参数估计与假设检验的区别和联系

合集下载

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系

参数估计与假设检验的区别和联系统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。

点估计是用估计量的某个取值直接作为总体参数的估计值。

点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

统计学家在某种程度上确信这个区间会包含真正的总体参数。

在区间估计中置信度越高,置信区间越大。

置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。

置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。

(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。

(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。

(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。

(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。

(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。

(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参数提出一个假设,然后利用样本信息判断这一假设是否成立。

假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。

参数估计与假设检验SPSS

参数估计与假设检验SPSS

3
区别
参数估计更侧重于总体参数的估计和推断,而假 设检验更侧重于对总体参数的假设进行验证和决 策。
02
SPSS软件介绍
SPSS软件的特点与优势
强大的统计分析功能
SPSS提供了广泛的统计分析方法,包括描述性统计、推论性统计、 多元统计分析等,能够满足各种数据分析和科学研究的需求。
易用性
SPSS的用户界面友好,操作简单,使得用户可以快速上手,减少了 学习成本。
参数估计与假设检验的应用场景与注 意事项
参数估计与假设检验的应用场景
社会科学研究 在社会科学研究中,参数估计与 假设检验是常用的统计方法,用 于检验理论模型和假设,评估变 量之间的关系。
心理学研究 在心理学研究中,参数估计与假 设检验用于研究人类行为、认知 和情感等方面的规律和特点。
医学研究 在医学研究中,参数估计与假设 检验常用于临床试验和流行病学 研究中,以评估治疗效果、疾病 发病率和风险因素等。
04
05
根据输出结果判断假设是否 成立。
假设检验的实例分析
以一个实际研究问题为例,如比较两组人群的平均身高是否存在显著差异。
在SPSS中实现该实例分析,包括数据导入、选择统计方法、设置参数、运 行统计方法和结果解读等步骤。
根据SPSS的输出结果,判断提出的假设是否成立,并解释结果的实际意义。
05
数据处理技术,提高分析效率和准确性。
多变量分析方法
03
多变量分析方法的发展将促进参数估计与假设检验的进一步应
用,能够更全面地揭示变量之间的关系。
THANKS
感谢观看
使用SPSS进行参数估计,例如使用逻辑回归分 析来估计吸烟与肺癌之间的关系。
04
假设检验在SPSS中的实现

参数估计和假设检验

参数估计和假设检验

假设检验
实际中的假设检验问题
假设检验: 事先作出关于总体参数、分布形式、
相互关系等的命题(假设),然后通过样本信息 来判断该命题是否成立(检验) 。



产品自动生产线工作是否正常? 某种新生产方法是否会降低产品成本? 治疗某疾病的新药是否比旧药疗效更高? 厂商声称产品质量符合标准,是否可信?





两个正态总体均值差的检验(t检验) 两个正态总体方差未知但等方差时,比较两正态总体样 本均值的假设检验 函数 ttest2 格式 [h,sig,ci]=ttest2(X,Y) %X,Y为两个正态总体的样本,显 著性水平为0.05 [h,sig,ci]=ttest2(X,Y,alpha) %alpha为显著性水平 [h,sig,ci]=ttest2(X,Y,alpha,tail) %sig为当原假设为真时得 到观察值的概率,当sig为小概率时则对原假设提出质疑 ,ci为真正均值μ的1-alpha置信区间。
例:从某厂生产的滚珠中随机抽取10个,测得滚珠的
直径(单位:mm)如下 15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87 若滚珠直径满服从正态分布N(μ,σ2),其中μ,σ未知。试 求之并计算置信水平为90%的置信区间
x = [15.14 14.81 15.11 15.26 15.08 15.17 15.12 14.95 15.05 14.87]; % 定义样本观测值向量 % 调用normfit函数求正态总体参数的最大似然估计和置信区间 % 返回总体均值的最大似然估计muhat和90%置信区间muci, % 还返回总体标准差的最大似然估计sigmahat和90%置信区间sigmaci [muhat,sigmahat,muci,sigmaci] = normfit(x,0.1)

