高等数学偏导数第一节题库

合集下载

2024年考研高等数学一多元函数微分学历年真题

2024年考研高等数学一多元函数微分学历年真题

2024年考研高等数学一多元函数微分学历年真题在2024年考研高等数学一的多元函数微分学部分,历年真题一直是备考的重要资料。

通过复习历年真题,不仅可以熟悉考试题型,还能够理解题目的解题思路和考点要点。

本文将为大家呈现2024年考研高等数学一多元函数微分学的历年真题,供大家参考复习备考。

第一节:选择题1. 设函数 $z=f(x,y)$ 在点 $(x_0,y_0)$ 处可微分,且对任意 $t$ ,有$f(tx_0,ty_0)=tf(x_0,y_0)$ ,则 $\frac{\partial z}{\partialx}|_{(x_0,y_0)}$ 和 $\frac{\partial z}{\partial y}|_{(x_0,y_0)}$ 的关系是()。

A. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}+2\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$B. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}-2\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$C. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}+3\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$D. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}-3\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$2. 设函数 $f(x,y)$ 具有二阶连续偏导数, $df(x,y)$ 是其全微分,下列说法错误的是()。

A. $df(x,y)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partialy}dy$B. $df(x,y)=\frac{\partial f}{\partial x}|_{(x,y)}dx+\frac{\partialf}{\partial y}|_{(x,y)}dy$C. $df(x,y)=f_x(x,y)dx+f_y(x,y)dy$D. $df(x,y)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partialy}dy+\frac{\partial^2 f}{\partial x\partial y}dxdy$第二节:简答题1. 证明函数 $z=2x^2+3xy$ 在点 $(1, 2)$ 处的全微分为$dz=8dx+7dy$ 。

高等数学-偏导数的求法

高等数学-偏导数的求法

下面两个定理给出了可微与偏导数的关系:
(1) 函数可微
偏导数存在
(2) 偏导数连续
函数可微
14
定理1(必要条件) 若函数 z = f (x, y) 在点(x, y) 可微 ,
则该函数在该点偏导数
必存在,且有
d z z x z y x y
证: 由全增量公式
得到对 x 的偏增量
x x
x
z lim x z A x x0 x
z x (1, 2)
z x1 1 3y y2
z
y (1, 2)
3
例2

f (x, y) x y yx (x 1)2 ( y 2)3 arctan
fx (1,2), f y (1,2)
ex 4 y2 1
解 : f x (1,2) [ f (x,2)] x1 [ x2 2x 0] x1
2z y 2
2x3 18xy
3z 6y2
x3
11
三、函数全微分
二元函数
当x, y 取得增量x, y 时如何方便
求出全增量 Z f x x, y y f x, y
引例:设有一圆柱体,受压后方式变形,它的底面半径由
r 变化到 r r, 高度由 h 变化到 h h. 问圆柱体体积
V 改变了多少.
z [ fx ( 0, 0)x f y ( 0, 0)y]
x y (x)2 (y)2
x y (x)2 (
y)
2
0
o( ) 因此,函数在点 (0,0) 不可微 .
注: 此为证明二元函数可微的方法!
16
定理2 (充分条件) 若函数
的偏导数 z , z x y
在点 (x, y) 连续, 则函数在该点可微分.且

高等数学试题(A卷)(9)

高等数学试题(A卷)(9)

一.填空题(每空2分,本大题满分20分)1. 设y x xy z sin -=, 则=∂∂xz__________,=∂∂∂y x z 2__________. 2. 球面6222=++z y x 在点)1,2,1(处的法向量=n__________, 切平面方程为__________________________. 3. =⎰⎰xdy y xdx 02110=⎰1dx ______.4. 幂级数∑∞=+0)1(2n n nn x 的收敛半径=R ______, 收敛域∈x ________.5. 微分方程065=+'-''y y y 的通解为=y _________________________, 微分方程xxe y y y 265=+'-''的待定特解形式为=*y ________________.二.选择题 (每小题2分, 本大题满分10分)1. ),(y x f 在点),(00y x 连续是偏导数),(00y x f x 和),(00y x f y 存在的( ). (A) 充分条件。

