第九章_面板数据模型
第九章_面板数据模型

实际应用中,n 通常很大,数以千计,模型很可 能超出任何计算机的存储容量。可考虑使用分块回 归技术以减少计算量。有关分块回归技术的详细讨 论参见Greene(2008)。 另一方面,运用LSDV估计固定影响模型,需要 加入n个虚拟变量,当模型中的虚拟变量的个数n很 大时,回归中会损失大量的自由度。解决这个问题 的思路是对模型进行变换,消去常数项 i ,再用变 换后的模型回归。 为表达方便起见,不失一般性,我们用双变量 模型来说明。在这种情况下,模型(9.7)简化成:
yit x it β i uit
(9.7)
这就是固定影响模型。从模型的设定可知,固 定影响模型假设横截面个体之间的差异为截距不同, 而斜率系数相同,即允许不同的横截面个体的截距 是不同的,但每一个体的截距在各个不同时期则保 持不变。换句话说,固定影响模型假定不同横截面 i 个体的差异可用不同的常数项 来描述,在此模型 i 中, 被作为要估计的未知参数。 如果进一步假设Var (ci Xi )为常数,则在此假设 下,(9.7)变成经典线性回归模型。
Intercepts)
关于Panel Data Model
其它内容
联立方程模型 离散数据模型 选择性样本模型 不完全平行数据
单位根检验和协整检验
第一节 面板数据与面板数据模型
一、面板数据 混合数据(pooled data)是指将横截面数据和 时间序列数据结合在一起的数据。 混合数据包含不同横截面个体不同时期的数据, 或者说,混合数据包含既跨越时间又跨越空间的 数据。
yit x it β E[ z i α ] {z i α E[ z i α ]} uit x it β i uit
面板数据模型

面板数据模型面板数据模型是指在经济学和社会科学领域中,用于分析面板数据的统计模型。
面板数据是指在一定时间内对同一组体(如个人、家庭、企业等)进行多次观测的数据集合。
面板数据模型的主要目的是研究个体特征和时间变化对观测变量的影响。
面板数据模型可以分为固定效应模型和随机效应模型两种。
固定效应模型假设个体固定特征对观测变量有影响,而随机效应模型则认为这些个体固定特征与观测变量之间存在随机关系。
在面板数据模型中,通常会使用一些常见的统计方法,如最小二乘法(OLS)和固定效应模型(FE)。
最小二乘法是一种常见的回归分析方法,用于估计模型中的参数。
固定效应模型则通过引入个体固定效应来控制个体特征对观测变量的影响。
面板数据模型的优势在于可以同时考虑个体特征和时间变化对观测变量的影响,从而提供更准确的分析结果。
此外,面板数据模型还可以解决传统的截面数据和时间序列数据模型所存在的一些问题,如异质性和序列相关性等。
为了使用面板数据模型进行分析,需要满足一些基本的假设,如面板数据的一致性、个体固定效应的异质性、个体特征与观测变量之间的线性关系等。
同时,还需要对数据进行一些预处理,如去除异常值、缺失值处理等。
在实际应用中,面板数据模型被广泛应用于经济学、金融学、社会学等领域的研究中。
例如,可以使用面板数据模型来研究个体收入与教育水平、劳动力市场参预率之间的关系,或者分析企业绩效与市场环境、管理策略的关系等。
总之,面板数据模型是一种用于分析面板数据的统计模型,通过考虑个体特征和时间变化对观测变量的影响,提供了一种更准确的分析方法。
在实际应用中,面板数据模型可以匡助研究人员深入理解个体和时间的交互作用,从而得出更可靠的结论。
面板数据模型的分析

面板数据模型能够充分利用数据中的 时间和个体信息,提供更准确的估计 和更全面的解释,有助于揭示数据的 动态变化和个体差异。
面板数据模型的适用场景
经济领域
适用于分析国家、地区或行业的经济增长、 产业发展、劳动力市场等。
社会学领域
适用于研究人口变化、教育发展、犯罪率等 社会现象。
金融领域
适用于股票价格、收益率、市场波动等金融 市场分析。
面板数据模型的分析
contents
