数字钟设计报告

合集下载

数字时钟设计实验报告

数字时钟设计实验报告

电子课程设计【1 】题目:数字时钟数字时钟设计试验陈述一、设计请求:设计一个24小时制的数字时钟.请求:计时.显示精度到秒;有校时功效.采取中小范围集成电路设计.施展:增长闹钟功效.二、设计计划:由秒时钟旌旗灯号产生器.计时电路和校时电路组成电路.秒时钟旌旗灯号产生器可由振荡器和分频器组成.计时电路中采取两个60进制计数器分离完成秒计时和分计时;24进制计数器完成时计时;采取译码器将计数器的输出译码后送七段数码管显示.校时电路采取开关掌握时.分.秒计数器的时钟旌旗灯号为校时脉冲以完成校时.三、电路框图:图一 数字时钟电路框图四、电路道理图:(一)秒脉冲旌旗灯号产生器秒脉冲旌旗灯号产生器是数字电子钟的焦点部分,它的精度和稳固度决议了数字钟的质量.由振荡器与分频器组合产生秒脉冲旌旗灯号.➢ 振荡器: 通经常应用555准时器与RC 组成的多谐振荡器,经由调剂输出1000Hz 脉冲.➢ 分频器: 分频器功效重要有两个,一是产生尺度秒脉冲旌旗灯号,一是供给功效 扩大电路所须要的旌旗灯号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz 尺度秒脉冲.其电路图如下:译码器译码器译码器时计数器 (24进制) 分计数器 (60进制) 秒计数器 (60进制)校 时 电 路秒旌旗灯号产生器图二秒脉冲旌旗灯号产生器(二)秒.分.时计时器电路设计秒.分计数器为60进制计数器,小时计数器为24进制计数器.➢60进制——秒计数器秒的个位部分为逢十进一,十位部分为逢六进一,从而配合完成60进制计数器.当计数到59时清零着从新开端计数.秒的个位部分的设计:应用十进制计数器CD40110设计10进制计数器显示秒的个位 .个位计数器由0增长到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功效.应用74LS161和74LS11设计6进制计数器显示秒的十位 ,当十位计数器由0增长到5时应用74LS11与门产生一个高电平接到个位.十位的CD40110的清零端,同时产生一个脉冲给分的个位.其电路图如下:图三60进制--秒计数电路➢60进制——分计数电路分的个位部分为逢十进一,十位部分为逢六进一,从而配合完成60进制计数器.当计数到59时清零着从新开端计数.秒的个位部分的设计:来自秒计数电路的进位脉冲使分的个位加1,应用十进制计数器CD40110设计10进制计数器显示秒的个位 .个位计数器由0增长到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功效.应用74LS161和74LS11设计6进制计数器显示秒的十位 ,当十位计数器由0增长到5时应用74LS11与门产生一个高电平接到个位.十位的CD40110的清零端,同时产生一个脉冲给时的个位.其电路图如下:图四60进制--分计数电路➢24进制——时计数电路来自分计数电路的进位脉冲使时的个位加,个位计数器由0增长到9是产生进位,连在十位计数器脉冲输入端CP,当十位计到2且个位计到3是经由74LS11与门产生一个清零旌旗灯号,将所有CD40110清零.其电路图如下:图五24进制--时计数电路➢译码显示电路译码电路的功效是将秒.分.时计数器的输出代码进行翻译,变成响应的数字.用以驱动LED七段数码管的译码器经常应用的有74LS148.74LS148是BCD-7段译码器/驱动器,输出高电平有用,专用于驱动LED七段共阴极显示数码管.若将秒.分.时计数器的每位输出分离送到响应七段数码管的输入端,即可以进行不合数字的显示.在译码管输出与数码管之间串联电阻R作为限流电阻.其电路图如下:图六译码显示电路➢校时电路校时电路是数字钟不成缺乏的部分,每当数字钟与现实时光不符时,须要依据尺度时光进行校时.一般电子表都具有时.分.秒等校时功效.为了使电路简略,在此设计中只进行分和小时的校时.“快校时”是经由过程开关掌握,使计数器对1Hz校时脉冲计数.图中S1为校订用的掌握开关,校时脉冲采取分频器输出的1Hz脉冲,当S1为“0”时可以进行“快校时”. 