北邮运筹学ch7-2 最小树问题

合集下载

运筹学最小生成树破圈法例题

运筹学最小生成树破圈法例题

运筹学最小生成树破圈法例题引言运筹学是一门研究如何优化决策的学科,它可以帮助我们在面对各种约束条件和目标函数的情况下,找到一个最优解。

其中一个重要的问题是最小生成树(Minimum Spanning Tree,MST)问题,它用于解决图论中的连通性问题。

在本文中,我们将重点讨论用破圈法(Cycle Breaking Algorithm)求解最小生成树问题的例题。

什么是最小生成树问题?最小生成树问题是在一个加权连通图中,找到一个边的子集,使得这个子集形成一棵树,并且这棵树上所有边的权重之和最小。

最小生成树问题常被用于网络设计、电力传输、通信网络等领域。

最小生成树破圈法为了解决最小生成树问题,我们介绍一种常用的算法——破圈法。

该算法的基本思想是不断将新的边加入到当前的生成树中,同时保证生成树中不会形成闭合的回路。

下面通过一个例题来详细介绍破圈法的具体步骤。

例题描述假设我们有一个无向连通图,共有6个顶点,边的权重如下表所示:边权重AB 4AD 6AC 5BC 1BD 2BE 3CE 7DE 8DF 9边权重EF 10我们的目标是找到这个图的最小生成树。

破圈法求解步骤以下是破圈法求解最小生成树问题的具体步骤:1.初始化:选择一个起始顶点作为生成树的根节点,将该顶点加入生成树的顶点集合V’中,将该顶点的所有相邻边加入到候选边集合E’中,并按权重从小到大排序。

2.迭代:从候选边集合E’中选择一条权重最小且不会形成回路的边e,将该边的两个顶点加入到顶点集合V’中,并将这条边加入生成树的边集合中。

同时更新候选边集合,将与新加入顶点有关的边加入候选边集合,并按权重排序。

3.终止条件:重复步骤2,直到生成树包含了全部的n-1个顶点,其中n为原图的顶点个数。

破圈法求解最小生成树例题解析根据以上步骤,我们逐步求解例题中给出的图的最小生成树。

Step 1: 初始化我们选择顶点A作为起始顶点,并将其加入生成树的顶点集合V’中。

北邮运筹学ch7-2 最小树问题

北邮运筹学ch7-2 最小树问题

进入演示和练习
作业:P283 10.4 10.5
最短路问题撑树问题
Minimum Spanning Tree Problem
Ch7 Graph and Network
2013-9-13 Page 1 of 5
定义:设G=[V,E]是一个无向图,对每一条边ei∈E有一个长 度C(ei) ≥0,G的任意支撑树T各条边的长度之和称为树T的长度, 记为C(T)。长度最小的支撑树称为最小树。 求最小树是在一个无向连通图G中求一棵最小支撑树。 求最小树问题的应用: • 电信网络(计算机网络、电话专用线网络、有线电视网络等等) 的设计 • 低负荷运输网络的设计,使得网络中提供链接的部分(如铁路、 公路等 等)的总成本最小 • 高压输电线路网络的设计 电器设备线路网络(如数字计算机系统)的设计,使得线路总长 度最短 • 连接多个场所的管道网络设计
运筹学 北京邮电大学
§7.2 最小支撑树问题
Minimum Spanning Tree Problem
Ch7 Graph and Network
2013-9-13 Page 2 of 5
求最小树的方法:破圈法和避圈法 破圈法:任取一圈,去掉圈中最长边,直到无圈。 避圈法:即选边法;加边的原则:从最短边开始选择,每次 都从未选边中取最短者,但已选边中不能形成圈,直到连通 (n-1条边)。