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01 面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的结合 ,即同时包含多个个体在一段时间内 的数据。
随机效应模型
01
随机效应模型是一种面板数据模型,它假设个体之间的效应是随机的, 并且与解释变量相关。
02
该模型通过将个体效应作为解释变量的函数来估计参数,并使用最大 似然估计等方法进行估计。
03
随机效应模型适用于研究不同个体在一段时间内的行为或表现,并分 析这些行为或表现的变化趋势。
04
它还可以用于评估不同个体的特定效应,并解释不同个体之间的差异。
总结词
经济增长的面板数据模型分析主要关注国家或地区经济 随时间的变化情况,通过面板数据模型可以探究经济增 长的驱动力和影响因素。
详细描述
经济增长的面板数据模型分析通常涉及对国家或地区生 产总值、人均收入、工业增加值等经济指标的时间序列 数据进行建模,以揭示经济增长的规律、趋势和影响因 素。通过面板数据模型,可以分析不同国家或地区经济 增长的差异、收敛与发散,以及产业结构、投资、人力 资本等因素对经济增长的作用机制。
面板数据模型

面板数据模型面板数据模型(Panel Data Model)是一种经济学和统计学中常用的数据分析方法,它允许研究人员在时间和个体维度上分析数据。
该模型结合了截面数据(Cross-sectional Data)和时间序列数据(Time Series Data),能够捕捉到个体间的异质性和时间的动态变化。
面板数据模型的基本假设是个体间存在固定效应(Fixed Effects)和时间效应(Time Effects),即个体特定的不变因素和时间特定的不变因素会对观测数据产生影响。
通过控制这些效应,面板数据模型可以更准确地估计变量之间的关系。
面板数据模型的普通形式可以表示为:Yit = α + βXit + εit其中,Yit表示第i个个体在第t个时间点的观测值,α是截距项,β是自变量Xit的系数,εit是误差项。
面板数据模型可以通过固定效应模型(Fixed Effects Model)和随机效应模型(Random Effects Model)来估计参数。
固定效应模型假设个体间的差异是固定的,即个体特定的不变因素对观测数据产生影响。
该模型通过引入个体固定效应来控制个体间的差异,估计其他变量对因变量的影响。
随机效应模型假设个体间的差异是随机的,即个体特定的不变因素对观测数据不产生影响。
该模型通过引入个体随机效应来控制个体间的差异,估计其他变量对因变量的影响。
面板数据模型的估计方法包括最小二乘法(Ordinary Least Squares, OLS)、固定效应估计法(Fixed Effects Estimation)和随机效应估计法(Random Effects Estimation)。
最小二乘法是一种常用的估计方法,但在面板数据模型中存在一致性问题。
固定效应估计法通过个体间的差异来估计参数,可以解决一致性问题。
随机效应估计法则通过个体间和时间间的差异来估计参数,可以更全面地捕捉到数据的变化。
面板数据模型在经济学和社会科学研究中具有广泛的应用。
面板数据模型

面板数据模型引言概述:面板数据模型是一种经济学和统计学中常用的数据分析方法。
它适用于具有时间和个体维度的数据,可以帮助研究人员更好地理解个体之间的关系以及时间的变化趋势。
本文将详细介绍面板数据模型的概念、应用领域、优势和限制,并提供一些实际案例来说明其实际价值。
正文内容:1. 面板数据模型的概念1.1 面板数据模型的定义面板数据模型是一种同时考虑时间和个体维度的数据分析方法。
它将个体的观察结果按照时间顺序排列,形成一个面板数据集,以便分析个体之间的关系和时间的变化趋势。
1.2 面板数据模型的分类面板数据模型可以分为固定效应模型和随机效应模型。
固定效应模型假设个体之间的差异是固定的,而随机效应模型则允许个体之间的差异是随机的。
2. 面板数据模型的应用领域2.1 经济学领域面板数据模型在经济学领域得到广泛应用。