其电路图如下:图七 校队电路五、试验办法: 1.秒脉冲产生部分采取555多谐振荡器产生1HZ 频率旌旗灯号,作为秒脉冲及整体电路的旌旗灯号输入部分.其仿真电路图如下图所示:图八 秒脉冲产生器仿真电路2、计数电路电子钟计时分为小时.分钟和秒,个中小时为二十四进制,分钟和秒均为六十进制,输出可以用数码管显示,所以请求二十四进制为00000000~00100100计数,六十进制为8910U10C74LS00 123 U11A74LS00 111213U10D74LS00R3 C1S1GND1011U8E74LS04 1HZS2/M2 Q2+5V00000000~01100000计数,并且均为8421码编码情势.(1)小时计数——二十四进制电路仿真用两片74LS160N(分A片.B片)设计一个一百进制的计数器,在24(00100100)处直接掏出所有为1的端口,经由输入与非门74LS00D,再给两个清零端CLR.应用74LS160N异步清零功效完成二十四进制轮回,计数范围为0~23.然后用七段显示译码器74LS47D将A.B两片74LS160N的输出译码给LED数码管.仿真电路如图九所示. :图九 24进制——时计数器仿真电路(2)分钟.秒计数——六十进制电路仿真此电路相似于二十四进制计数器,采取74LS160N设计出一百进制的计数器,在60(01100000)处直接掏出所有为1的端口,经由输入与非门74LS00D,再给两个清零端CLR.应用74LS160N异步清零功效完成六十进制轮回,计数范围为0~59.然后用七段显示译码器74LS47D将 A.B两片74LS160N的输出译码给LED数码管.仿真电路如图所示:图十 60进制——秒计数器仿真电路图十一 60进制——分计数器仿真电路(四)校时校分(秒)电路.数字钟应具有分校订和时校订功效,是以,应截断分个位和时个位的直接计数通路,并采取正常计时旌旗灯号与校订旌旗灯号可以随时切换的电路接入个中.这里应用两个与非门加一个单刀双掷开关来实现校时功效.第一个74LS00D与非门的输入端一端接清零旌旗灯号,另一端接第二个与非门的输入端,第二个74LS00D的输入端一端接计数脉冲,另一端接一个单刀双掷开关.开关接通的一段接地,另一端接高电平.当开关打到另一端时,时或分的个位就单独开端计数,如许就能实现校时功效.其电路图如图所示:图十二校分仿真电路六、试验成果和结论:数字时钟仿真电路图如下图所示,在Multisim11.0中进行仿真,可以实现数字时钟的显示功效.校时功效.显示功效中,小时实现的是24进制,分和秒实现的是60进制,经由过程校时电路可以或许分离校订时和分.图十三数字时钟仿真电路七、设计领会:在本次Multisim仿真进程,从装配软件.选定课题.设计电路.进行仿真.运行成果都本身现实操纵完成.在数字时钟设计中,依据先生上课所讲的内容,可以用两片集成十进制同步计数器74LS160D级联为100进制,再应用其异步清零功效,可以分离实现小时的24进制和分秒的60进制.当然,在仿真进程中也碰到了许多艰苦和问题.比方说,无法直接从秒进位到分和分进位到时,并且在仿真中老是出错.于是本身就教了一些也做数字时钟的同窗,同时在网上查找了相干材料,最后终于用两个与非门和单刀双掷开关实现了从秒到分的进位.分到时的进位功效及校准功效.经由过程本次试验对数电常识有了更深刻的懂得,将其应用到了现实中来,明确了进修电子技巧基本的意义,也达到了其造就的目标.也明确了一个道理:成功就是在不竭摸索中进步实现的,碰到问题我们不克不及泄气.焦躁,甚至废弃,而要静下心来细心思虑,分部检讨,找出最终的原因进行纠正,如许才会有提高,才会一步步向本身的目标接近,才会取得本身所要寻求的成功.当然,本身的仿真技巧和应用才能照样很欠缺的,固然完成了根本的设计请求,但是许多本身想要的扩大功效还未能实现.并且许多时刻会走过许多弯路,糟蹋了许多不须要的时光.不过,此次设计阅历势必使我受益毕生,让我明确若何更好的获取常识,若何更好的理论接洽现实.往后的进修更须要不竭尽力,在获得常识的同时获得快活,真正的自动摸索,自动进修,形成本身的思维方法,不竭应用,不竭朝上进步.。

