椭圆离心率及参数方程

椭圆离心率及参数方程
椭圆离心率及参数方程

椭圆离心率与最值专题

一.最值:

例1.若动点(y x ,)在曲线)0(1422

2>=+b b

y x 上变化,则y x 22+的最大值为 ( )

A .?????≥<<+)4(2),40(442b b b b

B .??

???≥<<+)2(2),20(4

42

b b b b

C .44

2+b

D .2b

练习:.已知实数y x ,满足12

42

2=+y x ,求x y x -+22的最大值与最小值

例2. ①设(,)P x y 是椭圆22

16436

x y +=上一点,那么22x y -的最大值是 .22x y +的

最大值是 最小值是

②椭圆19

162

2=+y x 上的点到直线:l 09=-+y x 的距离的最小值为___________.

练习:1.椭圆2

2

7428x y +=上的点到直线:32160l x y --=的距离最短.

2.椭圆

19

162

2=+y x 的内接矩形的面积的最大值为

例3.①已知椭圆22

143

x y +=的右焦点为F ,(3, 2)M ,点P 在椭圆上,则||||

PM PF +的最小值是 ;||||PM PF -的最大值是 .

②给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当5

3

AB BF +取得

最小值时,试求B 点的坐标。

练习:1.已知定点)1,2(A ,)0,1(F 是椭圆18

2

2=+y m x 的一个焦点,P 是椭圆上的点,求

||||PF PA +的最大值与最小值。

2. 已知112

16,)3,2(2

2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最

小值,并求出此时点M 的坐标。

思考题:1.定长为d d b a ≥?? ???22的线段AB 的两个端点在椭圆x a y b

a b 222

210+=>>()上

移动,求AB 的中点M 到椭圆右准线l 的最短距离。

2.12F F 、是椭圆22

142

x y +=的左右焦点,l 是椭圆的准线,点P l ∈,求12F PF ∠的最大值.

3.若点(,)x y 在椭圆2

2

44x y +=上,求

1

2

y x --最大值为_____ _,最小值为___ __

二.离心率:

1.设1F 、2F 分别是椭圆122

22=+b

y a x (0>>b a )的左、右焦点,P 是其右准线上纵坐

标为c 3(c 为半焦距)的点,且P F F F 221=,则椭圆的离心率是( )

A 213-

B 21

C 215-

D 2

2

2.点P (-3,1)在椭圆122

22=+b

y a x (0>>b a )的左准线上,过点P 且方向为()

5,2-=的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )

A 33

B 31

C 22

D 2

1

3.在ABC △中,90A ∠=

,3

tan 4

B =.若以A B ,为焦点的椭圆经过点

C ,则该椭圆的离心率e = .

4.椭圆22

221(0)x y a b a b

+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,

若12MN F F ≤2,则该椭圆离心率的取值范围是( )

A.1(0]2

B.(02

C.1

[1)2

D.1)2

5.已知已知椭圆22

221(0)x y a b a b

+=>>左,右焦点分别为12,F F ,若椭圆上存在一点P ,

且12||4||PF PF =,则此椭圆的离心率e 的取值范围

6.的左、右焦点分别为12(,0),(,0)F c F c -,使1221

sin sin a c

PF F PF F =

,则该椭圆的离心率的取值范围为 .

7.设12F F ,分别是椭圆22

221x y a b

+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使

线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )

A .(02

, B .(03

C .1)2

D.[

1)3

8.已知椭圆22

221(0)x y a b a b

+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于

PA ,求椭圆的离心率e 的取值范围。

21.(本题满分12分)

椭圆22

221(0)x y a b a b

+=>>与直线10x y +-=相交于P 、Q 两点,且OP OQ ⊥ (O

为坐标原点). (Ⅰ)求证:

22

11

a b +等于定值;

(Ⅱ)当椭圆的离心率e ∈时,求椭圆长轴长的取值范围 21.(1)证明:222222

10

b x a y a b x y ?+=?+-=?消去y 得222222

()2(1)0a b x a x a b +-+-=

422222244()(1)0,1a a b a b a b ?=-+->+>

设点1122(,),(,)P x y Q x y ,则2221212222

22(1)