例如,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长率、失业率和通货膨胀率之间的关系,以及企业的生产效率和市场竞争程度之间的关系。
2.2 社会科学领域面板数据模型也在社会科学领域具有重要意义。
研究人员可以利用面板数据模型来研究教育、健康、就业等社会问题,并分析个体特征对这些问题的影响。
2.3 金融领域面板数据模型在金融领域的应用也非常广泛。
例如,研究人员可以利用面板数据模型来分析不同股票的收益率之间的关系,以及股票市场的波动与宏观经济指标之间的关系。
3. 面板数据模型的优势3.1 控制个体固定效应面板数据模型可以通过固定效应来控制个体固有的差异,从而更准确地分析个体之间的关系。
3.2 利用时间维度的信息面板数据模型可以利用时间维度的信息,分析个体随时间的变化趋势,更好地理解时间的影响。
3.3 提高数据的效率面板数据模型可以利用面板数据集中的交叉个体和时间信息,提高数据的效率,减少估计的方差。
4. 面板数据模型的限制4.1 数据缺失问题面板数据模型在面对数据缺失问题时可能会出现一些困难,需要采取一些特殊的处理方法。
面板数据模型

面板数据模型面板数据模型,又称固定效应模型,是计量经济学中常用的一种数据分析方法。
它适用于时间序列和截面数据的联合分析,具有较高的灵活性和强大的解释能力。
本文将对面板数据模型的基本原理、应用场景以及估计方法进行介绍,并通过实例说明其实际运用。
第一部分:面板数据模型的基本原理面板数据模型基于以下假设:每个个体(又称单位)在不同时间点都有观测值,并且个体之间的观测值具有相关性。
面板数据模型通常由固定效应模型和随机效应模型两种形式。
固定效应模型假设个体特定的不变因素对观测值产生了影响,这些不变因素可能包括个体的性别、年龄、学历等。
固定效应模型可以通过引入个体固定效应变量来捕捉这些影响因素,并以此来解释观测值的变动。
第二部分:面板数据模型的应用场景面板数据模型在经济学、金融学、社会学等领域得到了广泛的应用。
例如,在经济学中,研究人员可以利用面板数据模型来分析不同国家或地区的经济增长情况,探讨政策对经济发展的影响;在金融学领域,研究人员可以运用面板数据模型来研究股票价格的波动和影响因素。
第三部分:面板数据模型的估计方法面板数据模型有多种估计方法,常见的有固定效应模型估计和随机效应模型估计。
固定效应模型估计通常采用最小二乘法,即通过对个体固定效应进行回归分析来求解模型参数。
随机效应模型估计则假设个体固定效应是误差项的一部分,通过对固定效应进行随机化处理得到模型的估计结果。
实例应用:假设我们需要研究不同地区的教育水平对经济增长的影响,我们可以使用面板数据模型来分析这个问题。
我们收集了10个地区在2010年到2020年的经济增长率和教育水平数据。
我们可以利用固定效应模型来探究教育水平对经济增长的影响。
首先,我们创建一个包含个体固定效应的面板数据模型,并使用最小二乘法来估计参数。
然后,我们通过分析模型的显著性水平、参数估计结果以及模型拟合程度来得出结论。
通过面板数据分析,我们可以发现教育水平对经济增长确实存在显著的正向影响。
面板数据模型经典PPT
该模型假设个体和时间特定效应是固定的,不会随着解释变量的变化 而变化。
03
固定效应模型可以通过固定效应估计量来估计变量的影响,该估计量 不受个体和时间特定效应的影响。
04
固定效应模型可以通过各种方法进行估计,包括最小二乘法、广义最 小二乘法、工具变量法和随机效应法等。
随机效应模型
01 02 03 04
面板数据模型经典
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的混合 数据集。
特点
能够同时考虑时间和个体效应对因变 量的影响,提供更全面的分析视角, 有助于揭示数据背后的复杂关系。
面板数据模型的适用场景
01
面板数据模型适用于分析长时间跨度下多个个体或 经济实体的数据,如国家、地区或公司等。
02
当需要探究时间趋势和个体差异对因变量的影响时, 面板数据模型是理想的选择。