数字钟课设报告

数字钟课设报告

前言数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计与制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时序电路.通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法.目录一、设计题目 (3)二、设计任务 (3)1.设计要求 (3)2.设计思路 (3)3.任务分工 (4)4.设计原理图 (4)三、设计方案 (4)1、各分电路的功能以及电路图 (4)2、总电路图 (8)四、测试与结果 (9)五、心得体会 (11)六、附件 (13)一、设计题目数字钟二、设计任务1.设计要求设计一个数字钟,实现以下功能:1.输入10MHZ的时钟;2.能显示时、分、秒,24小时制;4.时和分有校正功能;5.整点报时,喇叭响两秒;6.可设定夜间某个时段不报时;2.设计思路(1)为了使电路有计时功能,分别用两个74LS160设计完成两个60进制和一个24进制的计数器。

(2)将已经完成的两个60进制和一个24进制计数器进位连接,使其分和秒满六十进位并清零,时满24清零,完成时、分、秒的计数与进位功能。

(3)用DCD_HEX七段译码器数码管设计完成电路,完成数字显示功能,从而显示当前时间。

(4)用或门、与门、非门、与非门等电路元件进行组合、级联后得到设计所要求的电路图,利用添加的蜂鸣器进而实现在59分、59秒开始报时的功能,即整点报时功能。

(5)直接利用5V 、1HZ 的脉冲发生器来进行脉冲信号的输出,使得时钟进行按秒计数。

3.任务分工4.设计原理图三、设计方案1、各分电路的功能以及电路图(1)时间秒的实现电路:用两片74160级联,其中右边一片为十进制,左边一片为六进制,总体为六十进制。

数字钟设计报告

数字钟设计报告

数字钟设计报告一、实验要求1.基本要求:(1)设计并制作一个数字钟,要求能够准确的显示时间的小时、分钟和秒,并且能够准确、正常地进位。

(2)显示电路的小时和分钟用4位共阴极数码管显示,秒显示用发光二极管显示(即一秒钟亮灭一次。

2.发挥部分:(1)增加校时、校分功能并能够调整时间。

(2)增加12小时进制到24小时进制切换的功能。

(3)增加闹钟功能,能够预设闹钟时间并按照预设的时间正常闹响。

(4)在闹钟电路中加入开关,可以控制闹钟的闹响时间。

(5)预设闹钟时间和正常走时共用一个显示电路,能够相互切换、互不影响。

二、数字钟简介数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,已得到广泛的使用。

数字钟的设计方法有许多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等等。

这些方法都各有其特点,其中利用单片机实现的电子钟具有编程灵活,并便于功能的扩展。

三、设计思路由于该实验的内容是设计一个数字钟,而钟是计量时间最常用的工具所以对它的准确性要求较高于是我们选用中小型集成电路来完成这个项目。

在数字钟电路中大部分电路都是时序电路,而时序电路则需要一个标准的数字脉冲信号来触发,所以我们首先要用震荡电路产生一个1Hz的数值脉冲信号在经过一系列分频之后产生分信号和小时信号再驱动译码电路显示时间。

闹钟电路我们选用数据选择器4519来实现闹钟时间与正常走时的相互切换。

闹钟部分我们用数值比较器4585来控制报时电路的闹响。

报时电路我用集成D触发器74LS74芯片和一个开关组合来控制闹响时间。

四、电路原理图1.信号源电路由于数字钟的时序电路部分需要一个标准的数字脉冲信号来触发,经过考虑我们最终选用4060芯片外接晶振来产生这个数字信号。

4060芯片内部集成振荡电路与14级2分频电路,只需在9号管脚和11号管脚之间接上一个32.768KHz的晶振,在10号管脚与11号管脚之间接一个100K的电阻,就能从3好管脚输出一个2Hz的数字脉冲信号。

课程设计_数字电子钟设计报告 -终

课程设计_数字电子钟设计报告 -终

数字闹钟设计报告目录1. 设计任务与要求 (2)2. 设计报告内容2.1实验名称 (2)2.2实验仪器及主要器件 (2)2.3实验基本原理 (3)2.4数字闹钟单元电路设计、参数计算和器件选择…………………………3-72.5数字闹钟电路图 (8)2.6数字闹钟的调试方法与过程 (8)2.7设计与调试过程的问题解决方案 (8)3.实验心得体会……………………………………………………………………9、101. 设计任务与要求数字闹钟的具体设计任务及要求如下:(1) 有“时”、“分”十进制显示, “秒”使用发光二极管闪烁表示。