,a a b x x x x a b a b -+==++, 由0OP OQ ?=

,12120x x y y +=,即1212(1)(1)0x x x x +--=

化简得12122()10x x x x -++=,则222

2222

2(1)210a b a a b a b --+=++

即2222

2a b a b +=,故2

211

2a b

+= (Ⅱ)解:由2

222222,,2c e b a c a b a b a

=

=-+= 化简得22

22211

2(1)22(1)

e a e e -==+--

由[

,32e ∈得253[,]42

a ∈,即[22a ∈

故椭圆的长轴长的取值范围是。

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (2 2 0220=-+-的参数方程是???α +=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α +=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 y x 2 2(20π <α<), 22b a 4+, 例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+ ?+α=++=cos 82110 21cos 12211x 21x x B A 3sin 42 119 21sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值

例3 设点P (x ,y )在椭圆19y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则55 53arcsin sin 534|5sin 4cos 3|d 22-??? ? ? +α= +-α+α=。 当5 3 arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 P , π),A (a ,0)。 解得1cos =α(舍去),或2 22 b a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e e 112 2<-<-,解得21e 2 > ,于是1e 22<<。故离心率e 的取值范围是? ?? ? ??122,。 [截距法]解线性规划问题 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =- +,则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。

椭圆、双曲线离心率难题专题

椭圆、双曲线离心率难题专题 1. (2018学年杭高高三开学考15)已知1F ,2F 分别是椭圆()22 22133 x y a a +=>的左右焦点,A 是椭圆上 一动点,圆C 与1F A 的延长线以及线段2AF 相切,若()2,0M 为一切点,则椭圆的离心率为 . 2. (2018学年杭十四中4月月考2)已知双曲线2221x y a -=的一条渐近线方程是y ,则双曲线的 离心率为( ) A B C D 3. (2018学年浙江名校协作体高三上开学考2)双曲线2 213 x y -=的焦距为( ) A .2 B . C . D .4 4. (2018学年浙江名校协作体高三下开学考12)已知直线l 为双曲线()22 22:10,0x y C a b a b -=>>的一条 渐近线,1F ,2F 是双曲线C 的左、右焦点,点1F 关于直线l 的对称点在双曲线C 的另一条渐近线上,则双曲线C 的渐近线的斜率为 ,离心率e 的值为 . 5. (2018学年浙江重点中学高三上期末热身联考3)已知双曲线2 221y x a -=的一条渐近线方程为y =, 则该双曲线的离心率是( ) A . 3 B C .2 D 6. (2019届超级全能生2月模拟16)已知椭圆()22 2210x y a b a b +=>>的左、右焦点分别为1F ,2F ,椭圆

上点P 满足122PF PF =,射线PM 平分12F PF ∠,过坐标原点O 作PM 的平行线交1PF 于点Q ,且 121 4PQ F F =,则椭圆的离心率是 . 7. (2019届慈溪中学5月模拟6)若椭圆、双曲线均是以直角三角形ABC 的斜边AC 的两端点为焦点 的 曲线,且都过点B ,它们的离心率分别是1e ,2e ,则2212 11 e e +=( ) A . 32 B .2 C .3 D . 52 8. (2019届杭二仿真考16)存在第一象限的点()00,M x y 在椭圆()22 2210x y a b a b +=>>上,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点,02c ?? ??? (c 为椭圆半焦距),则椭圆离心率的取 值范围是 . 9. (2019届杭州4月模拟10)已知椭圆()22 22:10x y a b a b Γ+=>>,直线1x y +=与椭圆Γ交于,M N 两点, 以线段MN 为直径的圆经过原点.若椭圆Γ ,则a 的取值范围为( ) A .( B .? C .? ?? D .? ?? 10. (2019届湖州三校4月模拟17)已知椭圆()22 2210x y a b a b +=>>的两个顶点()(),0,0,A a B b ,过,A B 分别作AB 的垂线交该椭圆于不同的顶点C ,D 两点,若23BD AC =,则椭圆的离心率是 . 11. (2019届稽阳联谊4月模拟16)已知,C F 分别是椭圆22 22:1x y a b Γ+=的左顶点和左焦点,,A B 是椭圆 的下、上顶点,设AF 和BC 交于点D ,若2CD DB =u u u r u u u r ,则椭圆Γ的离心率为 .

