数学建模——混合整数规划

合集下载

混合整数规划及其应用

混合整数规划及其应用

混合整数规划及其应用混合整数规划(Mixed Integer Programming,MIP)是运筹学中一个重要的分支,它可以用于解决包括生产计划、物流运输、资源调度等实际问题。

本文将探讨混合整数规划的基本概念、典型模型以及应用范例。

一、基本概念1.定义混合整数规划是指在线性规划基础上加入了整数变量的限制条件,有时还将变量限制为 0/1 取值,即 0 表示不选取某个变量,1 表示选取某个变量。

2.数学模型混合整数规划的一般数学模型如下:$max\ Z=c^{T}x+d^{T}y$$s.t.$$A x+B y \leq b$$x\in R^{n}, y \in Z^{m}$其中,$x$ 是连续变量向量,$y$ 是整数变量向量,目标函数$Z$ 为一线性函数,$A$, $B$ 为系数矩阵,$b$ 为约束条件的取值。

本模型中整数变量 $y$ 的限制条件可以是 $y \in\{0,1\}^{m}$ 也可以是 $y \in Z^{m}(m>0)$。

3.求解方法求解混合整数规划可以采用分枝界限法、Gomory 切割法、随机搜索等方法。

其中,分枝界限法是运筹学中最基本的解法,其最优性原理为“不断将问题分解成子问题,逐步地去掉某些变量,直到问题变为纯整数规划问题为止,然后通过确定某些变量取值来求解”。

随机搜索法则是通过不断随机生成可行解并比较其目标值的大小进行求解。

二、典型模型1.背包问题背包问题中,有 $n$ 种不同体积和不同价值的物品,需要将它们装入一个容量为 $V$ 的背包。

每种物品只有选择或不选择两种情况。

设$w_{i}$ 为第 $i$ 种物品的价值,$v_{i}$ 为第 $i$ 种物品的体积,则该问题的混合整数规划模型为:$max\ \sum_{i=1}^{n} w_{i} x_{i}$$s.t.$$\sum_{i=1}^{n} v_{i} x_{i} \leq V$$x_{i} \in\{0,1\}$2.生产调度问题生产调度问题中,对于 $n$ 种产品需要进行加工,但是加工需要设备并且不同设备的加工能力存在差异。

基于混合整数线性规划的多目标物流路径规划数学建模

基于混合整数线性规划的多目标物流路径规划数学建模

基于混合整数线性规划的多目标物流路径规划数学建模多目标物流路径规划是指在满足多个目标的前提下,确定物流运输网络中各个节点之间的最佳路径和运输量。

在实际生产和配送过程中,物流路径规划的优化对于提高物流效率和降低物流成本具有重要意义。

本文将介绍基于混合整数线性规划的多目标物流路径规划数学建模方法。

首先,我们需要明确多目标物流路径规划的目标。

一般来说,物流路径规划需要同时满足以下多个目标:最短路径、最小成本、最小运输时间、最小能源消耗、最小污染排放等。

在实际问题中,可能还会根据具体需求提出其他目标。

我们将这些目标定义为优化目标函数。

其次,我们需要建立多目标物流路径规划的数学模型。

多目标规划中,常用的方法是加权法。

即将每个目标根据其重要性分配一个权重,然后将多个目标函数线性组合成一个总目标函数。

以最短路径和最小成本为例,假设分别对应的权重为w1和w2,则总目标函数可以表示为Z = w1 * f1 + w2 * f2,其中f1和f2分别表示最短路径和最小成本的目标函数。