(2) 以24小时为一个计时周期。

(3) 走时过程中能按预设的定时时间(精确到小时)启动闹钟, 以发光二极管闪烁表示, 启闹时间为3s~10s。

2. 设计报告内容2.1实验名称数字闹钟2.2实验仪器及主要器件(1)CD4511( 4片)、数码管(4片)(2)74LS00(6片)(3)74LS138(2片)(4)74LS163(6片)(5)LM555(1片)(6)电阻、电容、导线等(若干)(7)面包板(2片)、示波器等2.3数字闹钟基本原理要想构成数字闹钟, 首先应选择一个标准时间源——即秒信号发生器。

可以采用LM555构成多谐振荡器, 通过改变电阻来实现频率的变化, 使之产生1HZ的信号。

计时的规律是: 60秒=1分, 60分=1小时, 24小时=1天, 就需要对计数器分别设计为60进制和24进制的, 并发出驱动信号。

各计数器输出信号经译码器到数字显示器, 按“时”、“分”顺序将数字显示出来, 秒信号可以通过数码管边角的点来显示。

数字闹钟要求有定时响闹的功能, 故需要提供设定闹时电路和对比起闹电路。

设时电路应共享译码器到数字显示器, 以便使用者设定时间, 并可减少电路的芯片数量;而对比起闹电路提供声源, 应具有人工止闹功能, 止闹后不再重新操作, 将不再发生起闹等功能。

数字电子钟的逻辑框图如图所示。

单片机实验报告数字时钟设计报告

单片机实验报告数字时钟设计报告

单片机实验报告数字时钟设计报告一、实验目的本次单片机实验的目的是设计并实现一个基于单片机的数字时钟。

通过该实验,深入了解单片机的工作原理和编程方法,掌握定时器、中断、数码管显示等功能的应用,提高综合运用知识解决实际问题的能力。

二、实验原理1、单片机选择本次实验选用了常见的 51 系列单片机,如 STC89C52。

它具有丰富的资源和易于编程的特点,能够满足数字时钟的设计需求。

2、时钟计时原理数字时钟的核心是准确的计时功能。

通过单片机内部的定时器,设定合适的定时时间间隔,不断累加计时变量,实现秒、分、时的计时。

3、数码管显示原理采用共阳或共阴数码管来显示时间数字。

通过单片机的 I/O 口控制数码管的段选和位选信号,使数码管显示相应的数字。

4、按键控制原理设置按键用于调整时间。

通过检测按键的按下状态,进入相应的时间调整模式。

三、实验设备与材料1、单片机开发板2、数码管3、按键4、杜邦线若干5、电脑及编程软件(如 Keil)四、实验步骤1、硬件连接将数码管、按键与单片机开发板的相应引脚通过杜邦线连接起来。