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

椭圆离心率求法总结

椭圆离心率的解法 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率为e ,则①e=|PF ||PD |②e=|QF ||BF |③e=|AO | |BO |④ e=|AF ||BA |⑤e=|FO | |AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,| BO |= a2 c ∴有③。 题目1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭 圆恰好平分正三角形的两边,则椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF2 的中点B ,连接BF1 ,把已知条件放在椭圆内,构造△F1BF2分析三角形的各边长及关系。 解:∵|F1F2|=2c |BF1|=c |BF2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,点P 在椭圆上,使△OPF1 为正

三角形,求椭圆离心率? 解:连接PF2 ,则|OF2|=|OF1|=|OP |,∠F1PF2 =90°图形如上图,e=3-1 变形2: 椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,AB 为椭圆的顶点,P 是椭圆上一 点,且PF1 ⊥X 轴,PF2 ∥AB,求椭圆离心率? 解:∵|PF1|= b2 a |F2 F1|=2c |OB |= b |OA |=a PF2 ∥AB ∴|PF1| |F2 F1|= b a 又 ∵b= a2-c2 ∴a2=5c2 e= 55 点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。 二、运用正余弦定理解决图形中的三角形 题目2:椭圆x2 a2 +y2 b2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ ABF=90°,求e?

(完整word版)椭圆的参数方程(含答案).doc

椭圆的参数方程 教学目标 : 1. 了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2. 通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3. 通过观察、探索、发现的创造性过程,培养创新意识。教学重点 :椭圆的参数方程。 教学难点 :椭圆参数方程中参数的理解 . 教学方式 :讲练结合,引导探究。 教学过程 : 一、复习 焦点在 x 轴上的椭圆的标准方程: x 2 y 2 1(a b 0) a 2 b 2 焦点在 y 轴上的椭圆的标准方程: y 2 x 2 1(a b 0) a 2 b 2 二、椭圆参数方程的推导 1. 焦点在 x 轴上的椭圆的参数方程 因为 ( x ) 2 ( y ) 2 1 ,又 cos 2 sin 2 1 a b 设 x cos , y sin ,即 x acos ,这是中心在原点 O,焦点在 x 轴上的椭圆的参数方程。 a b y bsin 2. 参数 的几何意义 问题 、如下图,以原点 O 为圆心,分别以 a , b ( a >b > 0)为半 径作两个圆。设 A 为大圆上的任意一点,连接 OA, 与小圆交于点 B 。过点 A 作 AN ⊥ ox ,垂足为 N ,过点 B 作 BM ⊥AN ,垂足为 M ,求当半径 OA 绕点 O 旋转时点 M 的轨迹参数方程 . 解:设以 Ox 为始边, OA 为终边的角为 ,点 M 的坐标是 (x, y) 。 那么点 A 的横坐标为 x ,点 B 的纵坐标为 y 。由于点 A,B 均在角 的终边上,由三角函数的定义有 x |OA |cos a cos , y | OB | sin b cos 。 当半径 OA 绕点 O 旋转一周时,就得到了点 M 的轨迹,它的参数方程是 x acos ( 为参数 ) y bsin 这是中心在原点 O,焦点在 x 轴上的椭圆的参数方程。 1