03
在经济学、社会学、生物学等领域,面板数据模型 被广泛应用于实证研究。
面板数据模型与其他模型的比较
01
与时间序列模型相 比
其他领域的应用案例
总结词
除了上述领域外,面板数据模型还广泛应用 于金融、环境科学、医学和交通等领域,为 各领域的科学研究和实践提供了重要的方法 和工具。
详细描述
在金融领域,面板数据模型被用于股票价格 、收益率和风险评估等方面;在环境科学领 域,面板数据模型被用于研究气候变化、环 境污染和生态平衡等方面;在医学领域,面 板数据模型被用于疾病诊断、治疗方法和药 物研发等方面;在交通领域,面板数据模型 被用于交通流量、交通规划和交通安全等方
面板数据模型与应用
(4)
1, 如果属于第i个个体,i = 1, 2, ..., N , 其他, 0,
个体固定效应模型(3)还可以用多方程表示为
5
y1t = α1 + X1t 'β +ε1t,
i = 1(对于第 1 个个体或时间序列) ,t = 1, 2, …, T
i = 2(对于第 2 个个体或时间序列) ,t = 1, 2, …, T y2t = α2 + X2t 'β +ε2 t, … yN t = αN + XN t 'β+ε N t, i = N(对于第 N 个个体或时间序列) ,t = 1, 2, …, T 注意: (1)在 EViews 输出结果中αi 是以一个不变的常数部分和随个体变化的部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中填不填 c 输出结 果都会有固定常数项。 对于个体固定效应模型,个体效应αi 未知,E(αi Xit)随 Xit 而变化,但不知怎样与 Xit 变 化,所以 E(yit Xit)不可识别。对于短期面板数据,个体固定效应模型是正确设定的,β的混 合 OLS 估计量不具有一致性。相应解释见 3.1 小节。但是对个体固定效应模型可以识别边 际效应。 β = ∂ E(yit αi, Xit)/∂ Xit 个体固定效应模型的估计方法有多种,首先设法除去αi 的影响,从而保证β估计量的一 致性。 (详见第 3 节,面板数据模型估计方法。 ) 下面解释设定个体固定效应模型的原因。假定有面板数据模型 (5) yit = β0 + β1 xit +β2 zi +εit, i = 1, 2, …, N; t = 1, 2, …, T 其中β0 为常数,不随时间、截面变化;zi 表示随个体变化,但不随时间变化的难以观测的变 量。 以案例 1 为例,省家庭平均人口数就是这样的一个变量。对于短期面板来说,这是一个 基本不随时间变化的量,但是对于不同的省份,这个变量的值是不同的。 上述模型可以被解释为含有 N 个截距,即每个个体都对应一个不同截距的模型。令αi = β0 +β2 zi,于是(5)式变为 yit = αi + β1 xit +εit, i = 1, 2, …, N; t = 1, 2, …, T (6) 这正是个体固定效应模型形式。对于每个个体回归函数的斜率相同(都是β1) ,截距αi 却因 可见个体固定效应模型中的截距项αi 中包括了那些随个体变化, 但不随时 个体不同而变化。 间变化的难以观测的变量的影响。αi 是一个随机变量。因为 zi 是不随时间变化的量,所以当 对个体固定效应模型中的变量进行差分时, 可以剔除那些随个体变化, 但不随时间变化的难 以观测变量的影响,即剔出αi 的影响。 以案例 1(file:5panel02)为例得到的个体固定效应模型估计结果如下:
面板数据模型介绍
融合发展的方法可以充分利用各种方法的优点,提高模型的预测精度和稳 定性。
融合发展的方法有助于解决复杂的数据分析问题,促进相关领域的发展和 应用。
THANKS FOR WATCHING
感谢您的观看
公司财务数据的面板数据模型分析
要点一
总结词
要点二
详细描述
公司财务数据的面板数据模型分析是评估公司财务状况和 经营绩效的有效手段。