最小树问题

最小树问题

6.3.1 狄克斯特拉算法 (Dijkstra algorithm, 1959) 计算两节点之间或一个节点到所有节点之间的最短路 令 dij 表示 vi vj 的直接距离(两点之间有边),若两点之间 没有边,则令 dij = ,若两点之间是有向边,则 dji = ; 令 dii = 0,s 表示始点,t 表示终点 • 对每个节点,用两种标号:T和P,表示从始点到该节点的距 离,P是最短距离(权),为永久标号,T是目前路径的距离,是 临时标号。 • 通过不断改进T值,当其最小时,将其改为P标号。 • 开始时,令始点有P=0的P标号,其它节点为T=+ .
•(3)Kruskal 算法:将图中所有边 v1 按权值从小到大排列,依次选 1 所剩最小的边加入边集 T,只 v8 要不和前面加入的边构成回路, 5 直到 T 中有 n1 条边,则 T 是最小生成树
v7
4
v2
1
v3
2
4 5
1
3
4
1
v4 5 v5
v0 2 3 v6 2 4
图的矩阵表示
将图的几何形状转化为代数矩阵形式,可大 大方便计算机对图的处理与运算。 1、无权图的矩阵表示:
6.2.3 最小生成树
v5 9 v6 17 10 8 7 11 v4 16 v3 9.5 v2 v1 10



12 7 19.5


10 16 11 10 17 10 9.5 19.5 16 9.5 7 12 7 8 7 11 10 8 9 17 19.5 12 7 9
寻找连通图支撑树的方法有“破圈法”。就是从图中 任取一个圈,去掉一条边。再对剩下的图重复以上步 骤,直到不含圈时为止,这样就得到一个支撑树。 例4 用破圈法求出下图的一个支撑树。 v2 e1 v1 e2 v3 e3 e4 e7 e8 e6 v5

教学课件:第五章-最小树问题

教学课件:第五章-最小树问题
最小树问题的实际应用
最小树问题在现实生活中具有广泛的应用,如电路设计、网络路由、物流配送等。通过解 决最小树问题,可以优化网络结构、降低成本、提高效率,为实际问题的解决提供重要的 理论支持和实践指导。
最小树问题的未来研究方向
算法优化与改进
尽管已经存在许多有效的算 法用于解决最小树问题,但 随着问题规模的扩大和复杂 度的增加,需要进一步优化 和改进现有算法,以提高求 解速度和精度。
04 最小小生成树问题是在最小生成树问题的基础上,给 每条边赋予一个权重值,目标是寻找一棵权值最小的生成树 。
详细描述
在带权重的最小生成树问题中,每条边都有一个关联的权重 ,表示该边的长度或代价。算法需要选择一组边,这些边能 够连接所有节点并且总权值最小。常见的带权重的最小生成 树算法有普里姆算法和克鲁斯卡尔算法。
理论分析与证明
对于最小树问题的求解算法 ,需要深入的理论分析和证 明,以揭示算法的内在机制 和性能。未来可以进一步研 究算法的理论基础和数学证 明,为算法的设计和分析提 供更严格的依据。
THANKS FOR WATCHING
感谢您的观看
05 总结与展望
最小树问题的研究现状与成果
最小树问题的定义和性质
最小树问题是一类组合优化问题,旨在寻找一棵具有最小权值的树,该树连接给定的顶点 集。最小树问题在计算机科学、运筹学和图论等领域具有广泛的应用。
最小树问题的研究进展
近年来,最小树问题的研究取得了重要的进展。研究者们提出了许多有效的算法和近似算 法,用于解决最小树问题及其变种。这些算法在理论和实践方面都取得了重要的突破,为 解决实际问题提供了有效的工具。
教学课件:第五章-最小树问
目录
• 引言 • 最小树问题的算法 • 最小树问题的实例分析 • 最小树问题的扩展问题 • 总结与展望

最小树与最小树形图(数学建模)讲解

最小树与最小树形图(数学建模)讲解

最小树与最小树形图(数学建模)讲解一、最小树的定义及性质1. 定义:最小树,又称最小树,是指在给定的带权无向图中,包含图中所有顶点的一个树形结构,且树中所有边的权值之和最小。

2. 性质:(1)最小树中不存在回路;(2)对于最小树中的任意两个顶点,它们之间有且仅有一条路径;(3)最小树中边的数量等于顶点数量减一;(4)在最小树中添加任意一条边,都会形成一条回路;(5)最小树不唯一,但权值之和相同。

