB 与直线BD 的交点,由37070x y x y +-⎧⎨+-⎩==,解得07x y ⎧⎨=⎩=,所以点()0,7B .16.已知空间三点()2,0,1A ,()2,4,3B -,()1,1,1C .(1)求向量AB 与AC夹角的余弦值;(2)求ABC V 的面积.【答案】(1)5-(2【解析】【分析】(1)根据空间向量数量积与模长的坐标表示可得向量夹角余弦值;(2)根据夹角余弦值可得正弦值,进而可得三角形面积.【小问1详解】由()2,0,1A ,()2,4,3B -,()1,1,1C ,则()0,4,2AB =- ,()1,1,0AC =- ,AB = ,AC = ,所以cos ,AB AC == ;【小问2详解】由(1)得cos cos ,5A AB AC ==- ,则sin 5A ==,所以11sin 225ABC S AB AC A =⋅⋅=⨯ 17.已知圆C 的圆心M 在直线2y x =-上,并且经过点(0,1)P -,与直线10x y --=相切.(1)求圆C 的方程;(2)经过点(2,1)的直线l 与圆C 相交于A ,B 两点,若||2AB =,求直线l 的方程.【答案】(1)222430x y x y +-++=(2)4350x y --=或2x =【解析】【分析】(1)设圆C 的方程为222()()(0)x a y b r r -+-=>,由题意,列出方程组,求解得,,a b r 的值,即可写出圆C 的方程;(2)分直线的斜率是否存在进行讨论,斜率不存在时,联立方程求出点,A B 的坐标,计算弦长验证,斜率存在时,设l 的方程为1(2)y k x -=-,由圆心到直线的距离等于半径求出k 的值即得.【小问1详解】设圆C 的方程为222()()(0)x a y b r r -+-=>,由已知得2222(1),b a a b r r ⎧⎪=-⎪⎪+--=⎨⎪⎪=⎪⎩,解得1a =,2b =-,r =所以圆C 的方程为22(1)(2)2x y -++=,即222430x y x y +-++=;【小问2详解】①若直线l 有斜率,可设l 的方程为1(2)y k x -=-,即(12)0kx y k -+-=,由已知,则圆心(1,2)M -到直线l=解得43k =,此时,直线l 的方程为41(2)3y x -=-,即4350x y --=;②若直线l 没有斜率,则l 的方程为2x =,将其代入22(1)(2)2x y -++=,可得1y =-或=3y -,即得(2,1)A -,(2,3)B -,满足条件||2AB =,综上所述,直线l 的方程为4350x y --=或2x =.18.已知椭圆C 的中心在坐标原点,左焦点为F 10),点12M ⎫⎪⎭在椭圆上.(1)求椭圆C 的标准方程;(2)过点P (1,0)的直线l 交椭圆C 于两个不同的点A 、B ,若△AOB (O 是坐标原点)的面积S =45,求直线AB 的方程.【答案】(1)24x +y 2=1;(2)x +y ﹣1=0或x ﹣y ﹣1=0.【解析】【分析】(1)由已知可得椭圆的左、右焦点坐标,而点12M ⎫⎪⎭在椭圆上,所以|MF 1|+|MF 2|=2a ,从而可求出a 的值,再由222b a c =-可求出b ,从而可求得椭圆C 的标准方程;(2)设1122()A x y B x y ,,(,),由题可设直线AB 的方程为x =my +1,然后将直线方程与椭圆方程联立方程组,消去x ,利用根与系数的关系,从而可表示出△AOB 的面积,列方程可求出m 的值,进而可得直线AB 的方程.【详解】解:(1)根据题意,设椭圆C 的方程为2222x y a b+=1(a >b >0),因为椭圆的左焦点为F 10),设椭圆的右焦点为F 20),由椭圆的定义知|MF 1|+|MF 2|=2a ,所以2a =4,所以a =2,所以1b ===,所以椭圆C 的方程为24x +y 2=1,(2)设1122()A x y B x y ,,(,),由题可设直线AB 的方程为x =my +1.联立直线与椭圆的方程,22141x y x my ⎧+=⎪⎨⎪=+⎩,消去x 得(4+m 2)y 2+2my ﹣3=0,则有12122223,44m y y y y m m -+==-++,所以1212S OP y y =-==24m =+又由S =45,即2445m =+解得m 2=1,即m =±1.故直线AB 的方程为x =±y +1,即x +y ﹣1=0或x ﹣y ﹣1=019.已知O 为坐标原点,圆O :221x y +=,直线l :y x m =+(01m ≤<),如图,直线l 与圆O 相交于A (A 在x 轴的上方),B 两点,圆O 与x 轴交于,M N 两点(M 在N 的左侧),将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AMN )与y 轴负半轴和x 轴所确定的半平面(平面BMN )互相垂直,再以O 为坐标原点,折叠后原y 轴负半轴,原x 轴正半轴,原y 轴正半轴所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.(1)若0m =.(ⅰ)求三棱锥A BMN -的体积;(ⅱ)求二面角A BN M --的余弦值.(2)是否存在m ,使得AB 折叠后的长度与折叠前的长度之比为6?若存在,求m 的值;若不存在,请说明理由.