(B) 必要条件。

(C) 充要条件。

(D) 无关条件.2. =→→x xyy x sin lim20( ).(A) 1。

(B) 2。

(C) 21。

(D) ∞.3. 设L 为曲线2x y =上从点)0,0(到点)1,1(的一段弧, 则⎰=Lds y ( ).(A) ⎰+10241dx x 。

(B) ⎰+141dy y 。

(C) ⎰+1241dx x x 。

(D)⎰+101dy y 。

4. 下列级数条件收敛的是( ). (A)∑∞=-1)1(n nn 。

(B) ∑∞=-12)1(n n n。

(C) ∑∞=-12)1(n nn。

(D) ∑∞=-1)2(n nn .5. 方程0)(223=++dy x y xydx 是( ).(A) 可分离变量的微分方程。

大学高等数学上下考试题库(及答案)

大学高等数学上下考试题库(及答案)

高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高数 偏导数 知识点与例题精讲

高数 偏导数 知识点与例题精讲

导数,记作
z y

f y

z
y

f
y
(
x
,
y).
偏导数的概念可以推广到二元以上函数
如 u f (x, y,z) 在 (x, y,z) 处
fx(x, y,z)
lim
x0
f ( x x, y, z) x
f (x, y,z),
fy(x, y,z)
lim
y0
f ( x, y y, z) y
x
y
3、设u

x
y z
, 则u

__________;u

__________;
x
y
u ____________. z
4、设z

arctan
y ,则2z x x 2
________; 2 z y 2

_______;
2 z ____________. xy
显然 fxy(0,0) f yx (0,0).
问题:具备怎样的条件才能使混合偏导数相等?
定理 如果函数z f ( x, y)的两个二阶混合偏导数 2z 及 2z 在区域 D 内连续,那末在该区域内这 yx xy
两个二阶混合偏导数必相等.
例 9 验证函数u( x, y) ln x2 y2 满足拉普拉
高阶偏导数


纯偏导 混合偏导(相等的条件)
1. 偏导数的概念及有关结论 • 定义; 记号; 几何意义
• 函数在一点偏导数存在
函数在此点连续
• 混合偏导数连续
与求导顺序无关
2. 偏导数的计算方法
先代后求

高等数学-偏导数

高等数学-偏导数

z
记为
,
x x x0
y y0
f x
,
x x0 y y0
zx
x x0 ,
y y0

f x ( x0 , y0 ).
2
同理,可定义函数 z f ( x, y) 在点( x0, y0 ) 处
对y的偏导数为
f y( x0 ,
y0 )
lim
y0
f ( x0,
y0
y) y
f ( x0,
y0 )
z
记为
, y x x0
x 导数,则 2z ( ).
xy
yf ( xy) ( x y) y( x y)
z x
1 x2
f ( xy)
y x
f ( xy)
y( x y)
26
设u
yf
x y
xg
y ,其中f , g有连续的 x
二阶 导数, 求x
2u x 2
y
2u xy
.
答案: 0

u x
f
x y
u x x x2 y2 ,
2u (x2 y2) x 2x x2 ( x2 y2 )2
y2 x2 ( x2 y2 )2
利用函数关于自变量的对称性
2u y 2
x2 y2 (x2 y2)2
.
2u x 2
2u y2
(
y2 x2
x2 y2 )2
(
x2 x2
y2 y2 )2
0
24
例 验证函数 z sin( x ay)满足波动方程:
2z y2
a2
2z x 2
.
证 因 z cos( x ay), x

高等数学一(2)课外复习题

高等数学一(2)课外复习题

高等数学一(2)课外复习题期末测试题一一、求下列各函数的偏导数(每小题6分,共12分)1、设22222222,0(,)0,0x y xy x y f x y x y x y ⎧-+≠⎪=+⎨⎪+=⎩,求 (1) (0,)x f y ,(2) (0,0)xy f 。