通过收集公司在一段时间内的财务数据,如收入、利润、 资产负债表等,利用面板数据模型分析这些数据的动态变 化,可以评估公司的盈利能力、偿债能力和运营效率,为 投资者和债权人提供决策依据。
02 面板数据模型的类型
固定效应模型
01
固定效应模型是一种用于面板数据分析的统计模型,它通过控 制个体和时间特定效应来估计变量的影响。
02
该模型假设个体和时间特定效应是恒定的,不会随着自变量的
变化而变化。
它主要用于消除个体和时间特定效应对估计的影响,以更好地
03
解释变量的影响。
随机效应模型
01
02
该模型同时控制个体和时间特定效应,并允许它们在某些情 况下随自变量的变化而变化。
03
它适用于当个体和时间特定效应对解释变量有不同程度的影 响时的情况。
其他类型
其他类型的面板数据模型包括空间面板数据模型、动态面板 数据模型等。
这些模型在特定的研究领域和应用场景中有其特定的用途和 优势。
03 面板数据模型的估计方法
面板数据模型介绍
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例 • 面板数据模型的发展趋势与展望
面板数据模型
面板数据模型引言概述:面板数据模型是一种经济学和统计学领域常用的数据分析方法,它可以更准确地描述和分析时间序列和横截面数据的关系。
本文将从五个大点来阐述面板数据模型的相关内容。
正文内容:1. 面板数据模型的基本概念1.1 面板数据的定义和特点:面板数据是指在一段时间内对多个个体进行观察得到的数据,包含了时间序列和横截面的特点。
1.2 面板数据的分类:面板数据可以分为平衡面板和非平衡面板,平衡面板是指每一个个体在每一个时间点都有观测值,非平衡面板则相反。
2. 面板数据模型的估计方法2.1 固定效应模型:固定效应模型是面板数据模型中最常用的一种估计方法,它通过引入个体固定效应来控制个体特定的不可观测因素对因变量的影响。
2.2 随机效应模型:随机效应模型则是通过引入个体随机效应来控制个体特定的不可观测因素对因变量的影响,相比于固定效应模型,它更加灵便。
2.3 混合效应模型:混合效应模型是固定效应模型和随机效应模型的结合,既考虑了个体固定效应,又考虑了个体随机效应。
3. 面板数据模型的假设检验3.1 Hausman检验:Hausman检验是用来判断固定效应模型和随机效应模型哪个更适合的一种假设检验方法。
3.2 异方差检验:由于面板数据模型中存在异方差问题,需要进行异方差检验来确保模型的可靠性。
3.3 序列相关检验:面板数据模型中还需要进行序列相关检验,以确保模型的误差项是否存在相关性。
4. 面板数据模型的应用领域4.1 经济学领域:面板数据模型在经济学领域广泛应用,可以用于研究经济增长、劳动经济学、国际贸易等问题。
4.2 社会学领域:面板数据模型也被用于社会学研究中,可以用于分析教育、健康、家庭结构等社会问题。
4.3 金融学领域:面板数据模型在金融学领域的应用也很广泛,可以用于研究股票市场、债券市场等金融问题。
5. 面板数据模型的优缺点5.1 优点:面板数据模型可以同时考虑个体特征和时间变化,更准确地描述变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一节给出了分析面板数据的一般模型
yit x it β ci uit
固定影响模型源于一般模型中被遗漏的影响 ci 与包括的变 量 xit相关的假设,此假设的一般形式是:
E[ci Xi ] h(Xi )
(9.6)
由于上式中的条件均值在所有时期中都相同,我们可将模 型写成:
1 u1 u 2 2 ... ... n u n
或
β y X d1 d 2 ... d n u α
(9.9)
这里 di是第i个单元为1其它单元为0的虚拟变量。设 nT n
这就是固定影响模型。从模型的设定可知,固定影响 模型假设横截面个体之间的差异为截距不同,而斜率系数 相同,即允许不同的横截面个体的截距是不同的,但每一 个体的截距在各个不同时期则保持不变。换句话说,固定 影响模型假定不同横截面个体的差异可用不同的常数项 i 来描述,在此模型中, i 被作为要估计的未知参数。