【答案】(1)(ⅰ)16;(ⅱ)7(2)存在,2m =【解析】【分析】(1)(ⅰ)由已知,可得22,22A ⎛⎫ ⎪ ⎪⎝⎭,22,22B ⎛⎫-- ⎪ ⎪⎝⎭,即可求得求三棱锥A BMN -的体积;(ⅱ)求出平面ANB 的一个法向量()11n =+和平面BMN 的一个法向量()0,0,1m =,利用向量的坐标运算即可求得二面角A BN M --的余弦值.(2)分别求出AB 折叠前的长度与折叠后的长度,比为6时,求得22m =,可得答案.【小问1详解】(ⅰ)若0m =,折叠前直线l 的方程为y x =,联立221y x x y =⎧⎨+=⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,可得,22A ⎛⎫ ⎪ ⎪⎝⎭,,22B ⎛⎫-- ⎪ ⎪⎝⎭,圆O :221x y +=,与x 轴交于,M N 两点,则2MN =,折叠后三棱锥A BMN -的体积为111232226⨯⨯⨯⨯=.(ⅱ)由(ⅰ)及已知,则0,,22A ⎛⎫ ⎪ ⎪⎝⎭,,,022B ⎛⎫- ⎪ ⎪⎝⎭,()0,1,0M -,()0,1,0N,0,1,22AN ⎛⎫=-- ⎪ ⎪⎝⎭,,1,022BN ⎛⎫=-+ ⎪ ⎪⎝⎭.设平面ANB 的一个法向量为(),,n x y z =,则00AN n BN n ⎧⋅=⎪⎨⋅=⎪⎩,即10221022y z x y ⎧⎛⎫--=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-++= ⎪⎪ ⎪⎝⎭⎩,令1y =,则1x =+1z =,所以()11n =+.易知()0,0,1m =为平面BMN 的一个法向量,设二面角A BN M --的大小为θ,由题可知θ为锐角,所以cos cos ,m n m n m n θ⋅==7===故二面角ABN M --的余弦值为7-.【小问2详解】设折叠前1,1,2,2,圆心()0,0到直线l 的距离d =,则AB==,直线l与圆O方程联立22,1,y x mx y=+⎧⎨+=⎩得222210x mx m++-=,即12x x m+=-,21212mx x-=.设A,B在新图形中的对应点分别为,A B'',()110,,A x y',()22,,0B y x-',A B=''=.若AB折叠后的长度与折叠前的长度之比为6,306=,解得2m=,故当2m=时,AB折叠后的长度与折叠前的长度之比为6.【点睛】关键点点睛:(2)由几何法求出AB折叠前的长度,直曲联立,消元后得韦达定理,利用弦长公式求得折叠后的长度,令它们之比为6时,求得2m=,可得答案.。
2023-2024学年福建省厦门市高二(上)期末数学试卷【答案版】

2023-2024学年福建省厦门市高二(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等比数列{a n }满足a 3=√3,a 7=3√3,则a 5=( ) A .−2√3B .﹣3C .3D .2√32.已知直线l 1的倾斜角为π3,直线l 2过点(−1,√3),若l 1∥l 2,则l 2在y 轴上的截距为( )A .−2√3B .﹣2C .2D .2√33.点P (0,2)到双曲线C :x 2−y 24=1的渐近线的距离为( )A .2√55B .4√55C .2√1717D .4√17174.在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形,点E 满足CE →=2EP →,则AE →=( ) A .12AB →+12AD →−12AP →B .12AB →+12AD →−23AP →C .13AB →+13AD →+23AP →D .23AB →+23AD →+13AP →5.已知数列{a n }的前n 项和为S n ,若3S n =a n ﹣2,则a n 的最大值为( ) A .﹣1B .−12C .12D .16.已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,上一点P 满足PF 1⊥PF 2,A 为线段PF 2的中垂线与Γ的交点,若△APF 1的周长为72a ,则Γ的离心率为( )A .√64B .√104C .√63D .√327.已知梯形ABCD 中,AB ∥CD ,∠ABD =120°,AB =3,BD =2,DC =1.如图,将△ABD 沿对角线BD 翻折至△A ′BD ,使得A ′C =3√3,则异面直线A ′B ,CD 所成角的余弦值为( )A .34B .45C .56D .678.抛物线有一个重要的性质:从焦点出发的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,此时反射面为抛物线在该点处的切线.过抛物线C :x 2=8y 上的一点P (异于原点O )作C 的切线l ,过O 作l 的平行线交PF (F 为C 的焦点)于点Q ,则|OQ |的取值范围为( )A .(0,2)B .(0,4)C .(0,6)D .(0,8)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合M ={(x ,y )|x 2+y 2≤4},N ={(x ,y )|(x ﹣a )2+y 2≤1}.若N ⊆M ,则实数a 可以为( ) A .0B .12C .1D .210.