汽车设计课件制动系设计

合集下载

《现代汽车机械基础》161省公开课金奖全国赛课一等奖微课获奖PPT课件

《现代汽车机械基础》161省公开课金奖全国赛课一等奖微课获奖PPT课件
• 当汽车倒驶,即制动鼓反向旋转时,蹄1变
成从蹄,而蹄2则变成领蹄。这种在制动鼓 正向旋转和反向旋转时,都有一个领蹄和一 个从蹄制动器即称为领从蹄式制动器。
30/123
B.工作原理
• 当踩下制动踏板,制动液被压入轮缸19,
推进制动轮缸活塞5向两端移动,而经过活 塞顶块6推进两制动蹄压向制动鼓,使蹄与 鼓之间产生摩擦力,实现汽车制动。
16/123
3.影响制动力主要原因
• 制动力Fb不但取决于摩擦力矩Mμ,还取决于轮胎
与路面间附着力Fφ(它等于轮胎上垂直负荷G与 轮胎和路面间附着系数乘积),即 Fb≤ Fφ, 制动 力最大只能等于附着力。而M μ 大小决定于轮缸 张力,摩擦因数和制动鼓及制动蹄尺寸。
• 当Fb = Fφ ,时,车轮将被抱死在路面上拖滑。拖

25/123
1.简单非平衡式制动器
• 简单非平衡式(领从蹄式)制动器按其两
蹄张开力源不一样,分为液压张开式(轮 缸式)和气压凸轮张开式两种。
26/123
1)液压张开式
• BJ型汽
车后轮采 取液压张 开式制动 器,由旋 转部分、 固定部分 、张开机 构和定位 调整机构 组成。
27/123
A.结构
制动器摩擦片抗热衰退性能力要高,受热恢 复快。
• 6.制动水稳定性好
摩擦片浸水后恢复摩擦系数能力要好。
• 7.对挂车制动
要求挂车制动作用略早于主车,挂车自动 脱挂时能自动进行应急制动。
20/123
第二节 车轮制动器
21/123
• 制动器是制动系中用以产生妨碍车辆运动或
运动趋势部件,普通制动器都是经过其中固 定元件对旋转元件施加制动力矩,使旋转元 件旋转角速度降低,同时依靠车轮与地面附 着作用,产生路面对车轮制动力以使汽车减 速。

汽车制动系设计方案.pptx

汽车制动系设计方案.pptx

§8-3制动器主要参数的确定
一、鼓式制动器主要参数的确定
1.制动鼓内径D 轿车:D/Dr=0.64~0.74 货车:D/Dr=0.70~0.83
2.摩擦衬片宽度b和包角β 包角一般不宜大于120°。
3.摩擦衬片起始角β0
4.制动器中心到张开力F0作用线的距离e 使距离e尽可能大, 初步设计时可暂定e=0.8R左右。
双从蹄演示
5.单向增力式
两蹄片只有一个固定支点,两蹄下端经推杆 相互连接成一体 。
制动器效能很高,制动器效能稳定性相当差。
单向增力式演示
6.双向增力式
两蹄片端部各有一个制动时不同时使用的共用支 点,支点下方有张开装置,两蹄片下方经推杆连 接成一体 。
制动器效能很高,制动器效能稳定性比较差。
双向增力式演示
二、制动系的分类:
行车制动装置 驻车制动装置 应急制动装置 辅助制动装置
汽车制动系统图组
三、制动系的设计要求:
1)足够的制动能力; 2)工作可靠 ; 3)不应当丧失操纵性和方向稳定性 ; 4)防止水和污泥进入制动器工作表面; 5)热稳定性良好 ; 6)操纵轻便,并具有良好的随动性 ; 7)噪声尽可能小; 8)作用滞后性应尽可能短; 9)摩擦衬片(块)应有足够的使用寿命; 10)调整间隙工作容易; 11)报警装置 。
§8-2制动器的结构方案分析
摩擦式 液力式 -----缓速器 电磁式
一、鼓式制动器
摩擦副结构
鼓式 盘式 带式-----中央制动器
分领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向增力式、 双向增力式等几种 。
不同形式鼓式制动器的主要区别:
①蹄片固定支点的数量和位置不同; ②张开装置的形式与数量不同; ③制动时两块蹄片之间有无相互作用。