2、设,x y z f xy g y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中f ,g 均可微,求,z z x y ∂∂∂∂。

二、(本题8分)设函数z =z (x ,y )由方程222y x y z x f x ⎛⎫++=⎪⎝⎭,且可微,求dz 。

三、(本题10分) 设f (x ,y )在区域D 上连续,且f (x ,y )=xy +(,)Df u v dudv ⎰⎰,其中D 是由20,,1y y x x ===所围成的区域,求f (x ,y )。

四、(本题10分) 求半径为R五、(本题10分) 计算3222x zdydz x yzdxdz x z dxdy ∑--⎰⎰,其中∑为222z xy =--(12z ≤≤)。

六、(本题10分) 求曲线积分()()()sin cos xx LI ey b x y dx e y ax dy =-++-⎰,其中a ,b为常数,L 为从点A (2a ,0)沿曲线y =0,0)的弧。

七、(本题10分) 将函数21()43f x x x =-+展开成(x -2)的幂级数,并指出收敛区间。

八、(本题10分) 求级数11!nn n x n ∞=+∑的收敛半径与和函数。

九、(本题10分) 求微分方程76sin y y y x '''-+=的通解。

十、(本题10分) 已知()1ϕπ=,试确定()x ϕ,使线积分()()cos AByx x dx x dyx ϕϕ-+⎡⎤⎣⎦⎰与路径无关,并求当A ,B 两点分别为(1,0),(π,π)时,曲线积分的值。

期末测试题二一、填空题(每小题3分,共15分) 1、1y x y →→= 。

高等数学偏导数第一节题库

高等数学偏导数第一节题库

【090101】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】【试题内容】设z y x yx y =++arctan 122,求该函数的定义域。

【试题答案及评分标准】x ≠0为该函数的定义域。

10分【090102】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】求函数的定义域。

【试题答案及评分标准】10分【090103】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设,其中x ≠0,假如当 x =1时,z y =+12,试确定f x ()及z 。

【试题答案及评分标准】x =1时,z f y y ==+()12,所以f x x ()=+125分 z x y x x xx y =+⎛⎝ ⎫⎭⎪=+122210分【090104】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z x y f x y =++-(),已知y =0时, z x =2,求f x ()和z 。

【试题答案及评分标准】y =0时,z x =2,得x f x x +=()2 所以f x x x ()=-25分 所以z x y x y x y x y y =++---=-+()()()22210分【090105】【计算题】【中等0.5】【多元函数的概念】【多元函数的定义域】 【试题内容】设z y f x =+-()1,其中x y ≥≥00,,假如y =1时z x =,试确定函数f x ()和z 。

【试题答案及评分标准】y =1时,z f x x =+-=11() 所以f x x ()-=-113分令x t x t -==+112,()所以f t t t t f x x x ()(),()=+-=+=+11222227分所以()z y x x y x x y =+-+-=+-≥≥()(),1211002 10分【090106】【计算题】【较易0.3】【多元函数的极限】【极限的计算】 【试题内容】求极限 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【090101】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z y x yx y =++arctan122,求该函数的定义域。

【试题答案及评分标准】x ≠0为该函数的定义域。

10分【090102】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】【试题内容】求函数u x y z =+⎛⎝⎫⎭⎪⎪arcsin 22的定义域。

【试题答案及评分标准】-≤+≤1122x y z10分【090103】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z xf y x=(),其中x ≠0,如果当 x =1时,z y =+12,试确定f x ()及z 。

【试题答案及评分标准】x =1时,z f y y ==+()12,所以f x x ()=+125分z x y x x xx y =+⎛⎝ ⎫⎭⎪=+122210分【090104】【计算题】【较易0.3】【多元函数的概念】【多元函数的定义域】 【试题内容】设z x y f x y =++-(),已知y =0时, z x =2,求f x ()和z 。