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。

总体参数是指总体的其中一种性质,比如总体均值、总体方差等。

样本数据是从总体中随机抽取的一部分数据,用来代表总体。

参数估计的目标是使用样本数据来估计总体参数的值。

常见的参数估计方法有点估计和区间估计。

(1)点估计点估计是通过一个统计量来估计总体参数的值。

常见的点估计方法有样本均值、样本方差等。

点估计的特点是简单、直观,但是估计值通常是不准确的。

这是因为样本的随机性导致样本统计量有一定的误差。

因此,点估计通常会伴随着误差界限,即估计值的置信区间。

(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。

常见的区间估计方法有置信区间和可信区间。

置信区间是指当重复抽样时,包含真实总体参数的概率。

置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

可信区间是指在一次抽样中,包含真实总体参数的概率。

可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。

参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。

例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。

2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。

在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。

在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。

然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。

假设检验包含两种错误,即第一类错误和第二类错误。

第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。

第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。

常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。

参数估计与假设检验

参数估计与假设检验

参数估计与假设检验参数估计是指利用样本数据对总体参数进行估计的过程。

在统计学中,总体参数通常是我们关心的感兴趣的数量,比如总体均值、总体方差等。

通过对样本进行抽样调查,我们可以得到样本数据,然后利用样本数据来估计总体参数的值。

常用的参数估计方法有点估计和区间估计。

点估计是通过一个统计量来估计总体参数的值。

例如,样本均值可以作为总体均值的点估计值,样本方差可以作为总体方差的点估计值。

点估计通常使用最大似然估计或最小二乘估计等方法来求解。

区间估计是通过一个区间来估计总体参数的值。

区间估计提供了一个参数可能取值的范围。

例如,我们可以计算一个置信区间,表示总体参数在一定置信水平下落在该区间内的概率。

常用的区间估计方法有正态分布的置信区间和t分布的置信区间等。

假设检验是用于检验总体参数的假设的方法。

假设检验可以帮助我们判断总体参数是否等于一些特定值,或者两个总体参数是否相等。

假设检验通常需要先提出一个原假设和一个备择假设。

原假设是我们要进行检验的假设,而备择假设则是对原假设的补充或者扩展。

通过计算样本数据的统计量,并结合给定的显著性水平,我们可以得到一个检验统计量的观察值。

根据观察值和显著性水平的关系,我们可以判断是否拒绝原假设。

假设检验的步骤可以分为以下几个部分:1.提出假设:明确原假设和备择假设。

2.选择显著性水平:设定拒绝原假设的标准。

3.计算检验统计量:根据样本数据计算出统计量的观察值。

4.求取拒绝域和接受域:结合显著性水平和检验统计量的分布,确定拒绝原假设的条件。

5.得出结论:通过比较检验统计量的观察值和拒绝域的关系,判断是否拒绝原假设。

假设检验是统计学中非常重要的一部分,它可以帮助我们对实际问题进行科学的推断和决策。

在实际应用中,我们常常使用假设检验来判断广告效果、药物疗效、投资收益等方面的问题。

通过参数估计和假设检验,我们可以从样本数据中获取关于总体参数的信息,并对其进行推断和判断。

参数估计和假设检验

参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。

参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。

下面将详细介绍这两种方法以及它们的应用。

1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。

在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。

参数估计的目标是利用样本数据去估计总体参数的值。

最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。

-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。

置信区间的计算方法通常是基于样本统计量的分布进行计算。

在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。

-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。

-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。

2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。

在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。