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是DD 1和BD 1的中点,则( )A .C 1F ∥AEB .C 1F ⊥A 1DC .点F 到平面EAC 的距离为√63D .直线C 1F 与平面EAC 所成角的正弦值为√7311.已知曲线C :x 2sin α﹣y 2cos α=1,其中α∈[0,π],则( ) A .存在α使得C 为圆 B .存在α使得C 为两条直线C .若C 为双曲线,则α越大,C 的离心率越大D .若C 为椭圆,则α越大,C 的离心率越大12.若数列{a n }满足a n+12+2a n a n+1−2a n 2=0,则( )A .数列{a n }是等比数列B .当a 1=1时,a 3的所有可能取值的和为6C .当a 1=1时,a 10的取值有10种可能D .当a 1>0时,12a 1+a 2+12a 2+a 3+12a 3+a 4+⋯+12a 2023+a 2024<1a 2024三、填空题:本题共4小题,每小题5分,共20分.13.已知A (1,1,0),B (1,0,﹣1),C (1,x +2,2x )三点共线,则x = .14.已知抛物线C :y 2=4x 的焦点为F ,M 是C 上一点,△MOF 的面积为2,则|MF |= . 15.已知圆O :x 2+y 2=1和圆O 1:(x −2)2+y 2=1,过动点P 分别作圆O ,圆O 1的切线P A ,PB (A ,B 为切点),且|P A |2+|PB |2=18,则|P A |的最大值为 .16.已知直线l 1:y =2x 与直线l 2:y =x ﹣1,点P 1是l 2与x 轴的交点.过P 1作x 轴的垂线交l 1于点Q 1,过Q 1作y 轴的垂线交l 2于点P 2,过P 2作x 轴的垂线交l 1于点Q 2,过Q 2作y 轴的垂线交l 2于点P 3,依此方法一直继续下去,可得到一系列点P n ,Q n ,则|P 3Q 3|= ;设P n 的坐标为(x n ,y n ),则数列{x n +1x n+1⋅y n+1}的前n 项和为 .四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等差数列{a n }的前n 项和为S n ,满足S 4=4S 2,a 3n =3a n +2(n ∈N ∗). (1)求a n ;(2)设b n =2a n ,求数列{b n }的前n 项和T n .18.(12分)在平面直角坐标系xOy 中,点A (﹣4,0),B (﹣1,0),动点P 满足|P A |=2|PB |. (1)求点P 的轨迹Γ的方程;(2)过点A 的直线l 与Γ交于M ,N 两点,∠MON =120°,求l 的方程. 19.(12分)已知双曲线C :x 2﹣y 2=4的左顶点为A ,P 为C 上(异于A )一点. (1)已知点M (6,0),求当|PM |取得最小值时直线PM 的方程; (2)若直线AP 与直线l :x =﹣1交于点Q ,证明:OP →⋅OQ →为定值.20.(12分)某工厂去年12月试产了1000个电子产品,产品合格率为0.85.从今年1月开始,工厂在接下来的一年中将生产这款产品,1月按去年12月的产量和产品合格率生产,以后每月的产量都在前一个月的基础上提高10%,产品合格率比前一个月增加0.01.(1)求今年2月生产的不合格产品的数量,并判断哪个月生产的不合格产品的数量最多; (2)求该工厂今年全年生产的合格产品的数量. 参考数据:1.111≈2.85,1.112≈3.14.21.(12分)如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,DD 1⊥平面ABCD ,DC =2DA =4,DD 1=2√3,DC 1⊥D 1B .(1)求证:DA ⊥DB ;(2)线段C 1D 1上是否存在点E ,使得平面EBD 与平面ABB 1A 1的夹角为π4?若存在,求D 1E 的长;若不存在,请说明理由.22.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(﹣1,0),F 2(1,0),C 上不同两点A ,B 满足F 1A →=λF 2B →(λ>0),当λ=1时,|F 1A →|=83.(1)求C 的方程;(2)设直线F 1B ,F 2A 交于点P ,已知△P AB 的面积为1,求△P AF 1与△PBF 2的面积之和.2023-2024学年福建省厦门市高二(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等比数列{a n }满足a 3=√3,a 7=3√3,则a 5=( ) A .−2√3B .﹣3C .3D .2√3解:因为等比数列{a n }满足a 3=√3,a 7=3√3,所以(a 5)2=a 3•a 7=9. 又因为a 5=a 3•q 2,即a 5与a 3同号, 故a 5=3. 故选:C .2.已知直线l 1的倾斜角为π3,直线l 2过点(−1,√3),若l 1∥l 2,则l 2在y 轴上的截距为( )A .−2√3B .﹣2C .2D .2√3解:l 1的倾斜角为π3,其斜率为k =tan π3=√3,则直线l 2的方程为:y −√3=√3(x +1),令x =0,得y =2√3. 