圆柱和圆锥知识点归纳总结
苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。
2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。
3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。
第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。
第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。
第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。
(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。
与求体积除以3相反。
培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。
2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。
圆柱圆锥知识点总结

圆柱圆锥知识点总结一、圆柱的定义和性质圆柱是由一个矩形绕着一条平行于其中一边的直线移动而得到的几何体。
圆柱的底面是一个圆,上下底面平行且相等,侧面是一个矩形。
通常情况下,我们所说的圆柱指的是直圆柱,即底面和侧面直角相交的圆柱。
圆柱的性质:1. 圆柱的侧面是一个矩形,其面积等于底面周长乘以高度。
2. 圆柱的体积等于底面积乘以高度,即V=πr^2*h。
3. 圆柱的表面积等于两个底面积之和加上侧面积,即S=2πr^2+2πrh。
二、圆锥的定义和性质圆锥是由一个直角三角形绕着它的一个直角边旋转一周而得到的几何体。
圆锥的侧面是一个由母线和母线上一点到底面的连线组成的扇形。
通常情况下,我们所说的圆锥指的是直圆锥,即底面圆和侧面直角相交的圆锥。
圆锥的性质:1. 圆锥的侧面是一个扇形,其面积等于底面周长乘以母线的一半。
2. 圆锥的体积等于1/3底面积乘以高度,即V=1/3πr^2*h。
3. 圆锥的表面积等于底面积加上底面到顶点的母线所绕成的曲面积,即S=πr^2+πrl。
三、圆柱和圆锥的应用1. 圆柱和圆锥在日常生活中有着广泛的应用,比如有些容器的外形就是圆柱或者圆锥;例如筒形创可贴盒,花瓶,饮料瓶等。
2. 圆柱和圆锥的公式和计算方法可以用来解决一些实际问题,比如计算容器的容积和表面积,计算油桶的容量,设计工程建筑结构等。
3. 圆柱和圆锥的几何图形在工程实践中也有着广泛的应用,比如圆柱形的桥墩,圆锥形的喷水池等。
四、圆柱和圆锥知识点的考点在中学数学课本和考试中,圆柱和圆锥作为基础几何图形经常出现,特别是在解题和推导中经常需要用到它们的性质和公式。
掌握好圆柱和圆锥的知识对于初中数学的学习和考试成绩至关重要。
总结通过对圆柱和圆锥的定义、性质、公式和应用等方面的了解,我们可以更好地理解这两种几何图形的特点和作用,进而提高我们的数学运算能力和解决实际问题的能力。
在学习和应用过程中,我们要注重在不断的练习和实践中巩固这些知识,才能更好地应用它们解决实际问题,提高数学素养。
(完整版)圆柱圆锥知识点总结

圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
六年级数学下册 《圆柱与圆锥》知识点归纳

★圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h★圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S 增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh★圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。
②侧面的特征:圆柱的侧面是一个曲面。
③高的特征:圆柱有无数条高。
★圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形★圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h★圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh★圆锥的特征:①底面的特征:圆锥的底面一个圆。
②侧面的特征:圆锥的侧面是一个曲面。
③高的特征:圆锥有一条高。
★圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
④圆柱与圆锥等底等高,体积相差2/3Sh。
圆柱体与圆锥体知识点

圆柱体与圆锥体知识点圆柱体与圆锥体是几何学中的重要概念,它们在日常生活和工程设计中都有广泛的应用。
本文将详细介绍圆柱体与圆锥体的定义、性质、公式及其应用。
一、圆柱体的定义和性质圆柱体是由两个平行且相等的圆面和它们之间的侧面组成的几何体。
圆柱体的侧面是一个矩形,其两条边分别与两个圆面的切线垂直相交。
以下是圆柱体的一些性质:1. 所有生成圆柱体的平行直线都与底面圆相切。
2. 圆柱体的两个底面圆半径相等。
3. 圆柱体的侧面积等于底面周长乘以高度。
4. 圆柱体的体积等于底面积乘以高度。
二、圆柱体的公式1. 底面积公式:圆柱体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆柱体的侧面积等于底面周长乘以高度。
公式表示为:侧面积= 2πrh,其中r为底面圆的半径,h为圆柱体的高度。
3. 全面积公式:圆柱体的全面积等于底面积加上两倍的侧面积。
体的高度。
4. 体积公式:圆柱体的体积等于底面积乘以高度。
公式表示为:体积 = 底面积 × h,其中h为圆柱体的高度。
三、圆锥体的定义和性质圆锥体是由一个圆锥面和一个平面封闭的几何体。
圆锥体的底面是一个圆,其顶点与底面圆的中心相连。
以下是圆锥体的一些性质:1. 所有生成圆锥体的平行直线都与底面圆相交。
2. 圆锥体的侧面积等于底面周长乘以母线长。
3. 圆锥体的体积等于底面积乘以高度除以3。
四、圆锥体的公式1. 底面积公式:圆锥体的底面积等于底面圆的半径平方乘以π。
公式表示为:底面积= πr^2,其中r为底面圆的半径。
2. 侧面积公式:圆锥体的侧面积等于底面周长乘以母线长除以2。
公式表示为:侧面积= πrl/2,其中r为底面圆的半径,l为母线长。
3. 全面积公式:圆锥体的全面积等于底面积加上侧面积。
公式表示为:全面积= πr(r+l),其中r为底面圆的半径,l为母线长。
4. 体积公式:圆锥体的体积等于底面积乘以高度除以3。
圆柱圆锥所有知识点