假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。

原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。

-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。

-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。

-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。

在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。

常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。

数理统计学中的参数估计和假设检验

数理统计学中的参数估计和假设检验在现代统计学中,参数估计和假设检验是非常重要的概念。

这些概念互相关联,但是又有不同的应用。

在此,我们将讨论这两个概念的基本原则以及它们在现实生活中的应用。

参数估计可以被描述为研究一组数据的基本特征。

通过这个过程,我们试图推断出这个数据集的平均值、标准差和其他的参数。

这些参数会充当我们对整个数据集的总体特征的代表,是基于样本数据和概率等数学方法来实现的。

数理统计学中有两种常见的参数估计方法:点估计和区间估计。

点估计法指的是通过现有的样本数据,确定整体数据集的一个参数值。

这个参数值是一个点,代表了这个总体数据的典型特征。

例如,一个统计学家可能会利用一个样本数据集的均值来估计整个数据集的均值。

这个方法非常简单,但是也有缺点,因为单个点可能不能完整地反映出整个总体的信息。

相对于点估计方法,区间估计法则是根据样本数据并结合概率论提供一个充分范围内的参数估计值。

以信心水平的方式,给出估计结果的范围和信心度。

这样的区间被称为可信区间,其中的参数值处于一定的置信度内,一般用百分之几的置信度表示。

例如,一个样本数据的均值在一定的置信度下是x到y之间的。

区间估计法是一种更加准确的方法,因为它允许我们知道参数值的变化范围,而不仅仅是一个单点。

但是,这种技术会带来更多的复杂性,需要一些基本的统计技能。

另一方面,假设检验则是一种帮助我们确定一个假设是否正确的方法。

这个方法通常用于对两个数据组的统计分析中,并且可以用于比较一个数据集的平均值是否等于一个已知的值。

简单说就是,假设检验能够让我们确定样本数据是否足够代表总体,并且也让我们确认样本数据能否代表以前的观测和研究。

在假设检验中,我们制定一个假设被称为研究假设,并组对比之前已知的信息,提出一个对立假设。

之后,我们会挑选一个随机样本并采取测量行动。

我们利用这个测量行动来确定样本数据是否属于已知的总体比例,或者是否对研究假设做出了支持。

如果样本数据足够代表总体,并且不同于已知的比例,则我们可以拒绝研究假设并接受对立假设。

参数估计与假设检验的关系


1-2

参数估计与假设检验的区别
2、区间估计通常求得的是以样本估计值为中心的双侧置 信区间。 假设检验不仅有双侧检验也有单侧检验。 3、区间估计立足于大概率1-α,通常以较大的把握程度( 可信度)1-α去估 计总体参数的置信区间。 假设检验是立 足于小概率α ,通常以很小的显著水平去检验对总体参数 的先验假设是否成立。
双侧检验!
1-7

用置信区间进行检验
(例题分析)
H0: = 1000
置信区间为
H1: 1000
= 0.05
n = 49
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
x z 2
n
,
x
z
2
n
9911.96
50 ,991 1.96 16
50 16
966.5,1015.5
3. 右侧检验:求出单边置信上限
X z
n
或X
t
S n
4. 若总体的假设值0大于单边置信上限,拒绝H0
1-6

用置信区间进行检验
(例题分析)
【例】一种袋装食品每包的标准重量应为
1000克。现从生产的一批产品中随机抽取16 袋,测得其平均重量为991克。已知这种产 品重量服从标准差为50克的正态分布。试确 定这批产品的包装重量是否合格?( = 0.05)
参数估计与假设检验的区别
1、参数估计是根据样本资料估计总体参数的真值,假设检验是根 据样本资料来检验对总体参数的先验假设是否成立。 例如,通过 随机抽取的样本对某地区居民的平均收入进行推断:
参数估计:要求以一定的概率估计总体平均收入 假设检验:要求以一定的概率判断总体平均收入是否达到某

第五讲参数估计与假设检验


33
第二节 假设检验——引言
参数估计可以用于推断某个未知总体参数取值 的可能范围,在实际工作中还会遇到这样的问 题:某种药物中有效成分含量是否符合国家规 定的标准值?两种药物治疗某种疾病的有效率 是否存在差异?某个变量的分布是否服从某种 理论分布等等。要回答这类问题,需要使用统 计推断的另一类重要方法——假设检验 (hypothesis test)来解决。
假设事 件A成 立 推导
中医药统计学与软件应用
曹治清
成都中医药大学管理学院 数学与统计教研室 czq9771@
第5讲 参数估计与假设检验
参数估计
假设检验
正态性检验与数据转换
参数估计的电脑实验
2
第5讲 参数估计与假设检验—引言
在研究医药现象的总体特征时通常采用抽样研 究,即从总体中随机抽取部分观察单位作为样 本进行研究,根据得到的样本信息对未知总体 的分布和数量特征作出以概率形式表述的非确 定性估计和判断,这种研究方法称为统计推断。 统计推断是现代统计学的核心内容,包括两个 重要方面:参数估计和假设检验。
16
第一节 参数估计——均数的抽样误差与标准误
如果抽样来自的总体非正态总体,则样本含量n 较小时,样本均数的分布并非正态分布,而样本 量足够大(n≥50)时,样本均数的分布近似于 正态分布。
17
标准误与标准差的联系和区别
标准差 1. 都是描述变异程度的指标 联 系 意 义 产 生 区 别 应 用 标准误
27
第一节 参数估计——区间估计
计算方法