《汽车构造》课件——14.制动原理

《汽车构造》课件——14.制动原理

辽 制动系统原理(鼓式制动器)
15.1 制动原理


3.车轮制动器


主要由旋转部分、固定部分和张开机构组成。
业 技
旋转部分是制动鼓,它固定在车轮上,随车轮旋转。
术 学
固定部分包括制动蹄和制动底板等。在固定不

动的制动底板上,有两个支承销,支承着两个弧形
制动蹄的下端。
制动蹄的外圆面上装有摩擦片,上端用制动蹄
院 动机动作,并带动制动卡钳活塞移动产生机械夹紧力从而完成驻车。可以看到,EPB
电子手刹和手动拉线式手刹都是对后轮进行制动。
辽 电子手刹
15.1 制动原理


只要启用AUTO HOLD功能,便会启动相应的自动驻车功能。AUTO HOLD自动驻车

职 功能可使车辆在等红灯或者上下坡停车时自动启动四轮制动。即使是在D档或者N档,

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%

术 的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,

院 液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,卡钳夹紧刹车盘从而产生
巨大摩擦力令车辆减速。
一般制动系的基本结构与工作原理, 可用一种简单的液压行车制动系的结构 和工作原理示意图来说明。

职 1.机械式手刹

技 我们在驾校时,教练几乎都会重复“停车拉手刹”的教导,作为最常见的一种
术 学
驻车制动类型,你几乎可以在绝大多数车上见到。

传统手刹由制动杆、拉索、制动机构和回
位弹簧组成,作用于传动轴或者后轮制动,达
到稳定车辆的目的。

制动系统基础知识ppt课件

制动系统基础知识ppt课件

1.前轮盘式制动器 2.制动总泵 3.真空 助力器 4.制动踏板机构 5.后轮鼓式制 动器 6.制动组合阀 7.制动警示灯
XX制动系统的结构简图
1 7
2
3 4 5 6
1. 带制动主缸的真空助力器总成2.制动踏板 3.车轮
4.轮速传感器 5. 制动管路 6. 制动轮缸 7.ABS控制器
XX制动系统原理图
1、制动器效能因数低,需大大增加控制力;
2、摩擦块使用寿命短; 3、密封性差,易受尘粒磨蚀和水分锈蚀; 4、用于后轮时较难解决驻车制动问题; 5、精密件多,价格昂贵。
目录
¶ 概述 ¶ 制动系统的原理、功用
¶ 制动系统的分类及组成
¶ ¶
¶ ¶ ¶
制动系统的设计要求 制动系统的设计计算及评价
制动力调节装置 应急制动与剩余制动 制动系统设计流程

实例匹配
制动系统的设计要求
1.1 标准和法规方面; 1.2 制动效能方面; 1.3 工作可靠; 1.4 制动效能的热稳定性好; 1.5 制动效能的水稳定性好; 1.6 制动时的操纵稳定性好; 1.7 制动踏板和手柄的位置应符合人机工程学的要求; 1.8 作用滞后的时间要尽可能地短; 1.9 制动时不应产生振动和噪声; 1.10 与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自 行制动; 1.11 制动系中应有报警装置以便能及时发现制动驱动机件的故障和功能失效; 1.12 能全天候使用; 1.13 制动系统的构件应使用寿命长,制造成本低,对摩擦材料的选择应考虑到 环保要求。
制动器
一般制动器都是通过其中的固定元件对旋转元件施加 制动力矩,使后者的旋转角速度降低,同时依靠车 轮与地面的附着作用,产生路面对车轮的制动力以 使汽车减速。凡利用固定元件与旋转元件工作表面 的摩擦而产生制动力矩的制动器都成为摩擦制动器 。目前汽车所用的摩擦制动器可分为鼓式和盘式两 大类。

汽车设计课程设计-轿车后轮制动器设计

汽车设计课程设计-轿车后轮制动器设计

目录第1章概述 (1)1.1 鼓式制动器的简介 (1)1.2鼓式制动器的组成固件 (1)1.3鼓式制动器的工作原理 (1)1.4鼓式制动器的产品特性 (2)1.5设计基本要求和整车性能参数 (2)第2章鼓式制动器的设计计算 (2)2.1车辆前后轮制动力的分析 (2)2.2前、后轮制动力分配系数β的确定 (5)2.3制动器最大制动力矩 (6)第3章制动器结构设计与计算 (6)3.1制动鼓壁厚的确定 (6)3.2制动鼓式厚度N (6)3.3动蹄摩擦衬片的包角β和宽度b (7)3.4P的作用线至制动器中心的距离α (7)3.5制动蹄支销中心的坐标位置是k与c (8)3.6摩擦片摩擦系数f (8)第4章制动器主要零部件的结构设计 (8)4.1制动鼓 (8)4.2制动蹄 (8)4.3制动底板 (9)4.4制动蹄的支承 (9)4.5制动轮缸 (9)4.6制动器间隙 (9)第5章校核 (10)5.1制动器的热量和温升的核算 (10)5.2制动器的摩擦衬片校核 (11)5.3驻车制动计算 (11)第1章概述1.1鼓式制动器的简介鼓式制动器也叫块式制动器,是靠制动块在制动轮上压紧来实现刹车的。

鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。

现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。

近三十年中,鼓式制动器在轿车领域上已经逐步退出让位给盘式制动器。

但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。

1.2 鼓式制动器的组成固件鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄。

制动时制动蹄鼓式制动器在促动装置作用下向外旋转,外表面的摩擦片压靠到制动鼓的内圆柱面上,对鼓产生制动摩擦力矩。

凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。

制动系

制动系
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 14
课程结束! 课程结束!
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 15
二、盘式制动器的设计计算
1、制动器制动力矩 2、衬块的平均半径 3、衬块的有效半径 4、m=R1/R2的选取 5、制造工艺
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 12
§8-4 制动器设计与计算 (p203-210)
三、衬片磨损特性的计算 p207-209 1. 有效因素 2. 能力负荷 3. 评价指标一:比能量耗散率 4. 评价指标二:比摩擦力 四、前、后轮制动器制动力矩的确定 p209 五、应急制动和驻车制动所需的制动力矩 p209210
制动系
《汽车设计》 PowerPoint版
版权所有者:南航赵又群
1
第八章 制动系设计
第八章 制动系设计 8-1 概述 8-2 制动器结构方案分析 8-3 制动器主要参数的确定 8-4 制动器的设计计算 8-5 制动驱动机构 制动力调节机构( 8-6 制动力调节机构(略) 制动器的主要结构元件( 8-7 制动器的主要结构元件(略)
《汽车设计》 PowerPoHale Waihona Puke nt版 版权所有者:南航赵又群 3
§8-2 制动器结构方案分析
(p196-201) p196-201)
分类:
按耗散汽车能量的方式分:摩擦式、液力式、 电磁式和电涡流式等几种。 摩擦式制动器就其摩擦副的结构型式可分为鼓 式、盘式和带式三种。带式的只用作中央制动器。 目前,货车行车制动器大多数用鼓式制动器,并安 装在汽车车轮处。但是,用独立悬架的汽车也有少 数行车制动器安装在驱动桥的半轴上。
《汽车设计》 PowerPoint版 版权所有者:南航赵又群 4

2024汽车制动系统ppt课件完整版x

2024汽车制动系统ppt课件完整版x

汽车制动系统ppt课件完整版x REPORTING2023 WORK SUMMARY目录•引言•制动系统基本原理•汽车制动系统主要部件及功能•汽车制动系统性能评价指标•汽车制动系统常见故障及排除方法•汽车制动系统维护与保养建议PART01引言制动系统是汽车安全行驶的关键部件,能够在紧急情况下使车辆迅速减速或停车,避免交通事故的发生。