确保连接正确可靠,避免短路或断路。

2、软件编程(1)初始化单片机的定时器、中断、I/O 口等。

(2)编写定时器中断服务程序,实现秒的计时。

(3)设计计时算法,将秒转换为分、时,并进行进位处理。

(4)编写数码管显示程序,将时间数据转换为数码管的段选和位选信号进行显示。

(5)添加按键检测程序,实现时间的调整功能。

3、编译与下载使用编程软件将编写好的程序编译生成可执行文件,并下载到单片机中进行运行测试。

五、程序设计以下是本次数字时钟设计的主要程序代码片段:```cinclude <reg52h>//定义数码管段选码unsigned char code SEG_CODE ={0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90};//定义数码管位选码unsigned char code BIT_CODE ={0x01, 0x02, 0x04, 0x08, 0x10,0x20, 0x40, 0x80};//定义时间变量unsigned int second = 0, minute = 0, hour = 0;//定时器初始化函数void Timer_Init(){TMOD = 0x01; //定时器 0 工作在方式 1 TH0 =(65536 50000) / 256; //定时 50ms TL0 =(65536 50000) % 256;EA = 1; //开总中断ET0 = 1; //开定时器 0 中断TR0 = 1; //启动定时器 0}//定时器 0 中断服务函数void Timer0_ISR() interrupt 1{TH0 =(65536 50000) / 256;TL0 =(65536 50000) % 256;second++;if (second == 60){second = 0;minute++;if (minute == 60){minute = 0;hour++;if (hour == 24){hour = 0;}}}}//数码管显示函数void Display(){unsigned char i;for (i = 0; i < 8; i++)P2 = BIT_CODEi;if (i == 0){P0 = SEG_CODEhour / 10;}else if (i == 1){P0 = SEG_CODEhour % 10;}else if (i == 2){P0 = 0xBF; //显示“”}else if (i == 3){P0 = SEG_CODEminute / 10;else if (i == 4){P0 = SEG_CODEminute % 10;}else if (i == 5){P0 = 0xBF; //显示“”}else if (i == 6){P0 = SEG_CODEsecond / 10;}else if (i == 7){P0 = SEG_CODEsecond % 10;}delay_ms(1);//适当延时,防止闪烁}}//主函数void main(){Timer_Init();while (1){Display();}}```六、实验结果与分析1、实验结果将程序下载到单片机后,数字时钟能够正常运行,准确显示时、分、秒,并且通过按键可以进行时间的调整。

数字钟实验报告5篇范文

数字钟实验报告5篇范文

数字钟实验报告5篇范文第一篇:数字钟实验报告数字钟实验报告班级:电气信息i类112班实验时间:实验地点:指导老师:目录一、实验目的-----------------3二、实验任务及要求--------3三、实验设计内容-----------3(一)、设计原理及思路3(二)、数字钟电路的设计--------------------------4(1)电路组成---------4(2)方案分析---------10(3)元器件清单------11四、电路制版与焊接---------11五、电路调试------------------12六、实验总结及心得体会---13七、组员分工安排------------19一、实验目的:1.学习了解数码管,译码器,及一些中规模器件的逻辑功能和使用方法。

2.学习和掌握数字钟的设计方法及工作原理。

熟悉集成电路的引脚安排,掌握各芯片的逻辑功能及使用方法了解面包板结构及其接线方法。

3.了解pcb板的制作流程及提高自己的动手能力。

4.学习使用protel软件进行电子电路的原理图设计、印制电路板设计。

5.初步学习手工焊接的方法以及电路的调试等。

使学生在学完了《数字电路》课程的基本理论,基本知识后,能够综合运用所学理论知识、拓宽知识面,系统地进行电子电路的工程实践训练,学会检查电路的故障与排除故障的一般方法锻炼动手能力,培养工程师的基本技能,提高分析问题和解决问题的能力。

二、实验任务及要求1.设计一个二十四小时制的数字钟,时、分、秒分别由二十四进制、六十进制、六十进制计数器来完成计时功能。

2.能够准确校时,可以分别对时、分进行单独校时,使其到达标准时间。

3.能够准确计时,以数字形式显示时、分,发光二极管显示秒。

4.根据经济原则选择元器件及参数;5..小组进行电路焊接、调试、测试电路性能,撰写整理设计说明书。

三、实验设计内容1、设计原理及思路 3.1数字钟的构成数字钟一般由振荡器、分频器、计数器、译码器、显示器、较时电路、报时电路等部分组成,这些都是数字电路中应用最广的基本电路3.2原理分析数字钟实际上是一个对标准频率(1hz)进行计数的计数电路。

数字电子钟设计报告,完整版

数字电子钟设计报告,完整版

一、任务技术指标设计一个数字电子钟(1)能显示小时、分钟和秒;(2)能进行24小时和12小时转换;(3)具有小时和分钟的校时功能。

二、总体设计思想1.基本原理该数字钟由振荡器、分频器、计数器、译码器、显示器和校时电路等六部分组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换也可以用开关进行选择。