圆柱圆锥所有知识点
圆柱和圆锥是立体几何中的重要概念,在我们日常生活中也经常能够见到相关的形状和物品。
下面,就让我来为大家介绍一下关于圆柱圆锥的所有知识点吧。
1. 基本概念
圆柱和圆锥都是由圆和高组成的几何图形。
其中,圆柱的底面和顶面均为圆形,而圆锥只有一个底面为圆形,而顶面则为尖锐的顶点。
2. 特征参数
圆柱和圆锥的几何参数包括底面半径、高、侧面直毂、侧面积等等。
对于圆柱来说,它的侧面指的是连接底面的所有侧边而成的表面,而对于圆锥来说,则是由从圆心到样边所组成的侧面。
圆柱和圆锥的侧面积可以通过计算底面积与侧面直毂的乘积来计算得出。
3. 变形
圆柱和圆锥可以通过移动、旋转等变形操作来生成更加复杂的形状。
例如,当圆锥的底面被旋转时,就可以得到一个圆形。
同时,当圆柱和圆锥的高和底面半径比例发生变化时,它们的形状也会发生相应的变化。
4. 应用
圆柱和圆锥在生产生活中有着广泛的应用。
例如,在建筑中,柱子就可以被看作是一个由圆柱面和侧面构成的几何体;而在工程领域,锥形装置则可以被用来方便地控制液体流动的方向和速度。
总之,圆柱和圆锥是几何学中的两个重要概念,我们在生产生活中也经常会遇到相关的形状和物品。
熟悉圆柱和圆锥的知识点,不仅有助于我们更好地理解和应用它们,也能够为我们在日常生活中遇到的一些问题提供更加科学的解决方案。
六年级数学下册圆柱与圆锥知识点总结(全面)

圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
圆柱和圆锥的知识点归纳

圆柱和圆锥的知识点归纳圆柱和圆锥是几何学中重要的几何体,它们的形状和性质在我们日常生活和工作中都有广泛的应用。
本文将对圆柱和圆锥的知识点进行归纳和概述。
一、圆柱的概念与性质圆柱是由一个圆在平行于其所在平面的平面上作直线运动而生成的几何体。
圆柱的形状特点是上下底面均为同心圆,且其侧面由平行于底面的直线段组成。
1. 底面与高度:圆柱的底面是一个圆,圆柱的高度是连接底面圆心的直线段。
底面和高度决定了圆柱的大小和形状。
2. 侧面与母线:圆柱的侧面是由底面圆上的点沿着底面的圆弧上升或下降所得到的轨迹线。
连接两个底面圆心的直线称为圆柱的母线,且与侧面平行。
3. 表面积和体积:圆柱的表面积等于两个底面的周长和侧面的面积之和。
圆柱的体积等于底面的面积乘以高度。
二、圆锥的概念与性质圆锥是由一个圆在平行于其所在平面且以一点为中心的射线上作直线运动而生成的几何体。
圆锥的形状特点是一个底面为圆的尖锐或钝角三维图形。
1. 底面与高度:圆锥的底面是一个圆,圆锥的高度是连接底面圆心和尖点的直线段。
底面和高度决定了圆锥的大小和形状。
2. 侧面与母线:圆锥的侧面是由底面圆上的点沿着射线上升或下降所得到的轨迹线。
连接底面圆心和尖点的直线称为圆锥的母线,且与侧面相交于一点。
3. 表面积和体积:圆锥的表面积等于底面的面积和与底面相交的侧面的面积之和。
圆锥的体积等于底面的面积乘以高度再除以3。
三、圆柱和圆锥的应用圆柱和圆锥在日常生活和工作中都有广泛的应用,以下列举几个常见的应用场景:1. 圆柱:饮水机、水管、葱、铅笔、调酒器等均采用了圆柱体的形状。
此外,圆柱的性质使得它在数学和物理中也有重要的应用,如圆柱体积公式在计算液体容量和体积问题中的应用。
2. 圆锥:喇叭、冰淇淋圆锥、圆锥形山顶等都是圆锥体的应用。
在工程和建筑领域,常常使用圆锥体来设计锥形物体以提高流体的效率和流动性。
四、圆柱和圆锥的相关定理在研究圆柱和圆锥的性质时,我们还需要了解一些相关的定理,它们对于解决具体问题具有指导作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱和圆锥有关知识点
一、圆柱和圆锥各部分的名称以及特征
1、圆柱
(1)认识圆柱各部分的名称:
上下两个圆面叫做底面,
圆柱的周围叫侧面,
圆柱两个底面之间的距离叫做高。
(2)圆柱的特征:
圆柱的上下底面是两个圆,它们是完全相同的;圆柱的侧面是曲面;圆柱的高有无数条,高的长度都相等。
(3)沿高剪开:圆柱的侧面展开后是长方形(当圆柱底面周长与高相等时,展开后是正方形)。
这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
2. 圆锥
(1)认识圆锥各部分的名称:
下面一个圆面叫做底面,它周围叫侧面,从圆锥的顶点到底面圆心的距离叫做高。
(2)圆锥的特征
圆锥的底面都是一个圆。
圆锥的侧面是曲面。
一个圆锥只有一条高。
(3)圆锥的侧面沿着一条母线展开后是一个扇形,这个扇形的弧长等于圆锥的底面周长,半径等于圆锥的母线长。
(如下图所示)
二、基本公式
1、圆的知识
圆的周长=直径×π=半径×2×π
C=πd =2πr
逆推公式有:
直径=圆的周长÷π
d = C÷π
半径=圆的周长÷π÷2
r = C÷π÷2
圆的面积=半径的平方×π
=(直径÷2)2×π
=(圆的周长÷π÷2)2×π
S=πr2
=(d÷2)2×π
=(C÷π÷2)2×π
2、( 1 )圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
圆柱的侧面积=底面周长×高
=直径×π×高
=半径×2×π×高
S 侧=C h=πd h=2πr h
逆推公式有:
圆柱的高=圆柱的侧面积÷底面周长
=圆柱的侧面积÷(π×高)
=圆柱的侧面积÷(半径×2×π)
h=S 侧÷C
圆柱的底面周长=圆柱的侧面积÷高
C =S 侧÷h
(2)圆柱的表面积
=圆柱的侧面积+圆柱的底面积×2 S 表=S 侧+2S 底
(3) 圆柱的体积=底面积×高
V 柱=S h=πr 2 h
逆推公式有:
圆柱的高=圆柱的体积÷底面积
h=V 柱÷S
圆柱的底面积=圆柱的体积÷高
h=V 柱÷S
3 ( 1 )如果圆柱的侧面展开是一个正方形,
那么这个圆柱的高和底面周长相等。
( 2 )半个圆柱的表面积
= 侧面积÷2 +一个底面积+直径×高 (3) 1
4
圆柱的表面积
=侧面积÷4+半个底面积+直径×高
4、圆锥的体积=底面积×高×1
3
V 锥=3
1Sh
逆推公式有:
圆锥的高=圆锥的体积×3÷底面积
h=V 锥×3÷S
圆锥的底面积=圆锥的体积×3÷高
S= V 锥×3 ÷h
5、等底等高情况下,圆柱体积是圆锥体积的3倍。
等底等高的情况下,圆锥体积是圆柱体积的31
等底等高的情况下,圆锥体积比圆柱体积少3
2
等底等高的情况下,圆柱体积比圆锥体积多2倍
6、等体积等高的圆柱和圆锥,圆锥底面积是圆柱底面积的3倍;
等体积等底面积的圆柱 和圆锥,圆锥的高是圆柱 高的3倍。
7、圆柱的横切:切成n 段,需要n-1次,增加2×(n-1)个底面积
8、圆柱的纵切:切1次,增加2个长方形,长方形的长是底面的直径,宽是圆柱的高
9、圆锥的纵切:切1次,增加2个三角形,三角形的底是圆锥的直径, 三角形的高是圆锥的高
10、把一个正方体削成一个最大的圆柱(或圆锥),正方体的棱长就是圆柱(或圆锥)的底面直径和高。
11、①熔铸(或铸成),体积不变。
②注水问题:上升的(或下降)的水的体积等于放入的的物体的体积。
(完全 浸没)
12.一个圆柱的侧面展开图是一个正方形, 说明底面周长和高的比是1∶1, 半径和高的比是1∶2π, 直径和高的比是1∶π
13、当侧面积一定时,越是细、长的圆柱体积越小,越是粗、矮的圆柱体积越大。