椭圆参数方程教学设计2

椭圆的参数方程教学设计 一、基本说明 1、教学内容所属模块:选修4-4 2、年级:高三 3、所用教材出版单位:人民教育出版社(A版) 4、所属的章节:第二讲第二节第1课时 5、学时数:45 分钟 二、教学设计 (一)、内容分析 1、内容来源 普通高中课程标准试验教科书人民教育出版社A版数学选修4-4第二讲第三课时:椭圆的参数方程 2、地位与作用 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。本节知识以学生学习和了解了椭圆的普通方程和圆的参数方程为载体,从另一个角度认识椭圆。在建立椭圆方程过程中,展示引进参数的意义和作用。以及根据椭圆的特点,选取适当的方程表示形式,体现解决有关椭圆问题中数学方法的灵活性,拓展学生的思路,开阔学生的视野。 (二)、教学目标 1、知识与技能: (1)理解椭圆的参数方程及其参数的几何意义。 (2)引导学生体验构造参数法的应用思想,探讨如何运用参数方程在解决与椭圆有关问题。 (3)会根据条件构造参数方程实现问题的转化,达到解题的目的。 2、过程和方法: (1)通过以熟悉的椭圆为载体,进一步学习建立参数方程的基本步骤,加深对参数方程的理解,同时引导学生从不同角度认识椭圆的几何性质,体会参数对研究曲线问题的作用。 (2)通过利用信息技术从参数连续变化而形成椭圆的过程中认识参数的几何意义。 3、情感、态度和价值: 通过师生共同探究进一步学习建立参数方程的基本步骤,加深对参数方程的理解,体会参数法的应用。同时引导学生从不同角度认识椭圆的几何性质。以及用参数方程解决某些曲线问题的过程中分享体会类比思想、数形结合的思想、构造转化思想。培养学生用“联系”的观点看问题,进一步增强“代数”与“几何”的联系,培养学生学好数学的信心。 (三)、教学重点、难点 重点:椭圆的参数方程及其参数的几何意义 难点:巧用椭圆的参数方程解题 (四)、学情分析: “坐标法”是现代数学最重要的基本思想之一。坐标系是联系几何与代数的桥梁,是数形结合的有力工具。虽然我们的学生已经学习和了解了椭圆的普通方程和圆的参数方程有关知识,但我们的学生对其了解甚少,再说椭圆参数方程的探求与应用,与代数变换、三角函数有密切联系,以及由学生独立获取椭圆参数方程中的参数的几何意义是极其困难的。因此我们必须从实际问题入手,由浅入深的帮助学生学习理解知识,通过“思考”、“探究”、“信息技术应用”等来启发和引导学生的数学思维,养成主动探索、积极思考的好习惯。

椭圆的参数方程(含答案)

椭圆的参数方程 教学目标: 1.了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2.通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3.通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在x 轴上的椭圆的标准方程:22221(0)x y a b a b +=>> 焦点在y 轴上的椭圆的标准方程:22 221(0)y x a b a b +=>> 二、椭圆参数方程的推导 1. 焦点在x 轴上的椭圆的参数方程 因为22()()1x y a b +=,又22 cos sin 1??+= 设cos ,sin x y a b ??==,即a cos y bsin x ??=??=? ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 2.参数?的几何意义 问题、如下图,以原点O 为圆心,分别以a ,b (a >b >0)为半径 作两个圆。设A 为大圆上的任意一点,连接OA,与小圆交于点B 。 过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当 半径OA 绕点O 旋转时点M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(x, y)。 那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点A,B 均在角? 的终边上,由三角函数的定义有 ||cos cos x OA a ??==, ||sin cos y OB b ??==。 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是 a cos y bsin x ??=??=? 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 () ?为参数

椭圆离心率的解法

椭圆离心率的解法 椭圆的几何性质中,对于离心率和离心率的取值围的处理,同学们很茫然,没有方向性。题型变化很多,难以驾驭。以下,总结一些处理问题的常规思路,以帮助同学们理解和解决问题。 一、 运用几何图形中线段的几何意义。 基础题目:如图,O 为椭圆的中心,F 为焦点,A 为顶点,准线L 交OA 于B ,P 、Q 在椭圆上,PD ⊥L 于D ,QF ⊥AD 于F,设椭圆的离心率 为e ,则①e=|PF ||PD |②e=|QF ||BF |③e=|AO ||BO |④e=|AF | |BA | ⑤e=|FO | |AO | 评:AQP 为椭圆上的点,根据椭圆的第二定义得,①②④。 ∵|AO |=a,|OF |=c,∴有⑤;∵|AO |=a,|BO |= a 2 c ∴ 有③。 题目1:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,以 F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则