保证行车安全制动系统的性能直接影响驾驶者的舒适感受,良好的制动系统能够使驾驶更加平稳、舒适。

提高驾驶舒适性合理的制动系统设计和使用能够减少车辆磨损,延长车辆使用寿命。

延长车辆使用寿命制动系统的重要性制动系统的发展历程机械制动阶段早期的汽车制动系统主要采用机械制动方式,通过机械传动机构实现制动。

液压制动阶段随着汽车技术的发展,液压制动系统逐渐取代了机械制动系统,成为主流制动方式。

电子制动阶段近年来,随着电子技术的飞速发展,电子制动系统逐渐应用于汽车制动领域,实现了更加智能化、精准化的制动控制。

制动系统的分类与组成分类根据制动方式的不同,汽车制动系统可分为盘式制动系统和鼓式制动系统;根据制动力的来源不同,可分为人力制动系统、动力制动系统和伺服制动系统。

组成汽车制动系统主要由制动器、制动主缸、制动轮缸、真空助力器、制动管路和制动踏板等组成。

其中,制动器是产生制动力的关键部件,制动主缸和制动轮缸是传递制动力的主要部件,真空助力器则用于增强制动踏板的力度。

PART02制动系统基本原理建立车辆制动过程的力学模型,分析制动力、制动力矩和制动距离等关键参数。

制动过程力学模型制动效能与稳定性制动过程影响因素阐述制动效能的评价指标,如制动距离、制动减速度等,并分析制动过程中的稳定性问题。

分析影响制动过程的因素,如车辆载荷、路面条件、轮胎与路面附着系数等。

030201制动过程力学分析介绍常用制动器的类型、结构和工作原理,如盘式制动器、鼓式制动器等。

制动器类型与结构阐述制动器的工作过程,包括制动蹄片的张开、制动鼓的旋转以及制动力的产生等。

汽车制动系统课件

汽车制动系统课件

制动液储液 罐
蓄压器
车身电气
电磁阀
安全阀
蓄压器压力传感器
制动控制ECU
马达继电器1 马达继电器2
助力泵及其 马达
车型概况
发动机
底盘
制动控制系统
制动踏板行程传感器 – 确认制动踏板行程
车身
车身电气
制动灯开关
定位杆
制动踏板行程传感器
制动踏板
车型概况
发动机
底盘
制动控制系统
制动踏板行程传感器 – 两路电路(主电路,辅电路)
液压管路 – 前制动失效
OFF (关闭)
制动执行器
左前
右后
右前
左后
车身电气
OFF (打开)
前制动 主缸压力 后制动 常规控制
车型概况
发动机
底盘
制动控制系统
制动执行器 – 柱塞式助力泵 – 波纹软管式蓄压器
助力泵马达
氮气
波纹软管 制动液
车身
车身电气
蓄压器
车型概况
发动机
底盘
车身
制动控制系统
制动执行器 – 蓄压器压力调节由蓄压器压力传感器信号决定
EPS ECU
转向助力
VGRS ECU
转向角及转 向减速比控

VGRS 执行器
EPS马达
车型概况
发动机
底盘
车身
制动控制系统
转向协同控制功能 – 在VSC作用同时提供高性能的转向控制
车身电气
当后轮失去抓地力
当前轮开始出现打滑
调整轮胎方向抵消转 向不足或过度
VGRS
稳定车辆
摇摆 反向转向助力 提高转向减速比
车身
车身电气
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制动器的制动效能相当高; 倒车制动时,制动效能明显下降;
两蹄片磨损均匀,寿命相同; 结构略显复杂。
3.双向双领蹄式
双领蹄演示
两蹄片浮动,始终为领蹄。
制动效能相当高,而且不变,磨损均匀,寿命相同。
4.双从蹄式
双向双领蹄演示
两块蹄片各有自己的固定支点,而且两固定支点位于 两蹄的不同端。
制动器效能稳定性最好,但制动器效能最低。
张开装置
平衡凸块式
平衡式
凸轮或楔块式
楔块式
非平衡式
活塞轮缸(液压驱动) 特点:制动器的效能和效能稳定性,在各式制动器中居中游 ;
两蹄衬片磨损不均匀,寿命不同。
汽车设计课件制动系设计
领从蹄演示 楔块式演示 凸轮式演示
2.双领蹄式
两块蹄片各有自己的固定支点,而且两固定支点 位于两蹄的不同端。
每块蹄片有各自独立的张开装置,且位于与固定支点 相对应的一方。
除活塞和制动块以外无其它滑动件,易于保证钳 的刚度; 结构及制造工艺与一般的制动轮缸相差不多; 容易实现从鼓式到盘式的改型; 能适应不同回路驱动系统的要求。
汽车设计固课定件钳制演动系示设计
固定钳式的缺点:
至少有两个液压缸分置于制动盘两侧,必须用跨越制动盘的内部 油道或外部油管来连通; 这一方面使制动器的径向和轴向尺寸增大,增加了在汽车上的布 置难度,另一方面增加了受热机会,使制动液温度过高而汽化; 固定钳式制动器要兼作驻车制动器,必须在主制动钳上另外附装 一套供驻车制动用的辅助制动钳,或是采用盘鼓结合式制动器。
二、制动系的分类:
行车制动装置 驻车制动装置 应急制动装置 辅助制动装置汽车制动系统图组汽车设计课件制动系设计
三、制动系的设计要求:
1)足够的制动能力; 2)工作可靠 ; 3)不应当丧失操纵性和方向稳定性 ; 4)防止水和污泥进入制动器工作表面; 5)热稳定性良好 ; 6)操纵轻便,并具有良好的随动性 ; 7)噪声尽可能小; 8)作用滞后性应尽可能短; 9)摩擦衬片(块)应有足够的使用寿命; 10)调整间隙工作容易; 11)报警装置 。
汽车设计课件制动系设计
浮动钳式制动器的优点:
仅在盘的内侧有液压缸,故轴向尺寸小,制动 器能更进一步靠近轮毂; 没有跨越制动盘的油道或油管,加之液压缸冷 却条件好,所以制动液汽化可能性小; 成本低; 浮动钳的制动块可兼用于驻车制动。
汽车设计浮课动件钳制演动系示设计
盘式制动器的优点:
热稳定性好; 水稳定性好; 制动力矩与汽车运动方向无关; 易于构成双回路制动系; 尺寸小、质量小、散热良好; 衬块磨损均匀; 更换衬块容易;易于实现间隙自动调整。
第八章 制动系设计
汽车设计课件制动系设计
第八章 制动系设计
§8-1 概述 §8-2 制动器的结构方案分析 §8-3 制动器主要参数的确定 §8-4 制动器的设计与计算 §8-5 制动驱动机构 §8-6 制动力调节机构 §8-7 制动器的主要结构元件
汽车设计课件制动系设计
§8-1概述
一、制动系的功用: 使汽车以适当的减速度降速行驶直至停车; 在下坡行驶时使汽车保持适当的稳定车速; 使汽车可靠地停在原地或坡道上。
汽车设计课件制动系设计
§8-2制动器的结构方案分析
摩擦式 液力式 -----缓速器 电磁式
一、鼓式制动器
摩擦副结构
鼓式 盘式 带式-----中央制动器
分领从蹄式、双领蹄式、双向双领蹄式、双从蹄式、单向增力式、 双向增力式等几种 。
汽车设计课件制动系设计
不同形式鼓式制动器的主要区别:
①蹄片固定支点的数量和位置不同; ②张开装置的形式与数量不同; ③制动时两块蹄片之间有无相互作用。
蹄与鼓仅在蹄的中部接触时,输出制动力矩 就小,而在蹄的端部和根部接触时输出制动 力矩就较大。
制动器的效能因数越高,制动效能受接触情 况的影响也越大。
汽车设计课件制动系设计
二、盘式制动器
固定钳式
钳盘式(点盘式制动器 )
滑动钳式 浮动钳式
摆动钳式
全盘式(离合器式制动器 )
汽车设计课件制动系设计
固定钳式的优点:
双向增力式演示
汽车设计课件制动系设计
•鼓式制动器的效能因数排序
增力式制动器,双领蹄式制动器,领从蹄式 制动器和双从蹄式制动器。
制动器效能稳定性排序则与上述情况相反。
•影响鼓式制动器效能的因素:
1)主要取决于根据制动器的结构参数和摩
擦因数计算出来的制动器效能因数值;
2)受蹄与鼓接触部位的影响,与调整有关。
制动器效能
制动器在单位输入压力或力的作用下所输出的力或力矩。