【试题答案及评分标准】y =0时,z x =2,得x f x x +=()2所以f x x x ()=-25分 所以z x y x y x y x y y =++---=-+()()()22210分【090105】【计算题】【中等0.5】【多元函数的概念】【多元函数的定义域】 【试题内容】设z y f x =+-()1,其中x y ≥≥00,,如果y =1时z x =,试确定函数f x ()和z 。

【试题答案及评分标准】y =1时,z f x x =+-=11() 所以f x x ()-=-113分令x t x t -==+112,()所以f t t t t f x x x ()(),()=+-=+=+11222227分所以()z y x x y x x y =+-+-=+-≥≥()(),1211002 10分【090106】【计算题】【较易0.3】【多元函数的极限】【极限的计算】 【试题内容】求极限limsin x y y xxy →→+-0211。

【试题答案及评分标准】 解:limsin x y y xxy →→+-00211=⋅++→→limsin ()x y y x xy xy002116分= 4 10分 【090107】【计算题】【较易0.3】【多元函数的极限】【极限的计算】 【试题内容】求极限limsin()x y x y x y xy →→-+023211。

【试题答案及评分标准】 解:原式=lim()sin()x y x y x y x y xy →→-++002322114分=-++⋅→→limsin()x y x y xy xy 0021118分=-1210分【090108】【计算题】【较易0.3】【多元函数的极限】【极限的计算】【试题内容】求极限lim x y x xye xy→→-+0416 。

【试题答案及评分标准】解:lim x y xxye xy→→-+0416=++-→→lim()x y x xye xy xy00416 8分=-8 10分【090109】【计算题】【中等0.5】【多元函数的极限】【极限的计算】 【试题内容】求极限lim()sinx y x y x→→+021 。

【试题答案及评分标准】解:由于lim()x y x y →→+=002sin11x≤ 8分所以原式=0 10分 【090110】【计算题】【中等0.5】【多元函数的极限】【极限的计算】【试题内容】求极限lim x y y yx x xy y →→+-+00322232 。

【试题答案及评分标准】解:323232222222y yx x xy y y y x x xy y+-+=⋅+-+() 又32312622222222y x x xy yy x x y +-+≤++=()()6分lim x y y →→=008分故原式=0 10分 【090111】【计算题】【中等0.5】【多元函数的极限】【极限的计算】【试题内容】求极限lim ()cos()x y x y x y x y →→+-+002222221 。

【试题答案及评分标准】解:原式=lim ()()lim x y x y x y x y x y x y x y →→→→++=+0022222220022221224分当(,)(,)x y →00时,x 2为无穷小量,22222y x y+≤,有界 8分则原式=0 10分 【090112】【计算题】【中等0.5】【多元函数的极限】【极限的计算】 【试题内容】求极限lim()x y x y x y →→+002222。

【试题答案及评分标准】 解:[]()()x y x y x y xy x y x y 2222222222+=+++又lim lim ln limx xxxx x x eex x →+-===→+→+011100215分0022222222≤+≤=→x y x y x y xy ,(当x y →→00,时) 所以lim x y x y x y →→+=0022228分()lim x y x y x y →→+==0220221110分【090113】【计算题】【较易0.3】【多元函数的极限】【多元函数的间断点】 【试题内容】函数f x y x y (,)ln()=+-221连续区域是 ⎽⎽⎽⎽⎽⎽⎽ 。

【试题答案及评分标准】 答:x y 221+>。

10分【090114】【计算题】【较易0.3】【多元函数的连续性】【多元函数的间断点】 【试题内容】试求函数f x y z x y z (,,)ln =++-11222的间断点。