在建立目标函数之后,我们需要确定决策变量,即模型中需要优化的变量。

在物流路径规划中,常用的决策变量包括运输路径、运输量、起点和终点等。

我们可以使用二维矩阵表示网络节点之间的路径,使用变量x[i,j]表示节点i到节点j的路径是否存在。

同时,使用变量y[i,j]表示节点i到节点j的运输量。

接下来,我们需要定义约束条件,以限制变量的取值范围。

常见的约束条件包括物流路径一致性条件、运输量限制条件、起点和终点限制条件等。

例如,路径一致性条件可以表示为sum(x[i,j]) = 1,即每个节点只能有一条进出路径。

运输量限制条件可以表示为y[i,j] <= C[i,j],即运输量不能超过节点i到节点j的最大运输能力。

最后,我们可以使用混合整数线性规划求解器对建立的多目标物流路径规划模型进行求解。

求解过程中,需要根据具体情况设置目标函数权重和约束条件,并根据求解结果进行调整和改进。

数学建模中的整数规划与混合整数规划

数学建模中的整数规划与混合整数规划

数学建模作为一种解决实际问题的方法,旨在从实际问题中抽象出数学模型,并运用数学方法来对模型进行分析和求解。

在数学建模过程中,整数规划与混合整数规划是两种常用的数学工具,适用于解决许多实际问题。

整数规划是指在约束条件下,目标函数为整数变量的线性规划问题。

而混合整数规划是在整数规划的基础上,允许部分变量为实数,部分变量为整数。

这两种规划方法可以广泛应用于许多领域,如物流、生产规划、资源分配等。

整数规划的一个经典问题是背包问题。

假设有一个容量为C的背包,有n个物品,每个物品有自己的重量w和价值v。

目标是在不超过背包容量的情况下,选择装入背包的物品,使得背包中的物品总价值最大化。

这个问题可以用整数规划的方式进行建模和求解,将每个物品视为一个二进制变量,表示是否选择该物品,目标函数为物品价值的总和,约束条件为背包容量不能超过C。

通过对目标函数和约束条件的线性化处理,可以得到整数规划模型,并利用整数规划算法进行求解,得到最优解。

混合整数规划在实际问题中更为常见。

一个典型的实际问题是运输网络设计问题。

假设有一组供应地和一组需求地,需要建立供需之间的运输网络,以满足需求地对各种商品的需求,同时要考虑供给地的产能限制和运输成本。

这个问题可以用混合整数规划的方法进行建模和求解。

将供需地视为节点,建立连通性矩阵表示供需之间的运输路径,将路径的运输量作为决策变量,目标函数可以是运输成本的最小化,约束条件可以包括供给地产能限制和需求地需求量的满足。

通过对目标函数和约束条件的线性化处理,可以得到混合整数规划模型,并利用相应的求解算法进行求解,得到最优的运输网络设计方案。

整数规划与混合整数规划在数学建模中起着重要的作用。

它们既具备一般整数规划问题的优点,可以提高问题的精度和可行性,又具备一般线性规划问题的优点,可以通过线性规划算法来求解。

同时,整数规划与混合整数规划也存在一些挑战,如求解时间长、难以处理大规模问题等。

对于这些问题,研究者们一直在不断提出新的算法和优化方法,以提高整数规划与混合整数规划的求解效率。

数学建模——混合整数规划

数学建模——混合整数规划

实验四 混合整数规划一、问题重述某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。

根据专家经验,对每个项目投资总额不能太高,应有上限。

这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。

请帮该公司解决以下问题:(1) 就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高?(2) 在具体投资这些项目时,实际还会出现项目之间互相影响的情况。

公司咨询有关专家后,得到以下可靠信息:同时投资项目A 1,A 3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A 4,A 5,它们的年利润分别是1045万元,1276万元;同时投资项目A 2,A 6,A 7,A 8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资? 其中M 为你的学号后3位乘以10。

(3) 如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。

投资项目总体风险可用投资项目中最大的一个风险来衡量。

专家预测出各项目的风险率,如表2所示。

二、符号说明i A ::投资额;i b :i A 个项目所获得的年利润;i C :第i A 个项目投资所获得的利润; 'i C :第i A 个项目同时投资所获得的利润;i m :投资i A 的上限; i y :表示0—1变量;i p :投资第i A 个项目的投资风险;三、模型的建立 对于问题一目标函数:81max i i i c x ==∑s.t. 150000i i i i i ib x b x m ⎧≤⎪⎨⎪≤⎩∑对于问题二 设定0—1变量131130...,1...,A A y A A ⎧⎨⎩项目不同时投资项目同时投资 452450...,1...,A A y A A ⎧⎨⎩项目不同时投资项目同时投资 2678326780...,,1...,,A A A A y A A A A ⎧⎨⎩,项目不同时投资,项目同时投资 目标函数:''''11133111332445524455''''322667788322667788max ()(1)()()(1)()()(1)()y x c x c y x c x c y x c x c y x c x c y x c x c x c x c y x c x c x c x c =++-++++-++++++-+++s.t. 11313124545232678267831500001000i i i i i ib x k y x xx x y ky x x x x y k y x x x x x x x x y kb x m ⎧≤⎪⎪=⎪⎪≤⎪⎪≥⎪⎪≤⎨⎪⎪≥⎪⎪≤⎪⎪≥⎪⎪≤⎩∑对于问题三:目标函数:max min max()i iii i i c x b x p =∑s.t. 150000i i i i i ib x b x m ⎧≤⎪⎨⎪≤⎩∑对于问题三模型的简化固定投资风险,优化收益,设a 为固定的最大风险。