实际应用中,n 通常很大,数以千计,模型很可能超出 任何计算机的存储容量。可考虑使用分块回归技术以减少计 算量。有关分块回归技术的详细讨论参见Greene(2008)。 另一方面,运用LSDV估计固定影响模型,需要加入n个 虚拟变量,当模型中的虚拟变量的个数n很大时,回归中会 损失大量的自由度。解决这个问题的思路是对模型进行变换, 消去常数项 i ,再用变换后的模型回归。 为表达方便起见,不失一般性,我们用双变量模型来 说明。在这种情况下,模型(9.7)简化成:
E[ci xi1 , xi 2 ,...] h(xi1 , xi 2 ,...) h ( Xi )
假设条件放宽了,模型的适应也宽了,但复杂性也大 大增加了,因为需要有关函数性质的假设。
四、模型结构
我们将研究分析面板数据的各类模型,它们大致可分为 如下几种类型:
1.混合回归(pooled regression)
effects model)。在本章中,我们只介绍个体固
定影响模型。
3.随机影响(random effects)
如果未观测到的个体异质性可以被假定与包括在模型 中的变量无关,则模型可设定为
yit x it β E[ z i α ] {z i α E[ z i α ]} uit x it β i uit
yi i xit uit
1 y 定义 i T
,假定 uit ~ IN (0, 2 ) 。
y
t 1
T
it
,xi 1 T
x
t 1
2
T
it
,
yi,xi
称为组内均值。组内平方和及交叉乘积和为:
Wxxi Wxyi Wyyi
xit x
t t t it
如果进一步假设 Var (ci Xi ) 为常数,则在此假设下, (9.7)变成经典线性回归模型。
二、固定影响模型的参数估计
固定影响模型参数的估计方法有两种,一种
是最小二乘虚拟变量(LSDV)估计法,另一种是 组内估计(Within Estimator)或称协方差估计 (The Analysis of Covariance Estimation , ANCOVA)。下面介绍这两种参数估计方法。
用中, ci不可观测,处理起来就要复杂得多。
分析的主要目标是偏效应(partial effects)的一致和有 效估计:
β E[ yit xit ]/ xit
是否能达到这个目标取决于有关不可观测的影响的假 设。我们以自变量的严格外生性假设作为起点, 该假设为:
E[uit xi1 , xi 2 ,...] 0
(9.12)
这样在模型(9.12)中,常数项就被去掉了。令
y yit yi , X X it X i , u uit ui
则模型转换为*
yit X u
* it
* it
(9.13)
对模型(9.13)运用OLS进行回归,就得到 的OLS估计值。
2. 组内估计法
为表达方便起见,先考虑双变量模型
如果混合数据包含的观测值来自从一个大总体中随机抽样 的主体不同时期的数据,则此类混合数据称为非面板混合数据。 例如,我们每年对北京市固定的一万户家庭消费的观测记
录所得到的数据集就是面板数据;而我们每年对北京市居民家
庭随机抽样一万户家庭消费的观测记录所得到的数据集就是非 面板混合数据。在实践中,面板数据通常比非面板混合数据更 有用,这是因为面板数据中的地区、公司、人员等横截面个体 在各时期中一直保持不变,这使得我们更易于对这类个体随着
其中
(9.1)
t 1, 2,3,..., T
β ( 1 , 2 ,..., k ) α (1 , 2 ,..., m )
xit ( x1it , x2it ,..., xkit ) z i ( z1i , z2i ,..., zmi )
xit 中有k个解释变量,不包括常数项。异质性或个体
随机影响模型可看成是一个带有随机常数项的回归模
型。如果数据集足够丰富,我们可以将此思路扩展到其它
系数也随着个体随机变动的模型,从而得到随机系数模型:
yit x it (β hi ) ( i ) uit
(9.5)
其中 hi 是一个引起参数跨个体变动的随机向量。