故选:D .3.点P (0,2)到双曲线C :x 2−y 24=1的渐近线的距离为( ) A .2√55B .4√55C .2√1717D .4√1717解:∵双曲线C :x 2−y 24=1的渐近线方程为:y =±2x ,即2x ±y =0, ∴点P (0,2)到双曲线C :x 2−y 24=1的渐近线的距离d =|0±2|√2+(±1)=2√55. 故选:A .4.在四棱锥P ﹣ABCD 中,底面ABCD 为平行四边形,点E 满足CE →=2EP →,则AE →=( ) A .12AB →+12AD →−12AP →B .12AB →+12AD →−23AP →C .13AB →+13AD →+23AP →D .23AB →+23AD →+13AP →解:∵CE →=2EP →,∴CE →=23CP →,∴AE →=AC →+CE →=AB →+AD →+23CP →=AB →+AD →+23(AP →−AC →)=AB →+AD →+23AP →−23(AB →+AD →)=13AB →+13AD →+23AP →.故选:C .5.已知数列{a n }的前n 项和为S n ,若3S n =a n ﹣2,则a n 的最大值为( ) A .﹣1B .−12C .12D .1解:3S n =a n ﹣2,当n =1时,3a 1=a 1﹣2,∴a 1=﹣1, 当n ≥2时,3S n ﹣1=a n ﹣1﹣2,两式相减得,3(S n ﹣S n ﹣1)=a n ﹣a n ﹣1, ∴3a n =a n ﹣a n ﹣1, ∴a n a n−1=−12(n ≥2),∴数列{a n }是首项为﹣1,公比为−12的等比数列,∴a n =﹣1×(−12)n−1=(﹣1)n ×(12)n−1,∵(12)n ﹣1的值随着n 的增大而减小,∴当n =2时,a n 的值最大,最大值为a 2=12.故选:C .6.已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,上一点P 满足PF 1⊥PF 2,A 为线段PF 2的中垂线与Γ的交点,若△APF 1的周长为72a ,则Γ的离心率为( )A .√64B .√104C .√63 D .√32解:因为△APF 1的周长为72a ,所以|AP|+|AF 1|+|PF 1|=7a2,因为A 为线段PF 2的中垂线与Γ的交点,所以|AP |=|AF 2|,所以|AF 2|+|AF 1|+|PF 1|=7a2, 由因为|AF 1|+|AF 2|=2a , 所以|PF 1|=7a 2−2a =3a 2, 所以|PF 2|=2a −3a 2=a2,又因为PF 1⊥PF 2,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, 所以(3a 2)2+(a2)2=4c 2, 即5a 2=8c 2,即c 2a 2=58,所以e =c a =√104.故选:B .7.已知梯形ABCD 中,AB ∥CD ,∠ABD =120°,AB =3,BD =2,DC =1.如图,将△ABD 沿对角线BD 翻折至△A ′BD ,使得A ′C =3√3,则异面直线A ′B ,CD 所成角的余弦值为( )A .34B .45C .56D .67解:因为AB ∥CD ,∠ABD =120°,所以∠BDC =120°,因为A ′C →=A ′B →+BD →+DC →,所以|A ′C →|2=A′B →2+BD →2+DC →2+2A ′B →⋅BD →+2BD →⋅DC →+2A ′B →⋅DC →,所以27=9+4+1+2×3×2×cos60°+2×2×1×cos60°+2×3×1×cos <A′B →,DC →>, 解得cos <A′B →,DC →>=56,因为异面直线夹角的范围为(0°,90°], 所以异面直线A ′B ,CD 所成角的余弦值为56.故选:C .8.抛物线有一个重要的性质:从焦点出发的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,此时反射面为抛物线在该点处的切线.过抛物线C :x 2=8y 上的一点P (异于原点O )作C 的切线l ,过O 作l 的平行线交PF (F 为C 的焦点)于点Q ,则|OQ |的取值范围为( ) A .(0,2)B .(0,4)C .(0,6)D .(0,8)解:抛物线C :x 2=8y 的焦点F (0,2), 由题意可设P (x 0,x 028),x 0≠0,由x 2=8y ,得y =18x 2,则y ′=14x ,所以k OQ=k l=x0 4,所以l OQ:y=x04x,l FP:y=x02−168x0x+2,联立方程可得Q(16x0x02+16,4x o2x02+16),所以|OQ|2=16x02(16+x02)(x02+16)2=16x02x02+16=161+16x02∈(0,16),即|OQ|∈(0,4).故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合M={(x,y)|x2+y2≤4},N={(x,y)|(x﹣a)2+y2≤1}.若N⊆M,则实数a可以为()A.0B.12C.1D.2解:∵N⊆M,∴圆(x﹣a)2+y2=1在圆x2+y2=4内部,如图所示:∴﹣1≤a≤1,观察四个选项可知,A,B,C正确,D错误.