(1)总体标准差 已知 (2)总体标准差
X Z / 2 X
X Z / 2 X
未知,但样本量足够大时
X Z / 2 S X

参数估计与假设检验

参数估计与假设检验参数估计和假设检验是统计学中常用的两种方法,用于对总体和样本进行推断和判断。

本文将介绍参数估计和假设检验的基本概念、原理以及在实际应用中的重要性。

一、参数估计参数估计是利用样本数据对总体参数进行估计的方法。

在统计学中,总体是指我们要研究的对象,而参数是总体的特征或者性质。

参数估计的目的就是根据样本数据推断总体参数。

1.1 点估计点估计是一种基本的参数估计方法,它通过计算样本数据的统计量,得到总体参数的估计值。

常见的点估计方法包括样本均值估计总体均值、样本方差估计总体方差等。

点估计的估计值通常通过样本的统计量来计算,如样本平均值、样本标准差等。

1.2 区间估计区间估计是参数估计的一种更加准确的方法。

它不仅给出了总体参数的一个具体估计值,还给出了一个置信区间,表示在一定置信水平下总体参数的取值范围。

常见的区间估计方法有置信区间估计总体均值、置信区间估计总体比例等。

二、假设检验假设检验是通过对样本数据的分析与总体假设进行比较,判断总体假设是否成立的统计方法。

它是基于概率理论的方法,通过计算样本数据与总体假设之间的差异,来得出结论。

2.1 假设检验的基本步骤(1)建立原假设(H0)和备择假设(H1);(2)选择合适的统计量来作为检验的依据;(3)确定显著性水平(α);(4)计算检验统计量的观察值;(5)根据观察值和显著性水平进行判断。

2.2 类型Ⅰ错误和类型Ⅱ错误假设检验中存在两种错误类型,分别是类型Ⅰ错误和类型Ⅱ错误。

类型Ⅰ错误,也称为显著性水平α,指的是原假设为真时被错误地拒绝原假设的概率。

通常将α设定为0.05或0.01,表示在这个显著性水平下所能容忍的错误概率。

类型Ⅱ错误,指的是原假设为假时,接受原假设的概率。

类型Ⅱ错误的概率称为β。

当研究者希望尽可能避免犯类型Ⅱ错误时,需要增加样本容量以提高检验的敏感性。

三、参数估计与假设检验的应用参数估计和假设检验在实际应用中具有广泛的应用价值,可以帮助研究者进行科学研究和数据分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数估计与假设检验的区别和联系
统计学方法包括统计描述和统计推断两种方法,其中,推断统计又包括参数估计和假设检验。