2.系统框图如图1:振荡器产生的钟标信号送到分频器,分频电路将时标信号送至计数器。

计数器通过译码显示把累计的结果以“时”、“分”、“秒”的数字显示出来。

整个过程中可选择用校时电路进行校时。

图1 系统框图三、具体设计1.总体设计电路该数字钟由振荡器、分频器、计数器、显示器和校时电路组成。

振荡器产生的钟标信号送到分频器,分频电路将时标信号分成每秒一次的方波秒信号。

秒信号送入计数器进行计数,计数到60秒后向分进位,同理分计数器计数到60分后向小时进位,并将计数的结果以BCD-七段显示译码器显示出来。

计数选用十进制计数器74LS760D,校时电路通过选通开关对“时”和“分”进行校时。

二十四小时和十二小时的转换可以用开关进行选择。

图2 总体电路图2.模块设计(1)振荡器的设计振荡器是数字钟的核心。

振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。

石英晶体振荡器的作用是产生时间标准信号。

因此,一般采用石英晶体振荡器经过分频得到这一时间脉冲信号。

电路中采用的是将石英晶体与对称式多谐振荡器中的耦合电容串联起来,就组成了如图3所示石英晶体多谐振荡器。

图3振荡器电路图和仿真波形图(2)分频器的设计对于分频器的设计选定74LS90集成芯片。

数字钟的设计报告

数字钟的设计报告

目录1 课程设计任务与要求 (2)1.1 设计任务 (2)1.2 设计要求 (2)2 课题分析 (2)3 总体设计 (2)4 具体实现 (3)4.1 秒脉冲产生部分 (3)4.2 计数部分 (4)4.3 部分实现 (5)4.3.1 计数部分 (5)4.3.2 显示部分 (6)4.3.3 校时部分 (7)4.3.4 报时部分 (8)4.3.5 总的设计图 (8)4.3.6 仿真 (9)5 心得体会及收获 (9)6 参考文献 (10)7 附录 (10)数字电子钟设计1 课程设计任务与要求:1.1 设计任务设计一个用LED数码管显示的数字电子钟,能够显示时、分、秒的时间,具有计数,整点报时,校时功能。

1.2 设计要求(1)复习计数、译码和显示电路的工作原理。

(2)熟悉中规模集成计数译码器74LS160的逻辑功能及使用方法。

(3)预习有关七段译码器和共阴极显示器的的工作原理及使用方法。

(4)根据数字钟的原理框图设计各个单元电路。

2 课题分析分析设计要求,要实现秒脉冲信号,可以通过由555定时器连接实现多谐振荡器产生秒脉冲,作为计数部分74LS160的时钟信号;要实现时钟显示功能,而且分、秒以60进制,时以24进制进行数据运算则必须用计数器74LS160加以实现;要达到快速校时的目的可以用手动按动按钮产生校时脉冲的形式来完成;对于整点报时则可以用门电路的形式来实现。

3 总体设计该设计大概可以分五个部分:秒脉冲产生部分、计数部分、译码显示部分、校时部分、报时部分。

在秒脉冲产生部分中,可以用振荡器或者555定时器予以实现,为了保证的准确性,优先选用振荡器,但是由于个人技术问题,我们选用了555定时器来构成多谐振荡器产生秒脉冲作为计数器的CLK信号;在计数电路中,我们采用74LS160这种4位十进制计数器,因为它可以同时可以级连组成60进制和24进制,用起来比较方便;用74LS48译码器和七段显示数码管便组成多功能数字钟的译码显示部分;在校时部分中,我们选用的是手动校时的方式,通过按钮开关产生脉冲来控制74LS160的计数,从而达到调整计数的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 设计目的 (3)2 设计任务 (3)3数字电子钟的电路系统设计 (3)3.1 设计原理 (3)3.2 方案确定 (4)3.2.1 设计方案一 (4)3.2.2 设计方案二 (5)3.2.3 两种方案的比较 (5)3.2.4 设计方案的确定 (6)3.3 数字电子钟的电路设计 (6)3.3.1 电源电路的设计 (6)3.3.2 时间计数电路的设计 (7)3.3.3 正点报时电路的设计 (8)3.3.4 校时电路的设计 (9)3.3.5 秒信号发生器的设计 (9)3.3.6 译码驱动显示电路 (11)3.3.7 数字电子钟的整体电路 (11)3.4设计电路的计算机模拟仿真与调试 (14)4 电路的装配过程 (15)4.1电路模拟仿真调试 (15)4.2电路焊接 (15)4.3 实物的实际调试 (15)5实验数据和误差分析 (15)5.1实验数据 (15)5.2 误差分析 (16)6 元件清单 (16)7 课程设计的收获、体会和建议 (17)致谢 (19)参考文献 (20)1 设计目的数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

此次设计与制作数字电子钟的目的是让学生在了解数字钟的原理的前提下,运用刚刚学过的数电知识设计并制作数字钟,而且通过数字钟的制作进一步了解各种在制作中用到的中小规模集成电路的作用及其使用方法。

由于数字电子钟包括组合逻辑电路和时序电路,通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法,从而实现理论与实践相结合。