故选:ABC.10.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,点E,F分别是DD1和BD1的中点,则()A .C 1F ∥AEB .C 1F ⊥A 1DC .点F 到平面EAC 的距离为√63D .直线C 1F 与平面EAC 所成角的正弦值为√73解:建系如图,则根据题意可得C 1(2,2,2),F (1,1,1),A (0,0,0), E (0,2,1),A 1(0,0,2),D (0,2,0),C (2,2,0), ∴C 1F →=(−1,−1,−1),AE →=(0,2,1),A 1D →=(0,2,−2), AF →=(1,1,1),AC →=(2,2,0),∴C 1F →与AE →不共线,∴C 1F 与AE 不平行,∴A 选项错误; ∵C 1F →⋅A 1D →=0,∴C 1F ⊥A 1D ,∴B 选项正确;设平面EAC 的法向量为n →=(x ,y ,z),则{n →⋅AE →=2y +z =0n →⋅AC →=2x +2y =0,取n →=(1,−1,2),∴点F 到平面EAC 的距离为|AF →⋅n →||n →|=√6=√63,∴C 选项正确; ∴直线C 1F 与平面EAC 所成角的正弦值为: |cos <C 1F →,n →>|=|C 1F →⋅n →||C 1F →||n →|=2√3×√6=√23,∴D 选项错误. 故选:BC .11.已知曲线C :x 2sin α﹣y 2cos α=1,其中α∈[0,π],则( ) A .存在α使得C 为圆 B .存在α使得C 为两条直线C .若C 为双曲线,则α越大,C 的离心率越大D .若C 为椭圆,则α越大,C 的离心率越大解:由α∈[0,π],得sin α∈[0,1],cos α∈[﹣1,1], 对于A ,当α=3π4时,sin α=√22,cos α=−√22,曲线C 可化为√22x 2+√22y 2=1,即x 2+y 2=√2,表示圆,即A 正确;对于B ,当α=π2时,sin α=1,cos α=0,曲线C 可化为x 2=1,即x =1或x =﹣1,表示两条直线,即B 正确;对于C ,当α∈(0,π2)时,曲线C 为双曲线,离心率e =√1+1cosα1sinα=√1+tanα,在α∈(0,π2)上单调递增,所以α越大,C 的离心率越大,即C 正确;对于D ,当α∈(π2,3π4)∪(3π4,π)时,曲线C 为椭圆,若焦点在x 轴上,则α∈(3π4,π),离心率e =√1−1−cosα1sinα=√1+tanα,在α∈(3π4,π)上单调递增,若焦点在y 轴上,则α∈(π2,3π4),离心率e =√1−1sinα1−cosα=√1+1tanα,在α∈(π2,3π4)上单调递减, 所以α越大,C 的离心率不是越大,即D 错误. 故选:ABC .12.若数列{a n }满足a n+12+2a n a n+1−2a n 2=0,则( )A .数列{a n }是等比数列B .当a 1=1时,a 3的所有可能取值的和为6C .当a 1=1时,a 10的取值有10种可能D .当a 1>0时,12a 1+a 2+12a 2+a 3+12a 3+a 4+⋯+12a 2023+a 2024<1a 2024解:选项A :由a n+12+2a n a n+1−2a n 2=0,可知当a 1=0,a 2=0时,满足递推式,但此时数列{a n }不是等比数列,故选项A 错误; 当a n ≠0时,(a n+1a n )2+2an+1a n −2=0,则a n+1a n=−1−√3或a n+1a n=−1+√3,所以a n =a 1⋅a 2a 1⋅a 3a 2⋯⋯an a n−1=a 1⋅(−1−√3)k ⋅(−1+√3)n−1−k ,其中k =0,1,2,3,⋯,n ﹣1, 化简可得:a n =a 1⋅(−1+√3)n−1⋅(−1−3−1+√3)k=a 1⋅(−1+√3)n−1⋅(−2−√3)k ,其中k =0,1,2,3,⋯,n ﹣1,当a 1=1时,a n 的取值共有n 种,其和A n =∑ n−1k=0(−1+√3)n−1⋅(−2−√3)k =(−1+√3)n−1∑ n−1k=0(−2−√3)k,故选项B ,C 正确; 由a n+12+2a n a n+1−2a n 2=0,可得a n+12+2a n a n+1=2a n 2⇔1a n+1(2a n +a n+1)=12a n2⇔2a n a n+1(2a n +a n+1)=1a n,即1a n=a n+1+2a n −a n+1a n+1(2a n +a n+1)=1a n+1−12a n +a n+1,所以1a n+1+2a n=1a n+1−1a n,累加可得12a 1+a 2+12a 2+a 3+12a 3+a 4+⋯+12a n +a n+1=1a n+1−1a 1, 故当a 1>0时,12a 1+a 2+12a 2+a 3+12a 3+a 4+⋯+12a 2023+a 2024<1a 2024,故选项D 正确.故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.已知A (1,1,0),B (1,0,﹣1),C (1,x +2,2x )三点共线,则x = 1 . 