(一)参数估计就是用样本统计量去估计总体的参数,它的方法有点估计和区间估计两种。

点估计是用估计量的某个取值直接作为总体参数的估计值。

点估计的缺陷是没法给出估计的可靠性,也没法说出点估计值与总体参数真实值接近的程度。

区间估计是在点估计的基础上给出总体参数估计的一个估计区间,该区间通常是由样本统计量加减估计误差得到的。

在区间估计中,由样本估计量构造出的总体参数在一定置信水平下的估计区间称为置信区间。

统计学家在某种程度上确信这个区间会包含真正的总体参数。

在区间估计中置信度越高,置信区间越大。

置信水平为1-a, a为小概率事件或者不可能事件,常用的置信水平值为99%,95%,90%,对应的a为0.01, 0.05, 0.1。

置信区间是一个随机区间,它会因样本的不同而变化,而且不是所有的区间都包含总体参数。

一个总体参数的区间估计需要考虑总体分布是否正态分布,总体方差是否已知,用于估计的样本是大样本还是小样本等。

(1)来自正态总体的样本均值,不论抽取的是大样本还是小样本,均服从正态分布。

(2)总体不是正态分布,大样本的样本均值服从正态分布,小样本的服从t 分布。

(3)不论已判断是正态分布还是t 分布,如果总体方差未知,都按t 分布来处理。

(4)t 分布要比标准正态分布平坦,那么要比标准正态分布离散,随着自由度的增大越接近。

(5)样本均数服从的正态分布为N(u , a^2/n)远远小于原变量离散程度N (u, a^2) 。

(二)假设检验是推断统计的另一项重要内容,它与参数估计类似,但角度不同,参数估计是利用样本信息推断未知的总体参数,而假设检验则是先对总体参
数提出一个假设,然后利用样本信息判断这一假设是否成立。

假设检验的基本思想:先提出假设,然后根据资料的特点,计算相应的统计量,来判断假设是否成立,如果成立的可能性是一个小概率的话,就拒绝该假设,因此称小概率的反证法。

最重要的是看能否通过得到的样本信息去推翻原定的假设,而不是证实它,我们期望接受的是备择假设。

统计学中假设检验的基本步骤:
(1)建立假设,确定检验水准α,假设含有零假设(H0)和备择假设(H1)两个,零假设又叫作无效假设或检验假设。

H0和H1的关系是互相对立的,如果拒绝H0,就要接受H1,根据备择假设不同,假设检验有单侧、双侧检验两种。

检验水平用α表示,通常取0.05或0.10,检验水平就是该检验犯第一类错误(弃真)的概率。

(2)根据研究目的和设计类型选择适合的检验方法
这里的检验方法,是指参数检验方法,有u检验、t检验和方差分析三种,对应于不同的检验公式。

(3)确定P值并作出统计结论
u检验得到的是u统计量或称u值;t检验得到的是t统计量或称t值;方差分析得到的是F统计量或称F值。

将求得的统计量绝对值与界值相比,可以确定P值。

当α=0.05时,u值要和u界值1.96相比较,确定P值。

如果u<1.96,则P>0.05,反之,如u>1.96,则P<0.05。

t值要和对应自由度的t界值(也称分位数)相比较,确定P值。

如果t值<t界值,故P>0.05。

反之,如t>t界值,则P<0.05。

相同自由度的情况下,单侧检验的t界值要小于双侧检验的t界值,因此有可能出现算得的t值大于单侧t界值,而小于双侧t界值的情况,即单侧检验显著,双侧检验未必就显著,反之,双侧检验显著,单侧检验必然会显著。

即单侧检验更容易出现阳性结论。

当P>0.05时,接受零假设,认为差异无统计学意义,或者说二者不存在质的区别。

当P<0.05时,拒绝零假设,接受备择假设,认为差异有统计学意义,也可以理解为二者存在质的区别。

但即使检验结果是P<0.01甚至P<0.001,都不说明差异相差很大,只表示更有把握认为二者存在差异。

(三)参数估计与假设检验之间的联系与区别:
(1)主要联系:
a. 都是根据样本信息推断总体参数;
b. 都以抽样分布为理论依据,建立在概率基础上的推断,因此推断结果都有一定的可信程度或风险。


c. 对同一问题的参数进行推断,二者使用同一样本、同一统计量、同一分布,因而二者可以相互转换,形成对偶性。

区间估计中的置信区间对应于假设检验中的接受区域,置信区间以外的区域就是假设检验中的拒绝域。

(2)主要区别:
a. 参数估计是以样本数据估计总体参数的真值;假设检验是以样本数据为依据,检验对总体参数的先验假设是否成立;
b. 区间估计求得的是以样本估计值为中心的双侧置信区间;而假设检验以总体参数假设值为基准,不仅有双侧检验也有单侧检验。

c. 区间估计立足于大概率,通常以较大的把握程度(置信水平)1-α去保证总体参数的置信区间;假设检验立足于小概率,通常是给定很小的显著性水平α去检验对总体参数的先验假设是否成立。