椭圆的离心率e ? 思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF 2 的中点B ,连接BF 1 ,把已知条件放在椭圆,构造△F 1BF 2分析三角形的各边长及关系。 解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3c c+3c=2a ∴e= c a = 3-1 变形1:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,点 P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率? 解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1

椭圆中的离心率问题

椭圆中的离心率 学习目标:掌握常见的求椭圆的离心率的值与范围的方法 一.课前预习: 1. 已知正三角形ABC,椭圆以B ,C 为焦点,且过AB、AC 的中点,椭圆的离心率是 。 2.椭圆122 22=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离 等于2 1 ∣AF 3.如图,从椭圆上一点P 向x 的一个焦点1F B 的连线与OP 4.椭圆()22 2210x y a b a b +=>>的两个焦点是12,F F ,P 是椭圆右准线上一点,若线段1PF 的 中垂线经过2F ,则椭圆离心率的取值范围是 。 二.例题解析: (一).求离心率的值: 1.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰 好过焦点,求椭圆的离心率。 2.如图所示,A 、B 是椭圆122 22=+b y a x (a>b>0F 2是右焦点,且AB ⊥BF 2,求椭圆的离心率 3.椭圆()22 2210x y a b a b +=>>的直线l 过椭圆的左焦点F 且交椭圆于A 、B 两点,若AF =2BF ,求椭圆的离心率

(二).求离心率的范围: 1.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且1290F PF ∠=,求椭圆离心率e 的取值范围。 2.椭圆12222=+b y a x (a>b>0)和圆x 2+y 2=(c b +2)2有四个交点,其中c 2=a 2-b 2, 求椭圆 离心率e 的取值范围。 三.巩固练习: 1.已知椭圆M :122 22=+b y a x (a>b>0),D (2,1)是椭圆M 的一条弦AB 的中点,点 P (4,-1)在直线AB 上,求椭圆M 的离心率。 2. 以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是 。 3.设椭圆122 22=+b y a x (a>b>0)的两焦点为F 1、F 2,长轴两端点为A 、B ,若椭圆上存 在一点Q ,使∠AQB=120o,求椭圆离心率e 的取值范围。 4.椭圆()22 2210x y a b a b +=>>的两个焦点是12,F F ,Q 是椭圆右准线与x 轴的交点,P 是 椭圆上一点,若线段PQ 的中垂线经过2F ,则椭圆离心率的取值范围是_________.

椭圆参数方程教学设计

1 / 3 椭圆的参数方程教学设计 王丽萍 一、基本说明 1、教学内容所属模块:选修4-4 2、年级:高二 3、所用教材出版单位:人民教育出版社(A 版) 4、所属的章节:第二讲第二节第1课时 二、教学设计 (一)、内容分析 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。本节知识以学生学习和了解了椭圆的普通方程和圆的参数方程为载体,从另一个角度认识椭圆。在建立椭圆方程过程中,展示引进参数的意义和作用。以及根据椭圆的特点,选取适当的方程表示形式,体现解决有关椭圆问题中数学方法的灵活性,拓展学生的思路,开阔学生的视野。 (二)、教学目标 (1)理解椭圆的参数方程及其参数的几何意义。 (2)引导学生体验构造参数法的应用思想,探讨如何运用参数方程在解决与椭圆有关问题。 (3)会根据条件构造参数方程实现问题的转化,达到解题的目的。 (三)、教学重点、难点 重点:椭圆的参数方程及其参数的几何意义 难点:巧用椭圆的参数方程解题 (四)、学情分析: “坐标法 ”是现代数学最重要的基本思想之一。坐标系是联系几何与代数的桥梁,是数形结合的有力工具。虽然我们的学生已经学习和了解了椭圆的普通方程和圆的参数方程有关知识,但我们的学生对其了解甚少,再说椭圆参数方程的探求与应用,与代数变换、三角函数有密切联系,以及由学生独立获取椭圆参数方程中的参数的几何意义是极其困难的。因此我们必须从实际问题入手,由浅入深的帮助学生学习理解知识,通过“思考”、“探究”、“信息技术应用”等来启发和引导学生的数学思维,养成主动探索、积极思考的好习惯。 (五)、设计思路: 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式。教师首先应通过实例展示在建立椭圆方程过程中,引进参数的意义和作用。使学生体会到有时用参数方程表示曲线比用普通方程表示更方便,理解参数的几何意义。 根据本节课的教学内容和学生实际水平,本节课采用“复习导入发现法”。通过具体实例问题,引导和激发学生的探究热情,通过“师生”和“生生”的交流合作,掌握椭圆参数的深层实质。教学流程为:复习回顾圆的参数方程和三角函数知识→创设情境引入新知→实例探究启发思维→例题讲解运用新知→课堂实践巩固新知→归纳总结完善→课外强化提升能力。 (六)、教具准备: PowerPoint 课件、《几何画板》 (七)、教学过程: 一、复习回顾 1.圆的参数方程知识 圆心在原点,半径为r 的圆的标准方程:222r y x =+ 圆的参数方程是:????=?=θ θsin cos a y a x

椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题 【重点知识温馨提示】 1.e =c a = 1- b2a2(01) 2.确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,c 的方程或不等式,进而得到关于e 的方程或不等式, 3. 【典例解析】 例1.(2015·新课标全国Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D. 2 例2.【2016高考新课标3文数】已知O 为坐标原点,F 是椭圆C : 22 22 1(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A ) 1 3 (B ) 12 (C ) 23 (D ) 34 例3 (2015·福建)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直 线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5, 则椭圆E 的离心率的取值范围是( ) A.? ???0, 32 B.????0,34 C.??? ?3 2,1 D.???? 34,1 例4.(2014·江西)设椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与 C 相交于A ,B 两点,F 1B 与y 轴相交于点 D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.

(完整版)椭圆的参数方程(含答案)(可编辑修改word版)

+ = > > + = > > + ? ? 椭圆的参数方程 教学目标: 1. 了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2. 通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3. 通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在 x 轴上的椭圆的标准方程: x a 2 y 2 b 2 1(a b 0) 焦点在 y 轴上的椭圆的标准方程: y a 2 二、椭圆参数方程的推导 x 2 b 2 1(a b 0) 1. 焦点在 x 轴上的椭圆的参数方程 x y 因为( )2 ( )2 = 1,又cos 2 + sin 2 = 1 a b x y ?x = a c os 设 = cos , a b = sin ,即?y = bsin ,这是中心在原点 O,焦点在 x 轴上的椭圆的参数方程。 2. 参数 的几何意义 问题、如下图,以原点 O 为圆心,分别以a ,b (a >b >0)为半径作 两个圆。设 A 为大圆上的任意一点连,接 OA,与小圆交于点 B 。过点 A 作 AN ⊥ox ,垂足为 N ,过点 B 作BM ⊥AN ,垂足为 M ,求当半径 OA 绕点 O 旋转时点 M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为 ,点 M 的坐标是(x, y)。 那么点 A 的横坐标为 x ,点 B 的纵坐标为 y 。由于点 A,B 均在角 的终边上,由三角函数的定义有 x =| OA | cos = a cos , y =| OB | sin = b cos 。 当半径 OA 绕点 O 旋转一周时,就得到了点 M 的轨迹,它的参数方程是 ?x = a c os ? y = bsin (为参数) 2 2

椭圆离心率问题专题练习

椭圆离心率问题专题练习 1. 已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,若 75,151221=∠=∠F PF F PF , 则椭圆的离心率为 2.椭圆122 22=+b y a x (a>b>0)的两顶点为A (a,0)B(0,b),若右焦点F 到直线AB 的距离等 于 2 1 ∣AF ∣,椭圆的离心率为 3.椭圆122 22=+b y a x (a>b>0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过 焦点,椭圆的离心率为 4. 以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,椭圆的离心率为 5.以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两 点,如果∣MF ∣=∣MO ∣,椭圆的离心率为 6. 如图所示,A 、B 是椭圆122 22=+b y a x (a>b>0)的两个端点,F 2是右焦点, 且AB ⊥BF 2,椭圆的离心率为 7.已知直线L 过椭圆 122 22=+b y a x (a>b>0)的 顶点A (a,0)、B(0,b),如果坐标原点到直线L 距离为2 a ,椭圆的离心率为 · 8.已知21F F 、是椭圆的两个焦点,P 是椭圆上一点,且 6021=∠PF F ,椭圆离心率e 的取值范围为 9.椭圆12222=+b y a x (a>b>0)和圆x 2+y 2=(c b +2 )2有四个交点,其中c 2=a 2-b 2 , 椭圆离心 率e 的取值范围为 10.设椭圆122 22=+b y a x (a>b>0)的两焦点为F 1、F 2,长轴两端点为A 、B ,若椭圆上存在一