解:因为A (1,1,0),B (1,0,﹣1),C (1,x +2,2x ), 所以a →=AB →=(0,﹣1,﹣1),b →=AC →=(0,x +1,2x ), 因为A ,B ,C 三点共线,所以a →与b →共线,所以存在实数λ,使a →=λb →,即(0,﹣1,﹣1)=(0,λ(x +1),2λx ), 所以λ(x +1)=﹣1,2λx =﹣1,解得λ=−12,x =1.故答案为:1.14.已知抛物线C :y 2=4x 的焦点为F ,M 是C 上一点,△MOF 的面积为2,则|MF |= 5 . 解:由题意知,F (1,0),p =2,因为△MOF 的面积为2,所以2=12•|OF |•|y M |=12⋅1⋅|y M |,即|y M |=4,所以x M =y M 24=164=4,由抛物线的定义知,|MF |=x M +p2=4+1=5.故答案为:5.15.已知圆O :x 2+y 2=1和圆O 1:(x −2)2+y 2=1,过动点P 分别作圆O ,圆O 1的切线P A ,PB (A ,B 为切点),且|P A |2+|PB |2=18,则|P A |的最大值为 √15 . 解:根据题意,设P 的坐标为(m ,n ),圆O :x 2+y 2=1,其圆心为(0,0),半径为r 1=1, P A 为圆O 的切线,则|PO |2=|P A |2+1,则有m 2+n 2=|P A |2+1, 圆O 1:(x −2)2+y 2=1,其圆心O 1为(2,0),半径为r 2=1,PB为圆O1的切线,则|PO1|2=|P A|2+1,则有(m﹣2)2+n2=|PB|2+1,又由|P A|2+|PB|2=18,则有(m2+n2)+[(m﹣2)2+n2]=20,变形可得:(m﹣1)2+n2=9,则P的轨迹是以(1,0)为圆心,半径为R=3的圆,设M为(1,0),则|MO|的最大值为3+1=4,故|P A|的最大值为√16−1=√15.故答案为:√15.16.已知直线l1:y=2x与直线l2:y=x﹣1,点P1是l2与x轴的交点.过P1作x轴的垂线交l1于点Q1,过Q1作y轴的垂线交l2于点P2,过P2作x轴的垂线交l1于点Q2,过Q2作y轴的垂线交l2于点P3,依此方法一直继续下去,可得到一系列点P n,Q n,则|P3Q3|=8;设P n的坐标为(x n,y n),则数列{x n+1x n+1⋅y n+1}的前n项和为2n−12n+1−1.解:根据题意可得y n=x n﹣1,P n(x n,x n﹣1),则Q n(x n,2x n),P n+1(x n+1,2x n),∴y n+1=2x n,即x n+1﹣1=2x n,∴x n+1+1=2(x n+1),又x1+1=2,∴x n+1=2n,∴x n=2n−1,∴|P n Q n|=2x n﹣(x n﹣1)=x n+1=2n,∴|P3Q3|=23=8;∴x n+1x n+1⋅y n+1=2n(2n+1−1)(2n+1−2)=2n−1(2n+1−1)(2n−1)=12(12n−1−12n+1−1),∴数列{x n+1x n+1⋅y n+1}的前n项和为:1 2[(1−13)+(13−17)+⋅⋅⋅+(12n−1−12n+1−1)]=12(1−12n+1−1)=2n−12n+1−1.故答案为:8;2n−12n+1−1.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等差数列{a n}的前n项和为S n,满足S4=4S2,a3n=3a n+2(n∈N∗).(1)求a n;(2)设b n=2a n,求数列{b n}的前n项和T n.解:(1)设数列{a n}的公差为d,由S4=4S2得,4a1+6d=4(2a1+d),即d=2a1①,因为a3n=3a n+2,所以a1+(3n﹣1)d=3[a1+(n﹣1)d]+2,即d=a1+1②,联立①②解得d=2,a1=1,所以a n=1+2(n﹣1)=2n﹣1;(2)b n=2a n=22n−1=2•4n﹣1,所以数列{b n}是以2为首项,4为公比的等比数列,所以T n=2(1−4n)1−4=2(4n−1)3.18.(12分)在平面直角坐标系xOy中,点A(﹣4,0),B(﹣1,0),动点P满足|P A|=2|PB|.(1)求点P的轨迹Γ的方程;(2)过点A的直线l与Γ交于M,N两点,∠MON=120°,求l的方程.解:(1)设P(x,y),因为|P A|=2|PB|,所以√(x+4)2+y2=2√(x+1)2+y2,化简得x2+y2=4,所以点P的轨迹Γ的方程为x2+y2=4.(2)因为∠MON=120°,|OM|=|ON|=2,所以圆心O到直线l的距离d=2sin30°=1,①当直线l的斜率不存在时,l与圆无交点,舍去;②当直线l的斜率存在时,设l:y=k(x+4),即kx﹣y+4k=0,所以d=|4k|√k+1=1,解得k=±√1515,所以l的方程为x+√15y+4=0或x−√15y+4=0.19.(12分)已知双曲线C:x2﹣y2=4的左顶点为A,P为C上(异于A)一点.(1)已知点M(6,0),求当|PM|取得最小值时直线PM的方程;(2)若直线AP 与直线l :x =﹣1交于点Q ,证明:OP →⋅OQ →为定值.