混 制动器效能因数
概 在制动鼓或制动盘的作用半径R上所得到摩擦力(Mμ/R)
念 与输入力F0之比。
K M
制动器效能的稳定性
F0 R
效能因数K对摩擦因数f的敏感性(dK/df)。
汽车设计课件制动系设计
1.领从蹄式
每块蹄片都有自己的固定支点,而且两固定支点位于两蹄的同一端 。
盘式制动器的主要缺点:
1)、难以完全防止尘污和锈蚀(封闭的多片全盘式制动器除外)。
2)、兼作驻车制动器时,所需附加的手驱动机构比较复杂。
3)、在制动驱动机构中必须装用助力器。
4)、衬块工作面积小,磨损快,使用寿命低,需用高材质的衬块。
汽车设计课件制动系设计
制动钳的安装位置对制动性能及轴承受力的影响
汽车设计课件制动系设计
双从蹄演示
5.单向增力式
两蹄片只有一个固定支点,两蹄下端经推杆 相互连接成一体 。 制动器效能很高,制动器效能稳定性相当差。
单向增力式演示
6.双向增力式
两蹄片端部各有一个制动时不同时使用的共用支 点,支点下方有张开装置,两蹄片下方经推杆连 接成一体 。 制动器效能很高,制动器效能稳定性比较差。
制动钳的安装位置: 可以在车轴之前或之后。 制动钳位于轴后能使制动时轮 毂轴承的合成载荷F减小; 制动钳位于轴前,则可避免轮 胎向钳内甩溅泥污。
汽车设计课件制动系设计
§8-3制动器主要参数的确定
一、鼓式制动器主要参数的确定
1.制动鼓内径D 轿车:D/Dr=0.64~0.74 货车:D/Dr=0.70~0.83
2.摩擦衬片宽度b和包角β 包角一般不宜大于120°。
3.摩擦衬片起始角β0
4.制动器中心到张开力F0作用线的距离e 使距离e尽可能大, 初步设计时可暂定e=0.8R左右。
5.制动蹄支承点位置坐标a和c 使a尽可能大而c尽可能小。 初步设计时,汽也车设可计暂课件定制a动=系0.设8计R左右。
相关文档
最新文档