总的来说,此次课程设计,有助于学生对电子线路知识的整合和电子线路设计能力的训练,并为后继课程的学习和毕业设计打下一定的基础。

2 设计任务设计制作一个数字电子钟设计指标:1.时间计数电路采用24进制,从00开始到23后再回到00;2.各用2位数码管显示时、分、秒;3.具有自动校时、校分功能,可以分别对时及分进行单独校时,使其校正到标准时间;4.计时过程具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次。

5.为了保证计时的稳定及准确,须由晶体振荡器提供时间基准信号。

3 数字电子钟的电路系统设计下面将详细介绍整个数字电子钟的电路系统设计过程。

其中包括数字电子钟的设计原理,设计方案的确定,数字电子钟的电路设计计算机仿真,电路的设计与调试几个设计部分。

3.1 设计原理数字电子钟是一个对标准频率(1HZ)进行计数的计数电路。

它由振荡器、分配器、计数器、译码器和显示器电路组成。

振荡器产生的时钟信号经过分频器形成秒脉冲信号,秒脉冲信号输入计数器进行计数,并把累计结果以“时”、“分”、“秒”的数字显示出来。

秒计数器电路计满60后触发分计数器电路,分计数器电路计满60后触发时计数器电路,当计满24小时后又开始下一轮的循环计数。

通过校时电路可以对分和时进行校时,且计时过程具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次。

3.2 方案确定通过查找资料并展开讨论,共讨论出两个不同的设计方案,表面上看,似乎两个方案都符合要求,但经过反复深究,并将两个方案加以比较,最终确定一个既符合本设计要求又具有比较强的可行性的方案作为此次设计的对象。

3.2.1 设计方案一方案一的设计主要是由555振荡电路,时间计数电路,校时电路和译码驱动电路组成。

而分频器采用3片集成电路计数器74LS90,每片为1/10分频,3片级联则可获得所需的频率信号。

而时间计数电路由74LS90组成,分为一个24进制电路和两个60进制电路。

校时电路则由开关组成。

设计方案一的设计原理图如图1图1 设计方案一的设计原理图3.2.2 设计方案二方案二的设计主要由晶体振荡电路,时间计数电路,校时电路,译码驱动电路。

其中,时间计数电路用六个74LS90组成。

校时电路主要由 HD74KS00P 组成RS 触发器,而且加入消抖电路,达到了自动校时的效果。

设计方案二的设计原理图如下U1A B C D E F GCKU2A B C D E F GCKU3A B C D E F GCKU4A B C D E F GCKU5A B C D E F GCKU6A B C D E F GCK图2 设计方案二的设计原理图3.2.3 两种方案的比较1、在数字电路设计中,两种方案采用了不同的元器件,但都达到了数字时钟功能。

2、第一个方案采用了简单的开关形式进行校时,而第二个方案则采用了由RS 触发器组成的具有消抖动的消抖校时电路,消除了输入脉冲的不稳定性,使得在校时过程中不影响计数。

3、第一个方案采用了74LS48的译码芯片,而第二个方案则采用了MCI 4511D 译码芯片,显然,前者价格昂贵,后者经济实惠。

4、第一个方案采用了555振荡器,输出脉冲既不精确也不够稳定,而第二个方案则采用了晶体振荡电路,其输出脉冲较精确,稳定。

5、第一个方案采用了3片74LS90作为分频器,而第二个方案则采用了1片74LS74作为二级分频器,电路较前者简单。

3.2.4 设计方案的确定鉴于第一种方案有比较多的局限性,而方案二则比较方便实用,再根据本次设计的具体要求与所学的知识,确定方案二为本次设计采用的方案。

3.3 数字电子钟的电路设计下面将介绍第二个设计方案的设计电路。

其中包括电源电路的设计、时间计数电路的设计、正点报时电路的设计、校时电路的设计、秒信号发生器的设计、译码驱动显示电路的设计几个部分。

3.3.1 电源电路的设计由于本设计所用芯片的数目较多,而且数字钟需要比较稳定的电压才能使得计数正常、稳定、精确。

所以采用L7805CV稳压集成块做稳压电路,并为了更好的消除电压谐波,所以采用了2000µf的滤波电容,以此得到稳定的电压。

电源电路:用7805集成块做稳压电路。

如图3图3 电源电路3.3.2时间计数电路的设计时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,小时计数器为24进制计数器。