(1)解:设P (x 0,y 0),则x 02−y 02=4,x 0<﹣2或x 0>2,|PM |=√(x 0−6)2+y 02=√x 02−12x 0+36+x 02−4=√2(x 0−3)2+14≥√14, 当x 0=3时,|PM |取得最小值√14,此时y 0=±√5, 即P (3,√5),或P (3,−√5), 所以直线PM 的方程y =√53−6(x −6),或y =−√53−6(x −6),即直线PM 的方程√5x +3y ﹣6√5=0,或√5x −3y ﹣6√5=0. (2)证明:双曲线C :x 2﹣y 2=4的左顶点为A (﹣2,0), 依题意设AP :x =my ﹣2(m ≠0且m ≠±1), 令x =﹣1,则y =1m ,即Q (﹣1,1m), 所以OQ →=(−1,1m),联立{x 2−y 2=4x =my −2,消x 得(m 2﹣1)y 2﹣4my =0,解得y P =4mm 2−1,y A =0,所以x P =4m 2m 2−1−2=2m 2+2m 2−1,即P (2m 2+2m 2−1,4m m 2−1),所以OP →=(2m 2+2m 2−1,4mm 2−1),所以OP →⋅OQ →=−2m 2+2m 2−1+4m m 2−1×1m =−2m 2+2m 2−1=−2,故OP →⋅OQ →为定值﹣2.20.(12分)某工厂去年12月试产了1000个电子产品,产品合格率为0.85.从今年1月开始,工厂在接下来的一年中将生产这款产品,1月按去年12月的产量和产品合格率生产,以后每月的产量都在前一个月的基础上提高10%,产品合格率比前一个月增加0.01.(1)求今年2月生产的不合格产品的数量,并判断哪个月生产的不合格产品的数量最多; (2)求该工厂今年全年生产的合格产品的数量. 参考数据:1.111≈2.85,1.112≈3.14.解:(1)记从今年1月起,第n 月的产量为a n ,第n 月的产品合格率为b n , 由题可知,数列{a n }为等比数列,首项a 1=1000,公比q =1+10%=1.1, 数列{b n }为等差数列,首项b 1=0.85,公差d =0.01,所以a n =1000×1.1n ﹣1,b n =0.85+(n ﹣1)×0.01=0.0ln +0.84,所以今年2月份生产的不合格产品数为a 2(1﹣b 2)=1000×1.1×(1﹣0.86)=154, 设第n 月生产的不合格产品数为c n ,则c n =a n (1−b n )=10×1.1n−1×(16−n),所以c n+1c n=10×1.1n ×(15−n)10×1.1n−1×(16−n)=16.5−1.1n16−n ,当n <5时,c n+1c n >1;当n =5时,c n+1c n =1;当n >5时,c n+1c n<1,所以c 1<c 2<••<c 5=c 6>c 7>••>c 12,即5月或6月生产的不合格产品数最多; (2)设今年前n 个月生产的合格产品总数为S n ,则S n =a 1b 1+a 2b 2+•+a n b n , 所以S 12=850×1.10+860×1.11+870×1.12+…+950×1.110+960×1.111①, 所以1.1S 12=850×1.11+860×1.12+870×1.13+…+950×1.111+960×1.112②, ①﹣②得﹣0.1S 12=850+10×(1.1+1.12+…+1.111)﹣960×1.112 =850+10×1.1(1−1.111)1−1.1−960×1.112=740﹣840×1.112,所以S 12=10×(860×1.112−740)≈19604, 即该工厂今年全年生产的合格产品总数约为19604个.21.(12分)如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,DD 1⊥平面ABCD ,DC =2DA =4,DD 1=2√3,DC 1⊥D 1B .(1)求证:DA ⊥DB ;(2)线段C 1D 1上是否存在点E ,使得平面EBD 与平面ABB 1A 1的夹角为π4?若存在,求D 1E 的长;若不存在,请说明理由.(1)证明:因为DD 1⊥平面ABCD ,DA ⊂平面ABCD ,所以DD 1⊥DA ,所以DD 1→⋅DA →=0, 因为DC 1⊥D 1B ,所以DC 1→⋅D 1B →=0,又因为DC 1→=DC →+DD 1→,D 1B →=DB →−DD 1→=DA →+DC →−DD 1→, 所以(DC →+DD 1→)⋅(DA →+DC →−DD 1→)=0,化简得DA →⋅DC →=−4,所以DA →⋅DB →=DA →⋅(DA →+DC →)=DA →2+DA →⋅DC →=4−4=0,所以DA ⊥DB . (2)解:假设存在E 点满足条件.因为DD 1⊥平面ABCD ,DA ⊥DB , 以D 为原点,建立如图所示空间直角坐标系D ﹣xyz ,则D (0,0,0),A (2,0,0),B(0,2√3,0),C(−2,2√3,0),D 1(0,0,2√3),C 1(−2,2√3,2√3),DB →=(0,2√3,0),AA 1→=(0,0,2√3),D 1C 1→=(−2,2√3,0), 设D 1E →=λD 1C 1→(0≤λ≤1),则DE →=DD 1→+D 1E →=(﹣2λ,2√5λ,2,5),设平面EBD 的一个法向量为n 1→=(x 1,y 1,z 1),由{n 1→⋅DB →=2√3y 1=0n 1→⋅DE →=−2λx 1+2√3λy 1+2√3z 1=0,令x 1=√3,得z 1=λ,所以 n 1→=(√3,0,λ),设平面ABB 1A 1的一个法向量n 2→=(x 2,y 2,z 2),可得{n 2→⋅AA 1→=2√3z 2=0n 2→⋅AB →=−2x 2+2√3y 2=0,令x 2=√3,得y 2=1,所以n 2→=(√3,1,0),所以cos〈n 1→,n 2→〉=n 1→⋅n 2→|n 1→|⋅|n 2→|=32√3+λ,因为平面EBD 与平面D 1BD 的夹角为π4,即2√3+λ2=√22,解得λ=±√62,又因为0≤λ≤1,所以λ=±√62(舍去),所以线段C 1D 1上不存在点E 使得平面EBD 与平面ABB 1A 1的夹角为π4.