【试题答案及评分标准】解:因为在区域x y z 2221++>及x y z 2221++<连续,故间断点为x y z 2221++=。

10分 【090115】【计算题】【较易0.3】【多元函数的连续性】【多元函数的间断点】 【试题内容】试求函数f x y xy(,)sin =1的不连续点。

【试题答案及评分标准】 解:由于f x y xy (,)sin =⎛⎝ ⎫⎭⎪1是初等函数,所以除xy =0的点以外处处连续。

5分在xy =0(即x 轴和y 轴)上点f x y (,)没定义,因而不连续。

10分 【090116】【计算题】【中等0.5】【多元函数的连续性】【多元函数的间断点】 【试题内容】试求函数f x y xyx y(,)sin sin =+22ππ的间断点。

【试题答案及评分标准】解:显然当(,)(,),x y m n m n Z =∈时,f x y (,)没定义,故不连续。

5分 又f x y xyx y(,)sin sin =+22ππ是初等函数,所以除点(,)m n (其中m n Z ,∈)以外处处连续。

10分【090117】【计算题】【较易0.3】【多元函数的连续性】【多元函数的间断点】【试题内容】求函数f x y x yy y (,)sin=≠=⎧⎨⎪⎩⎪100的间断点。

【试题答案及评分标准】解:只需讨论x 轴上的点(y =0)对于(0,0)点,由于lim (,)(,)x y f x y f →→==00000f x y (,)在(0,0)点连续5分对x 轴上的其余点,(,)a 0,()a ≠0lim sinx a y x y→→01不存在,故在(,)a 0,()a ≠0不连续。

10分【090118】【计算题】【较易0.3】【多元函数的连续性】【多元函数的连续性】【试题内容】讨论函数f x y x y x y (,)=-+2222的连续性。

【试题答案及评分标准】解:由于f x y x y x y(,)=-+2222是初等函数,所以除(0,0)点以外处处连续。

6分但在(0,0)点,f x y (,)没定义,则在(0,0)点不连续。

10分【090119】【计算题】【较易0.3】【多元函数的连续性】【多元函数的连续性】【试题内容】讨论函数f x y y yx y x(,)sin()=++222的连续性。

【试题答案及评分标准】解:由于sin()y yx y x222++是初等函数。

4分所以它在除抛物线y x =-2以外的点处都连续,但在抛物线y x =-2上的所有点都不连续。

10分 【090120】【计算题】【较易0.3】【多元函数的连续性】【多元函数的连续性】 【试题内容】讨论函数z x yxy=+-arctan1的连续性。

【试题答案及评分标准】解:由于arctan x yxy+-1是初等函数,所以除xy =1以外的点都连续,但在xy =1上的点处不连续。

10分【090121】【计算题】【中等0.5】【多元函数的连续性】【多元函数的连续性】【试题内容】讨论函数f x y x y x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪22222222000的连续性。

【试题答案及评分标准】解:由于x y x y 2222+是初等函数,所以除点(0,0)外处处连续。

4分 又022*******≤+=+≤x y x y x x yy y 则lim (,)(,)x y f x y f →→==0000 故f x y (,)处处连续。

10分【090122】【计算题】【较易0.3】【多元函数的连续性】【多元函数的连续性】【试题内容】讨论函数f x y x y x y x y x y (,)(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪332200000在点(0,0)处的连续性。

【试题答案及评分标准】解:由于0033223223223232≤++≤+++≤+=+→x y x y x x y y x y x x y y x y(当x y →→00,时)6分 所以lim (,)x y x y x y f →→++==0033220008分故f x y (,)在(0,0)点连续。

10分【090123】【计算题】【中等0.5】【多元函数的连续性】【多元函数的连续性】【试题内容】讨论函数f x y xy x y x y x y x y (,)()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪2200000在点(0,0)处的连续性。

【试题答案及评分标准】解:由于xy x y x y y x x y x y x yx y ()++≤+++≤+→222222220 (当x y →→00,时)8分所以lim (,)(,)x y f x y f →→==00000故f x y (,)在(0,0)处连续。

10分【090124】【计算题】【中等0.5】【多元函数的连续性】【多元函数的连续性】【试题内容】讨论函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪2222222000在点(0,0)处的连续性。

相关文档
最新文档