数学建模各类方法归纳总结

数学建模各类方法归纳总结

数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。

随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。

本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。

一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。

它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。

贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。

2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。

它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。

数理统计模型在市场预测、风险评估等领域有着重要的应用。

3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。

线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。

4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。

非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。

二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。

它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。

神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。

2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。

它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。

遗传算法模型在组合优化、机器学习等领域具有广泛的应用。

3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。

它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。

线性规划问题的混合整数规划算法研究

线性规划问题的混合整数规划算法研究

线性规划问题的混合整数规划算法研究线性规划是一种常见的数学优化方法,广泛应用于各个领域的决策问题中。

它通过构建数学模型,寻找可以使目标函数最小或最大的变量值,帮助决策者更好地制定方案。

但是,在某些实际问题中,变量需要满足整数约束,而线性规划只能解决实数问题,所以需要混合整数规划算法来解决这类问题。

一、混合规划问题混合规划问题是指线性规划问题中包含整数(0或正整数)变量的约束条件,也就是说,它在线性规划的基础上增加了一定的约束。

这种情况下,原本的线性规划算法无法得到满足整数要求的最优解。

混合规划问题的解决方法是使用混合整数规划算法。

二、混合整数规划算法混合整数规划算法(Mixed Integer Programming,MIP)是指解决包含整数、实数变量的线性规划问题的算法。

MIP算法的核心思想是将整数规划问题转化为线性规划问题,然后利用线性规划算法求得最优解。

它的过程包括建立问题的数学模型、求解线性规划问题、判断是否满足整数约束、选择分支策略、再次求解线性规划问题等等。

在其中,转换整数规划问题的线性松弛问题是MIP算法求解混合整数规划问题的重要环节。

线性松弛问题是将整数规划中整数变量的约束条件转换为线性约束条件的问题。

三、分支定界算法分支定界算法(Branch and Bound Algorithm)是解决混合整数规划问题的一种常用的方法。

在混合整数规划问题中,得到的线性规划问题无法满足整数约束条件,因此,需要将解空间划分为子集,在每个子集上进行测算,再通过分支判定来进一步判断是否继续搜索。

该算法的核心思想是通过每次分支,将问题分成两个子问题,然后只对其中一个问题进行搜索,直到找到最优解。

这个搜索过程的组织和管理是通过数学模型的剪枝法来进行的。

四、混合整数规划软件混合整数规划算法的使用需要专门的数学模型软件,如GAMS、AMPL、CPLEX等软件。

这些软件对MIP算法进行编程优化,使得在求解过程中,可以有效地进行剪枝和搜索,从而得到最优解。

(完整word版)整数规划的数学模型及解的特点

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点整数规划IP (integer programming ):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。

例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。

松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。

若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。

一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming ):指全部决策变量都必须取整数值的整数线性规划。

有时,也称为全整数规划.2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。

3、0—1型整数线性规划(zero —one integer liner programming ):指决策变量只能取值0或1的整数线性规划。

1 解整数规划问题0—1型整数规划0-1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的变量xi 称为0-1变量,或称为二进制变量.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z0—1型整数规划中0—1变量作为逻辑变量(logical variable ),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。

极大值的混合整数规划

极大值的混合整数规划

极大值的混合整数规划混合整数规划(MIP)是运筹学中一类非常重要的优化问题,它将线性规划问题的约束条件加上整数变量的约束,可用于描述许多实际问题,包括生产调度、流程优化、设施选址等。