假设检验分:参数假设检验、总体分布假设检验、相互关系假设检验(两个变量是否独立,两个分布是否相同)等,我们的教材中主要讨论参数假设检验。

参数假设检验:先对未知的总体参数的取值提出某种假设,然后抽取样本,利用样本信息来检验这个假设是否成立。

注:⒈原假设H0一定含有等号=;
⒉根据原假设是否含不等号≠,假设检验分为双侧(不含≠)
假设检验和单侧(含≠)假设检验;
3. 单侧假设检验分为左侧和右侧检验(拒绝域在哪一侧,则称为那
一侧检验)。

原假设提出规则:
一、单侧检验原假设的确立
Ⅰ对于检验某项研究是否达到了预期效果
一般是将研究的预期效果(希望、想要证明的假设)作为备择假设H1,将认为研究结果无效作为原假设H0。

先确立备择假设H1。

因为只有当检验结果与原假设有明显差别时才能拒绝原假设而接受备择假设,原假设不会轻易被拒绝,就使得希望得到的结论不会轻易被接受,从而减少结论错误。

Ⅱ对于检验某项声明的有效性(根据不同的背景来建立原假设,以商店向工厂进货为例)
一般可将所作的声明作为原假设。

将对该声明的质疑作为备择假设。

先确立原假设H0。

因为除非有证据表明“声明”无效,否则就应认为该“声明”是有效的。

例如:一商店经常从某工厂购进某种商品,该商品质量指标为X,X值愈大商品质量愈好。

商店提出的进货条件是按批验收,只有通过假设“X≥X0”检验的批次才能接受。

有两种可能情况:
⑴如果根据过去较长时间购货记录,商店相信该厂产品质量好,于是同意把原假设定为H0:“X≥X0”,而且选择较低的检验显著性水平。

这对工厂是有利的,使得达到质量标准的产品以很小的概率被拒收。

虽然这会使商店面临接受不合标准产品的风险,但历史记录显示出现这种情况的可能性很小,而且商店也可因此获得较好的货源。

⑵如果过去一段时期的记录表明,该厂产品质量并不理想,商店则会坚持以H0:“X≤X0”为原假设,并选定较小的检验显著性水平。

这对商店是有利的,不会轻易地拒绝原假设,有 1-α的可能把劣质产品拒之门外。

二、确定适当的检验统计量
假设检验根据检验内容和条件不同需要采用不同的检验统计量。

在单个正态总体的参数检验中:
Z 统计量(方差已知时)和t 统计量(方差未知时)常用于均值的检验; Z 统计量用于比例的检验;
χ2统计量用于方差的检验。

选择检验统计量需考虑的因素有被检验的参数类型、总体方差是否已知、用于检验的样本量大小等(在大样本条件下方差未知也可以用Z 统计量进行均值检验,这是由中心极限定理保证的)。

三、确定显著性水平α和临界值及拒绝域
显著性水平α是当原假设为正确时被拒绝的概率,是由研究者事先确定的。

显著性水平α的大小应根据研究需要的精确度和可靠性而定。

通常取α=0.05或α=0.01,即接受原假设的决定是正确的可能性(概率)为95%或99%。

根据给定的显著性水平,查表得出相应的临界值,同时指定拒绝域。

(四)根据样本数据计算检验统计量的值
例如,总体标准差σ已知时根据样本均值计算统计量Z 的公式为
(五)将检验统计量的值与临界值比较,作出拒绝或接受原假设的决策
如果检验统计量的值落入拒绝域,则拒绝原假设,接受备择假设;如果检验统计量的值落入接受域,则接受原假设,拒绝备择假设。

注:所谓的某侧检验,就是检验样本统计量的观测值是否落入某侧的拒绝域,
比如:左侧(即备择假设中取值方向,亦即拒绝域所在方向)检验就是看样本统计量的观测值是否落入左侧的拒绝域。

)1,0(~/-0N n X Z σμ=。

相关文档
最新文档