椭圆参数方程的应用

椭圆参数方程的应用 【例3】 (2016·新课标全国卷Ⅲ)在直角坐标系xOy 中,曲线 C 1的参数方程为????? x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ? ?? ??θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程; (2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 【解】 (1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2 =2|sin(α+π3)-2|.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为(32,12). 在极坐标中,曲线C 的方程为ρ2 =31+2sin 2θ,点R 坐标为

? ????22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,点R 的极坐标化为直角坐标; (2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时点P 的直角坐标. 解:(1)∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1.点R 的直角坐标为(2,2). (2)设P (3cos θ,sin θ),根据题意可得|PQ |=2-3cos θ,|QR |=2-sin θ,∴|PQ |+|QR |=4-2sin(θ+60°).当θ=30°时,|PQ |+|QR |取最小值2,∴矩形PQRS 周长的最小值为4,此时点P 的直角坐标为? ?? ??32,12. 热点四 参数方程与极坐标方程的综合应用 【例4】 (2016·新课标全国卷Ⅰ)在直角坐标系xOy 中,曲线 C 1的参数方程为????? x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 【解】 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0. (2)曲线C 1,C 2的公共点的极坐标满足方程组

椭圆离心率问题

一、椭恻离心率的 1.运川几何图形中线段的几何意义。 基础题目:如图? 0为椭圆的中心,F为焦点? A为顶点,准线L交0A于B. P、Q在椭恻上? PD丄L于D. QFIAD于F,设椭圆的离心率为e.则(!)*晋卞②^罟禺算④*+|吕厂、I F0 I ⑤ *1757 评:AQP为椭圆上的点?根据椭圆的第一定义得, V I A0 I =a, I OF I =c,???有⑤:Tl AO I =aU BO I =辛.??有③。 题目1:椭圆务+^l(a>b>0)的两焦点为F, . F2 ?以F1F2为边作正三角形.若椭圆恰好平分正三角形的两边.则椭圆的离心率e 思路:A点在椭圆外,找a、b、c的关系应借助椭圆,所以取AF2的中点B.连接8F_把已知条件放在椭圆内?构造△RBF2分析三角形的^^^边长及关系。 解:V I F1F2 I =2c I BF1 I =c I BFz I =?C c-K/3c=2a Ae= yjs-l *2 u2 变形椭圆农+h=lSb>0)的两儘点为F1、F2 ?点P在椭圆上,使△OPF1为正三角形?求椭恻离心

解:连接 PF2测 I OF2 I = I OFJ = I OP I ,ZF I PF2 =90^ 图形如上图, y2 变形2:椭圆农+^i(a>b>0)的两焦点为F 八Fz . AB 为椭恻的顶点.P 是椭圆上一点?且PF 】丄X 轴. tP ?■TP Fl I = — I Fa Fl I =2c I OB I =b I OA I =a "AB ?■- I F X' I ■夕 又"b=毎疋 ?'?a2=5c2 e=¥ 点评:以上题目,构造焦点三角形?通过#边的几何总义及关系,推寻有关a 与C 的方程式,推导离心率。 一、运用正余弦定理解决图形中的三角形 y2 \i2 题目2:椭圆+^l(a>b>0), A 是左顶点.F 是右焦点.B 是短轴的一个顶点.ZA8F=90" ■求e PF2 〃 AB,求椭圆离心率 解: PF2