二、求解最小树的方法1. Prim算法Prim算法是一种贪心算法,其基本思想是从图中的一个顶点开始,逐步添加边和顶点,直到形成最小树。

具体步骤如下:(1)初始化:选择一个顶点作为最小树的起点,将其加入最小树集合;(2)迭代:在最小树集合和非最小树集合之间,寻找一条权值最小的边,将其加入最小树集合;(3)重复步骤2,直到所有顶点都加入最小树集合。

2. Kruskal算法Kruskal算法同样是一种贪心算法,其基本思想是将图中的所有边按权值从小到大排序,然后依次选择权值最小的边,判断是否形成回路,若不形成回路,则将其加入最小树集合。

具体步骤如下:(1)初始化:将所有顶点视为独立的树;(2)按权值从小到大排序所有边;(3)迭代:选择权值最小的边,判断其是否形成回路,若不形成回路,则将其加入最小树集合;(4)重复步骤3,直到所有顶点都在同一棵树中。

三、最小树形图的定义及求解方法1. 定义:最小树形图,又称最优树形图,是指在给定的有向图中,找到一个包含所有顶点的树形结构,使得树中所有边的权值之和最小。

2. 求解方法:朱刘算法(Edmonds' Algorithm)朱刘算法是一种用于求解最小树形图的算法,其基本思想是通过寻找图中的最小权值环,进行收缩和扩展操作,最终得到最小树形图。

具体步骤如下:(1)寻找最小权值环;(2)对最小权值环进行收缩操作,将环中的顶点合并为一个新顶点;(3)在新图中寻找最小树形图;(4)将新图中的最小树形图扩展回原图,得到原图的最小树形图。

最小树问题.

最小树问题.
证明 若T是最小支撑树,因为T∪{e}含有一 个圈C(e),任取一个边e’ ∈ C(e) , T∪{e}-{e’}仍然是连通不含圈的、即 是一个树,记T’= {e}-{e’} ,则: • 因为T是最小树,所以 w e w e ' ,由于的 任意性,则e是C(e)中的最大边。
W T ' W T w e w e '
证明:(1)→(2) 由于T是树,由定义知T连通且无圈。只须证明m=n-1。 归纳法:当n=2时,由于T是树,所以两点间显然有且 仅有一条边,满足m=n-1。 假设 n=k-1时命题成立,即有k-1个顶点时,T有 k-2条边。 当n=k时,因为T连通无圈,k个顶点中至少有一 个点次为1。设此点为u,即u为悬挂点,设连接点u的 悬挂边为[v,u],从T中去掉[v,u]边及点u ,不会影 响T的连通性,得图T’,T’为有k-1个顶点的树,所以 T’有k-2条边,再把( v,u)、点u加上去,可知当T 有k个顶点时有k-1条边。
第2步:在Xi 确定的割集(Xi)中选一条最小权边ek, ek=[v’,vk], v’∈Xi ,vk ∈ Xi , Ei-1= Ei∪ek
Xi+1= Xi ∪﹛vk﹜,Xi+1= Xi \ ﹛vk﹜
第3步:若Xi+1=V,结束,(V,Ei+1)是所求的最 小树。否则,把i换成i+1,返回第2步。
例:
定理3:图T是树的充分必要条件是任意两个顶点之间恰 有一条链。
证明:必要性 因T是连通的,故任两个点之 间至少有一条链。但如果某两个点之间有两条链 的话,那么图T中含有圈,这与树的定义矛盾, 从而任两个点之间恰有一条链。
充分性 设图T中任两个点之间恰有一条链, 那么易见T是连通的,如果T中含有圈,那么这个 圈上的两个顶点之间有两条链,这与假设矛盾, 故T不含圈,于是T是树。

运筹学课件最小生成树分解

运筹学课件最小生成树分解
不含圈的连通图树的基本性质若图是连通的且qp1则该图不含圈因此是树三最小生成树最小生成树的定义最小生成树的定理ijij四寻找最小生成树的方法kruskal方法矩阵计算法kruskal方法习题第一版
第二节 最小生成树
什么是树? 构造生成树的方法 最小生成树问题 寻找最小生成树的方法
一、什么是树?
树:不含圈的连通图 树的基本性质
最小生成树的定义 最小生成树的定理
v4
v1
水塔 6 1 5 7
5
v5
4 3 4
v6
v2
2
v3
最小生成树的数学模型
min
( i , j ) A
w
ij
xij
( i , j ) A
x
ij
n 1 S 1, S A
( i , j )S
x
ij
xij 0,1
四、寻找最小生成树的方法
5
矩阵计算结果
v4
6 5
v5
4
v1
5
1
7
3 4
v6
v2
2
v3
习题
第一版:

P. 265,第四章习题1、2。
第二版:

P. 284,第四章习题3、5。
矩阵计算方法
v1 v2
T v1 0
v3 v4
v5 v6
T v2 5 0 2 1 7 T v3 2 0 3 4 T v4 6 1 0 5 v5 7 3 5 0 4 v6 4 4 0 6
5
矩阵计算方法
v1 v2
T v1 0
v3 v4
v5 v6
T v2 5 0 2 1 7 v3 2 0 3 4 v4 6 1 0 5 v5 7 3 5 0 4 v6 4 4 0 6

最小树问题

最小树问题
V2 V4 V1 V2 V3 V3 V5 V1 0 1 1 V2 1 0 0 V3 1 0 0 V4 0 1 0 V5 0 1 1
V1
V4
V5
0Байду номын сангаас
0
1
1
0
1
0
1
1
0
两顶点间有边连接的记为 1 ,无边连接的记为 0。 得到的矩阵一定是对称矩阵。
2、赋权无向图的矩阵表示: 两顶点间有边 连接的记为该边的权数。无边相连的记为 , 对角线上的数是 0 。得到的矩阵也是对称矩阵。 例如:
5
v7
5
4
最小树,权为13
2.最小树的求法
(2)破圈法: ① 在网络图中寻找 一个圈。若不存在圈, 则已经得到最短树或网 络不存在最短树; ② 去掉该圈中权数 最大的边; 反复重复 ① ② 两 步,直到最小树。
v1 1 v8 4
4 2
v2 1
1 3 4
v3
1 v4 5 v5
5
v7
5
v0 2 3 v6 2 4
2.最小树的求法
求最小树的两种方法,是避圈法与破圈法
(1)避圈法: 从网络图中 任意节点开始寻 找与该节点关联 的权数最小的边, 使之与已选边不 构成为圈,直到 选够n-1条边为 止。

v1 1 v8 4 4 2 v2 1 1 3 4 v0 2 3 v6 2
从网络中 任选一点
v3 1 v4 5 v5
•(3)Kruskal 算法:将图中所有边 v1 按权值从小到大排列,依次选 1 所剩最小的边加入边集 T,只 v8 要不和前面加入的边构成回路, 5 直到 T 中有 n1 条边,则 T 是最小生成树
v7
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学 北京邮电大学
§7.2 最小支撑树问题
Minimum Spanning Tree Problem
Ch7 Graph and Network
2013-9-13 Page 2 of 5
求最小树的方法:破圈法和避圈法 破圈法:任取一圈,去掉圈中最长边,直到无圈。 避圈法:即选边法;加边的原则:从最短边开始选择,每次 都从未选边中取最短者,但已选边中不能形成圈,直习
作业:P283 10.4 10.5
最短路问题
运筹学 北京邮电大学
Exit
§7.2 最小支撑树问题
Minimum Spanning Tree Problem
Ch7 Graph and Network
2013-9-13 Page 1 of 5
定义:设G=[V,E]是一个无向图,对每一条边ei∈E有一个长 度C(ei) ≥0,G的任意支撑树T各条边的长度之和称为树T的长度, 记为C(T)。长度最小的支撑树称为最小树。 求最小树是在一个无向连通图G中求一棵最小支撑树。 求最小树问题的应用: • 电信网络(计算机网络、电话专用线网络、有线电视网络等等) 的设计 • 低负荷运输网络的设计,使得网络中提供链接的部分(如铁路、 公路等 等)的总成本最小 • 高压输电线路网络的设计 电器设备线路网络(如数字计算机系统)的设计,使得线路总长 度最短 • 连接多个场所的管道网络设计
相关文档
最新文档