对于MIP问题,我们往往需要求解其最优解,即满足所有约束条件的目标函数取得的最大值或最小值。

在实际应用中,往往会遇到一些复杂的问题,其中不仅有离散的整数变量,还存在连续的实数变量,这就要求我们使用混合整数规划对问题进行建模和求解。

本文将重点讨论MIP问题中的极大值问题,并介绍一些常用的求解方法。

一、MIP问题的定义混合整数规划模型可以表示为如下形式:$$\max_{x} f(x) = \sum_{j=1}^{n}c_{j}x_{j}$$s.t.$$\begin{cases}Ax\leq b \\ x_{j}\in Z \\ x_{j}\in [l_{j},u_{j}]\end{cases}$$其中,$x$是$n$维向量,$c_{j}$是第$j$个变量的系数,$A$是$m\times n$的矩阵,$b$是$m$维向量,$Z$表示整数集合,$[l_{j},u_{j}]$表示连续变量的取值范围。

二、极大值问题的求解对于MIP问题,我们需要找到目标函数的最大值或最小值。

一般来说,求解最小值问题相对较简单,因为目标函数的下界很容易确定,但求解最大值问题就显得较为困难。

以下是一些常用的求解MIP问题中极大值问题的方法:1. 暴力枚举法暴力枚举法是一种最简单的求解MIP问题的方法,其基本思想是枚举所有可能的解,并比较其结果找到最优解。

但这种方法所需要的时间复杂度是指数级的,对于大规模MIP问题根本不可行。

2. 分支定界法分支定界法是一种常见的穷举法,通过二叉树的方式建立搜索树,并在每一步中对整个问题空间做出一个二分分割,直到找到最优解或确定问题不能有更优解。

这种方法可以有效地减少问题解空间,但同样存在计算复杂度较高的问题,因此并不适用于所有MIP问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 混合整数规划
一、问题重述
某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。

根据专家经验,对每个项目投资总额不能太高,应有上限。

这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。

请帮该公司解决以下问题:
(1) 就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高?
(2) 在具体投资这些项目时,实际还会出现项目之间互相影响的情况。

公司咨询有关专家后,得到以下可靠信息:同时投资项目A 1,A 3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A 4,A 5,它们的年利润分别是1045万元,1276万元;同时投资项目A 2,A 6,A 7,A 8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资? 其中M 为你的学号后3位乘以10。

(3) 如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。

投资项目
总体风险可用投资项目中最大的一个风险来衡量。

专家预测出各项目的风险率,如表2所示。

二、符号说明
i A ::投资额;
i b :i A 个项目所获得的年利润;
i C :第i A 个项目投资所获得的利润; 'i C :第i A 个项目同时投资所获得的利润;
i m :投资i A 的上限; i y :表示0—1变量;
i p :投资第i A 个项目的投资风险;
三、模型的建立 对于问题一
目标函数:8
1max i i i c x ==∑
s.t. 150000i i i i i i
b x b x m ⎧≤⎪
⎨⎪≤⎩∑
对于问题二 设定0—1变量
131130...,1...,A A y A A ⎧⎨
⎩项目不同时投资项目同时投资 452450...,1...,A A y A A ⎧⎨⎩项目不同时投资
项目同时投资 2678326780...,,1...,,A A A A y A A A A ⎧⎨
⎩,项目不同时投资
,项目同时投资 目标函数:''''
11133111332445524455'
'''322667788
322667788max ()(1)()()(1)()()(1)()
y x c x c y x c x c y x c x c y x c x c y x c x c x c x c y x c x c x c x c =++-++++-++
++++-+++
s.t. 1
13
131
24545
23267826783
1500001000i i i i i i
b x k y x x
x x y k
y x x x x y k y x x x x x x x x y k
b x m ⎧≤⎪⎪
=⎪⎪≤⎪⎪≥⎪⎪
≤⎨⎪⎪≥⎪
⎪≤⎪
⎪≥⎪⎪
≤⎩∑
对于问题三:
目标函数:
max min max()
i i
i
i i i c x b x p =∑
s.t. 150000i i i i i i
b x b x m ⎧≤⎪
⎨⎪≤⎩∑
对于问题三模型的简化
固定投资风险,优化收益,设a 为固定的最大风险。

max i i i
c x =∑
s.t.
150000
150000
i i i
i i
i
i i i
q b x
a
b x
b x m



⎪⎪



⎪≤
⎪⎩
∑。

相关文档
最新文档