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (22022 0=-+-的参数方程是? ??α+=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α+=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是A (ααsin b cos a ,)(2 0π<α<),矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π=时,22m a x b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,22max b a 4L +=,此时α存在。 二、求轨迹

例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++=cos 82 11021cos 12211x 21x x B A 3sin 42 11921sin 6211y 21y y B A +α=+?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α=3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值 例3 设点P (x ,y )在椭圆19 y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则5553arcsin sin 53 4|5sin 4cos 3|d 22-??? ??+α=+-α+α=。 当5 3arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 四、求解有关离心率等入手比较困难的问题

圆锥曲线离心率问题

圆锥曲线的离心率问题 离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c之间的联系。 一、基础知识: 1、离心率公式:c e a =(其中c为圆锥曲线的半焦距) (1)椭圆:() 0,1 e∈ (2)双曲线:() 1,+ e∈∞ 2、圆锥曲线中,, a b c的几何性质及联系 (1)椭圆:222 a b c =+, ①2a:长轴长,也是同一点的焦半径的和: 122 PF PF a += ②2b:短轴长 ③2:c椭圆的焦距 (2)双曲线:222 c b a =+ ①2a:实轴长,也是同一点的焦半径差的绝对值: 122 PF PF a -= ②2b:虚轴长 ③2:c椭圆的焦距 3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,, a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向: (1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a有关,另一条边为焦距。从而可求解

(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解 2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑: (1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率 注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题: 例1:设12,F F 分别是椭圆()22 22:10x y C a b a b +=>>的左、右焦点,点P 在椭 圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A . 3 B .6 C .13 D .1 6 思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为 12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角 三角形12PF F

2016_2017学年高中数学第二章参数方程2_3参数方程的应用第2课时圆椭圆的参数方程的应用学案苏

圆、椭圆的参数方程的应用 1.能用曲线的参数方程去研究曲线的性质. 2.会用参数法解决圆锥曲线中的最值、定值等问题. [基础·初探] 1.圆的参数方程 圆的参数方程的常见形式为? ?? ?? x =a +r cos α, y =b +r sin α(α为参数).其中,参数α的几何 意义是以圆心A (a ,b )为顶点,且与x 轴同向的射线按逆时针方向旋转到圆上一点P 所在半径成的角. 2.椭圆的参数方程 椭圆的参数方程的常见形式为? ?? ?? x =a cos θ, y =b sin θ(θ为参数). [思考·探究] 1.椭圆的参数方程与圆的参数方程有什么区别和联系? 【提示】 椭圆x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=r 2 普通方程都是平方和等于1的形式, 故参数方程都运用了三角代换法,只是参数方程的常数不同. 2.椭圆的参数方程中参数φ的几何意义是什么? 【提示】 从几何变换的角度看,通过伸缩变换,令????? x ′=1a x ,y ′=1 b y , 椭圆x 2a 2+y 2b 2=1可以变成圆x ′2+y ′2 =1.

利用圆x ′2+y ′2 =1的参数方程 ????? x ′=cos φ,y ′=sin φ (φ是参数)可以得到椭圆x 2a 2+y 2 b 2=1的参数方程??? ?? x =a cos φ,y =b sin φ (φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图. [质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________ 疑问3:_____________________________________________________ 解惑:_____________________________________________________ 疑问4:_____________________________________________________ 解惑:_____________________________________________________ 圆的参数方程的应用 在圆x 2 +2x +y 2 =0上求一点,使它到直线2x +3y -5=0的距离最大. 【自主解答】 圆的方程x 2 +2x +y 2 =0可化为(x +1)2 +y 2 =1,所以设圆的参数方程为 ? ?? ?? x =-1+cos θ, y =sin θ. 设P (-1+cos θ,sin θ),则点P 到直线2x +3y -5=0的距离为 d = |2 -1+cos θ+3sin θ-5| 22+3 2 = |2cos θ+3sin θ-7| 13 = |13sin θ+α-7|13 (其中sin α=213 13, cos α=313 13 ). 当sin(θ+α)=-1,θ+α=3π 2 ,

相关文档
最新文档