第二节 固定影响模型
(9.4)
这是一个带复合扰动项的线性回归模型。可用OLS法估计, 得到一致但非有效的估计量。(9.4)称为随机影响模型。 这里 i 是一个反映横截面个体影响的随机元素。 固定影响模型和随机影响模型的关键区别是未观测到的 个体影响是否包含与模型中解释变量相关的元素,而不在于 这些影响是否随机。
4. 随机系数(random coefficients )
若 Z i中仅包含常数项,则模型形式如下:
yit x it β uit
(9.2)
这类模型假设所有的横截面个体在各个不同时期的斜 率和截距都是相同的,这样就可以直接把面板数据混合在 一起,用OLS估计参数,得到一致和有效估计量。 由于混合回归模型假设解释变量对被解释变量的影响 与横截面个体无关,这在现实中是很难成立的,所以应用 不广。
Intercepts)
第一节 面板数据与面板数据模型
一、面板数据
混合数据(pooled data)是指将横截面数据和时间
序列数据结合在一起的数据。
混合数据包含不同横截面个体不同时期的数据,或者
说,混合数据包含既跨越时间又跨越空间的数据。 如果混合数据包含的观测值来自同一批地区、公司、 人员或其它横截面个体的不同时期数据,则此类混合数据 称为面板数据(panel data)。
即当期扰动项与过去、现在和未来的每一期中的自变量都 无关。
模型关注的重要方面是异质性,这方面特别方便的一个 假设是所谓的均值独立(mean independence):
E[ci xi1 , xi 2 ,...]
如果该假设成立,即不可观测的变量与包括在模型中的 变量无关,那么下面将看到,可以将它们包括在模型的扰 动项中,这正是随机影响模型的基础假设。可是,这是一 个很强的假设,很多情况下无法满足。弱一些的假设是:
xi
xi yit yi
2
yit yi
i
再令 Wxx Wxxi , Wxy Wxyi , Wyy Wyyi
时间的推移所发生的变动进行比较和分析。
相应地,我们将基于面板数据的回归模型称为面板数据 模型(panel data model)。面板数据模型可以分为单方程 面板数据模型和联立方程面板数据模型;也可以分为线性面 板数据模型和非线性面板数据模型(如离散被解释变量面板
数据模型、受限被解释变量面板数据模型)。
二、面板数据模型的优点 1.利用面板数据进行的经济分析更全面 2.利用面板数据能够改进估计的有效性
三、分析面板数据的一般模型框架
分析面板数据的基本框架是形如下式的回归模型:
yit x it β z i α uit xit β ci uit i 1, 2,3,..., n
面板数据模型 综列数据模型 平行数据模型
本课程包括内容 变截矩模型(Variable-Intercept Models)
固定影响(Fixed-Effects) 随机影响(Random-Effects)
变系数模型(Variable-Coefficient Models) 动态变截矩模型(Dynamic Models with Variable
yit X it i uit
我们对第i个横截面个体在时间上求均值,则有
(9.10)
yi X i i ui
i 1, 2,3,..., n
(9.11)
(9.10)-(9.11),得
yit yi ( X it X i ) uit ui
* it * it * it
2.固定影响(fixed effects) 如果 z i 不可观测,但与 xit相关,则由于遗漏了有关变量, β
的OLS估计量是有偏和不一致的。可是在这种情况下,模型
yit x it β i uit
均值。这就是固定影响模型。
(9.3)
包含了所有可观测的影响,并且设定了一个可估计的条件 其中 i z i α 。固定影响模型将 i视为回归模型中每一个体各
1. LSDV估计法
设 y i和 Xi 为第i个横截面单元的T个观测值, i 是一个 元素全为1的 T 1 列向量, ui 为相应的扰动项 T 1 列向
量,则:
y i Xi β + ii + ui