桥式起重机大车运行机构的计算

合集下载

桥式起重机机构计算书示例1

桥式起重机机构计算书示例1

QD10T-20M A5 桥式起重机设计计算书示例编制:冰眼审核:审定:日期:2009年目录已知参数表 (3)起升机构计算 (4)钢丝绳选择……………………………………….滑轮、卷筒选择………………………………….电机选择………………………………………….减速机选择………………………………………制动器选择……………………………………….联轴器选择…………………………………………运行机构计算 (14)小车运行机构计算…………………………………车轮选择……………………………………..电机选择………………………………………减速机选择…………………………………….大车运行机构计算………………………………..附表 (25)10T—20M A5已知参数小车已知数据:起重量Q=10t,起升高度H=15m。

起升速度:V=7.5m/min,运行速度V xc=45m/min,工作级别为M5机构接电持续率JC=25%大车已知数据:桥架跨度L=20m大车运行速度V dc=75m/min工作级别M5机构接电持续率JC=25%起重机估计总重G=240KN(含小车)起升机构计算确定起升机构传动方案,选择定滑轮组和动滑轮组。

按照布置紧凑的原则,决定采用下图方案,按Q=10t,查表取滑轮组倍率i h=3,承载绳分支数:z=2×3选10t钩估计自重为G0=0.2t(附表一)1.选择钢丝绳若滑轮组采用滚动轴承,当i h=3,查表得滑轮组效率ηn=0.985(附表二)。

钢丝绳受最大拉力S maxS max=(Q+G0)/2aη=1726 Kg=17.26 KN查表,中级工作类型(工作级别M5)时,安全系数n=5.5。

钢丝绳计算破断拉力S b。

S b=n×S max=5.5×17.26=94.93KN。

钢丝绳直径dd=C·(S max 1/2)=0.100×17260 1/2=13.14mmC-钢丝绳选择系数,取0.100(附表三)取d=14mm查表,选用瓦林吞型钢芯钢丝绳,NA T6×19W+FC。

10t双梁桥式起重机

10t双梁桥式起重机

50/10t双梁桥式起重机大车运行机构及主梁设计学生姓名:学生学号:院(系):年级专业:指导教师:助理指导教师:二〇〇七年六月摘要桥式起重机是起重运输行业中必不可少的重要设备,它的稳定性和可靠性一直受到人们的高度重视。

随着社会生产力的不断进步和生产规模的不断扩大,以及技术创新的不断深入,在大量国外先进技术引入的同时,桥式起重机的生产设计水平也在不断革新,不断提高。

结合生产实际提出了起重机大车运行机构以及主梁的几种方案,通过分析选定方案并对大车运行机构及主梁进行了设计说明,同时,也对起重机的安全检查提出了要求。

为了最大限度的利用资源,达到最大的经济效益,在此也对主梁进行了优化设计,并提出了大量安全措施,从而保证了起重机械稳定可靠的工作。

关键词:桥式起重机;大车运行机构;主梁;优化ABSTRACTThe bridge type hoist crane is the heavy objects for lifting in the transportation profession the essential important equipment, its stability and the reliability receive the people to take highly continuously. Along with social productive forces unceasing progress and scale of production unceasing expansion, as well as technological innovation unceasingly thorough, while massive overseas vanguard technology introduction, the bridge type hoist crane production design level unceasingly is also innovating, enhances unceasingly.The in coor with progress of production proposed actually the hoist crane large cart movement organization as well as king post several kind of plans, have carried on design showing through the analysis designation plan and to the large cart movement organization and the king post, simultaneously, also set the request to the hoist crane security check.For the maximum limit use resources, achieved the maximum economic efficiency, has also carried on the optimized design in this to the king post, and proposed the massive security measure, thus has guaranteed the hoisting machinery stable reliable work.Key words: Bridge type hoist crane;Large cart movement organization;King post;Optimization目录摘要 (I)ABSTRACT .......................................................... I I1 绪论 (1)2 大车运行机构方案拟订以及选择 (3)2.1大车运行机构的几种常用方案 (3)2.1.1低速集中驱动 (3)2.1.2中速集中驱动 (3)2.1.3高速集中驱动 (4)2.1.4分别驱动 (5)2.2大车运行机构方案分析 (5)2.2.1低速集中驱动 (5)2.2.2中速集中驱动 (5)2.2.3高速集中驱动 (6)2.2.4分别驱动 (6)2.3大车运行机构方案选择 (6)3 主梁方案的拟订及选择 (7)3.1主梁常用的几种方案 (7)3.1.1工字钢主梁 (7)3.1.2桁架主梁 (7)3.1.3箱形主梁 (7)3.2主梁方案分析 (9)3.2.1工字钢主梁 (9)3.2.2桁架主梁 (9)3.2.3箱形主梁 (9)3.3主梁方案选择 (9)4 大车运行机构的设计 (11)4.1运行阻力的计算 (11)4.1.1摩擦阻力 (11)4.1.2坡道阻力 (13)4.1.3风阻力 (14)4.2电动机的选择 (15)4.2.1概述 (15)4.2.2电动机静功率 (15)4.2.3电动机初选 (16)4.2.4电动机过载校验 (16)4.2.5电动机发热校验 (17)4.2.6起动时间与起动平均加速度校验 (18)4.2.7选择合适的电动机型号 (18)4.3减速器的选择 (19)4.3.1减速器概述 (19)4.3.2总体设计 (19)4.3.3确定传动比 (20)4.3.4计算传动装置的传动参数 (21)4.3.5齿轮的设计 (22)4.3.6几何尺寸计算 (25)4.3.7齿轮的结构设计 (26)4.3.8低速轴设计 (26)4.3.9轴的结构设计 (27)4.3.10轴上的载荷 (30)4.3.11校核轴承的受命强验算 (30)4.3.12按弯扭合成应力校核的轴的强度 (30)4.3.13减速器型号的选择 (31)4.4制动器的选择 (31)4.4.1制动器概述 (31)4.4.2制动器相关参数的计算 (32)4.4.3制动器型号的选择 (33)4.5联轴器的选择 (34)4.6运行打滑验算 (34)4.6.1起动时不打滑按下式验算 (34)4.6.2制动时不打滑按下式验算 (35)5 主梁的设计 (36)5.1主梁跨度的确定 (36)5.2主梁上钢轨的选择 (37)5.3主梁的合理强度设计 (38)5.3.1梁的强度条件 (38)5.3.2梁的截面选择 (39)5.3.3梁的合理截面形状 (40)5.3.4变截面梁与等强度梁 (40)5.3.5梁的合理受力 (41)5.4主梁合理刚度设计 (41)5.4.1梁的刚度条件 (42)5.4.2梁的合理刚度设计 (42)5.5箱形主梁的优化设计 (44)5.5.1桥式起重机箱形主梁的结构 (44)5.5.2优化的数学模型 (47)5.5.3主梁优化设计计算方法简述 (53)5.5.4结合本设计的主梁有关参数对主梁进行优化设计 (53)6 安全检验 (59)6.1机械部分的安全要求 (59)6.1.1减速器 (59)6.1.2大车运行机构 (59)6.1.3主梁的要求 (60)6.1.4高强度螺栓 (61)6.1.5电动机 (61)6.1.6焊接质量 (62)6.2电气设备检验 (62)6.2.1 电气设备要求 (62)6.2.2电气设备安装 (63)6.2.3供电及电路要求 (64)6.2.4对主要电气元件的安全要求 (66)6.2.5电气保护装置 (66)6.2.6照明、信号 (67)结论 (68)参考文献 (69)致谢 (70)1 绪论双梁桥式起重机在工程中有着广泛的应用,日益提高的各行业生产对承担企业生产线上主要物流任务的起重机的要求也越来越高。