用6个74LS90组成两个60进制和一个24进制计数器。

分别如图4和5。

图4 60进制电路对于上图,74LS90芯片的引脚8、9、11、12分别对应QC、QB、QD、QA四个输出端,而第5端和第10端分别接高电平和地,上图已默认,就不画出,下面的电路图凡涉及到芯片本身就需要接高电平和地的引脚亦不画出。

当分的74LS90芯片的进位输入端11端的脉冲进位信号传到时的脉冲输入端时,时便计数一次,并且其十位和个位的进位关系与分(秒)的十位和个位的进位关系一样,此处不再重述。

24进制电路图如图5。

V11Hz 5VU41291181672143R 9(1)R 9(2)R 0(1)R 0(2)Q AQ BQ CQ DBA 74LS90DU31291181672143R 9(1)R 9(2)R 0(1)R 0(2)Q AQ BQ CQ D BA 74LS90DUA74LS00D123图5 24进制电路3.3.3 正点报时电路的设计为了达到正点报时的功能,当时间的分十位为5,分个位为9,秒的十位为5时,利用与门的相与功能,使得时间在59分50秒到59分59秒期间,蜂鸣器1秒响1秒停地响5次。

如图6。

图6 正点报时电路3.3.4校时电路的设计一般情况下,数字电子钟开机时并不立即显示当前时间,所以需要一个校时电路来调整以此来获得所需要的时间。

根据设计要求,采用自动实现对时和分的校时,为了使校时不干扰计时,在校时电路中还加入了消抖电路,用于消除输入脉冲的不稳定性,确保校时和计时的稳定与准确。

其主要原理是:先截断正常的计数通路,然后再将频率为2Hz的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可。

根据要求,数字钟应具有自动分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。

图7所示即为带有基本RS触发器的校时电路。

图7 校时电路对于上图,与非门74LS00的U1C片中的第9端为晶体振荡器所产生的2Hz的信号脉冲,而第U1D片的第13端则接进位信号(若为小时校正电路,则为分的进位信号,同理,分的校时电路则为秒的进位信号,当不校时的时候,计时电路将正常计数)。

第U2B片的第6端则为分或者小时的个位脉冲输入端。

3.3.5 秒信号发生器的设计振荡器是数字钟的核心,振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度。

由集成电路定时器555与RC可组成多谐振荡器,其振荡频率只有1KHz。

所以为了达到设计要求,获取更高的计时精度,选用晶体振荡器构成振荡器电路。

一般来说,振荡器的频率越高,计时精度越高。

此次设计选用R145-32的晶体振荡器,其频率为32768Hz,再经过分频芯片4060BD,其内部有15级2分频集成电路,所以可以其中一个输出端得到2Hz的信号脉冲。

再经过二次分频,方可得到1Hz的标准信号脉冲,即秒脉冲。

至于分频电路,实际上就是由计数器组成的,因此,还可选用3片集成电路计数器74LS90,每片为1/10分频,3片级联则可获得所需的频率信号。

但为了节省芯片及开支,因此选用前者。

其原理图和电路图分别入图8和图9。

图8 秒信号原理图X1R145-32.768kHz21R110MohmC1 30pF C230pFO122O133RT C10O37MR12RS11O45O54O66O714O813O915O111U14060BDCT C9U2A1D21Q5~1Q6~1CLR13~1PR474LS74D图9 晶体振荡电路3.3.6 译码驱动显示电路译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。

本设计采用MCI 4511译码器和LED数码管。

译码驱动显示电路如图10。

图10 译码驱动显示电路3.3.7 数字电子钟的整体电路图11为数字电子钟的整体电路主模块部分,图12,图13,图14为数字电子钟的整体电路副模块部分。

图11电路主模块部分X1R145-32.768kHz21R110MohmC1 30pF C230pFO122O133RT C10O37MR12RS11O45O54O66O714O813O915O111U14060BDCT C9U2A1D21Q5~1Q6~1CLR13~1PR474LS74D 图12 晶体振荡电路图13 校时电路图14 正点报时电路3.4 设计电路的计算机模拟仿真与调试本次设计后的方案分电源电路、时间计数电路、正点报时电路、校时电路、秒信号发生器电路和译码驱动显示电路等几个模块,设计后分别送到计算机模拟软件EWB8.0和Multisim2001中进行模拟调试。

相关文档
最新文档