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(﹣1,0),F 2(1,0),C 上不同两点A ,B 满足F 1A →=λF 2B →(λ>0),当λ=1时,|F 1A →|=83.(1)求C 的方程;(2)设直线F 1B ,F 2A 交于点P ,已知△P AB 的面积为1,求△P AF 1与△PBF 2的面积之和. 解:(1)当λ=1时,F 1A →=F 2B →,则四边形F 1F 2BA 为平行四边形,由椭圆的对称性可知,四边形F 1F 2BA 为矩形,即F 1A ⊥x 轴,所以|F 1A|=b 2a ,所以{b 2a 2=83a 2−b 2=1,解得{a =3b =2√2,所以椭圆C 的标准方程为x 29+y 28=1.(2)因为F 1A →=λF 2B →,所以|F 1P||PB|=|AP||PF 2|=|F 1A||F 2B|=λ,由对称性,不妨设P (x 0,y 0),y 0>0, 由S △PAB =S △PFF 1=1,可得y 0=1,又S △PAF 1=λS △PAB =λ,S △PBF =1λS △PAB =1λ,所以S △PAF 1+S △PBF 2=λ+1λ,延长AF 1交C 于点D ,易知B ,D 关于原点对称,设直线F 1A :x =ty ﹣1,t 显然存在,设A (x 1,y 1),D (x 2,y 2),B (﹣x 2,﹣y 2), 联立方程组{x =ty −18x 2+9y 2=72,化简可得:(8t 2+9)y 2﹣16ty ﹣64=0, 所以Δ=256t 2+256(8t 2+9)>0,y 1+y 2=16t 8t 2+9,y 1y 2=−648t 2+9, 直线F 1B :x +1=−x 2+1−y 2y ,直线F 2A :x −1=x 1−1y 1y , 所以{x 0+1=x 2−1y 2x 0−1=x 1−1y 1,即x 2−1y 2−x 1−1y 1=2,所以x 2−1y 2−x 1−1y 1=ty 2−2y 2−ty 1−2y 1=2(y 2−y 1)y 1y 2=2,即y 2﹣y 1=y 1y 2,所以(y 2−y 1)2=y 12y 22,(y 2+y 1)2=y 12y 22+4y 1y 2,代入韦达定理可得:(16t 8t 2+9)2=(648t 2+9)2−2548t 2+9,解得t 2=79,由F 1A →=λF 2B →,可得y 1=﹣λy 2, 所以S △PAF 1+S △PBF 2=λ+1λ=−y 1y 2−y 2y 1=−y 12+y 22y 1y 2=−(y 1−y 2)2+2y 1y 2y 1y 2=−y 1y 2−2=648t 2+9−2=302137.。
山东省师范大学附属中学2017-2018学年高二上学期期末考试数学(理)试题

毫米黑色签字笔将自己地,准考证号,考试科目填写在规定地位置上A8请公仔细算相还每天走地路程为前一天地一半.既不充分也不必要款件6,且第II 卷二、填空题:本题共4小题,每小题5分,共20分。
13.直线x y 4=与曲线2x y =围成地封闭图形地面积为________.14.若函数a x x x f +-=12)(3地极大值为10,则)(x f 地极小值为________.15.已知0>x ,0>y ,若491x y+=,则y x +地最小值为________.16.函数)(x f 地定义域为R ,2018)2(=-f ,若对任意地R x ∈,都有x x f 2)(<'成立,则不等式2014)(2+<x x f 地解集为________.三,解答题:共70分。
解答应写出文字说明,证明过程或演算步骤。
17.(10分)已知}{n a 是等比数列,21=a ,且1a ,13+a ,4a 成等差数列.(1)求数列}{n a 地通项公式。
(2)若n n a n b ⋅=,求数列}{n b 地前n 项和n S .18.(12分)在ABC ∆中,角A ,B ,C 所对地边分别为a ,b ,c ,且A c c C a cos sin 3+=.(1)求角A 地大小。
(2)若32=a ,ABC ∆地面积为3,求ABC ∆地周长.19.(12分)已知函数x x x x f ln )(2-+=.(1)求曲线)(x f y =在点))1(,1(f 处地切线方程。
(2)求函数)(x f y =地极值,并确定该函数零点地个数.)过椭圆地左焦点15.分。
解答应写出文字说明,证明过程或演算步骤。
第17考题考生依据要求作答。
(一)必考题:共∴∆19.切线方程为: (12) (3)椭圆方程为依题:∴()f x 在1(0,)a 上单调递增,在1(,)a+∞上单调递减.综上可知:若0a ≤,()f x 在(0,)+∞上单调递增。