10t桥式起重机毕业设计计算说明书

10t桥式起重机毕业设计计算说明书

设计题目:10t桥式起重机设计设计人:侯雪鹏设计项目计算与说明结果确定机构传动方案跨度22.5m为中等跨度,为减轻重量,决定采用电动机与减速器间、减速器与车轮间均有浮动轴的布置传动方案如图3-1所示。

1-电动机;2-制动器;3-带制动轮的半齿轮联轴器;4-浮动轴;5-半齿联轴器;6-减速器;7-车轮3.2选择车轮与轨道,并验算其强度按图3-2所示的重量分布,计算大车车轮的最大轮压和最小轮压图3-2 轮压计算图满载时,最大轮压:)(1-3t65.112015.2224104424e24xcxcmax=-⨯++-=-⋅++-=LLGQGGP空载时,最大轮压:)(2-3t9.65.2215.22244424124xcxcmax=-⋅+-=-⋅+-='LLGGGP空载时,最小轮压:t65.11max=Pt9.6max='P图3-1 分别传动大车运行机构布置图m设计题目:10t桥式起重机设计设计人:侯雪鹏设计项目计算与说明结果主梁腹板高度确定主梁截面尺寸加筋板的布置尺寸定如下:腹板厚mm6=δ;上下盖板厚mm81=δ主梁两腹板内壁间距根据下面的关系式来决定:mmH3195.311105.3b==>mmL45050225050b==>因此取mm490b=盖板宽度:5424062490402b=+⨯+=++=δB(4-1)取mm550=B主梁的实际高度:m m11168211002h1=⨯+=+=δH(4-2)同理,主梁支承截面的腹板高度取mm600h=,这时支承截面的实际高度mm6162h1=+=δH。

主梁中间截面和支承截面的尺寸简图分别示于图4-1和图4-2。

mm6=δmm81=δmm490b=mm550=Bmm1116=H(实际值)图4-1 主梁中间截面尺寸简图图4-2 主梁支承截面尺寸简图设计题目:10t 桥式起重机设计设计人:侯雪鹏设计项目计算与说明 结果为了保证主梁截面中受压构件的局部稳定性,需要设置一些加筋构件如图4-3所示。

桥式起重机大车运行机构的计算

桥式起重机大车运行机构的计算

第三章桥式起重机大车运行机构的计算3.1原始数据3.2确定机构的传动方案本次设计采用分别驱动,即两边车轮分别由两套独立的无机械联系的驱动装置驱动,省去了中间传动轴及其附件,自重轻。

机构工作性能好,受机架变形影响小, 安装和维修方便。

可以省去长的走台,有利于减轻主梁自重。

图大车运行机构图1 —电动机2—制动器3—咼速浮动轴4—联轴器5—减速器6—联轴器7低速浮动轴8—联轴器9—车轮3.3车轮与轨道的选择3.3.1车轮的结构特点车轮按其轮缘可分为单轮缘形、双轮缘形和无轮缘形三种。

通常起重机大车行走车轮主要采用双轮缘车轮。

对一些在繁重条件下使用的起重机,除采用双轮缘车轮外,在车轮旁往往还加水平轮,这样可避免起重机歪斜运行时轮缘与轨道侧面的接触。

这是,歪斜力由水平轮来承受,使车轮轮缘的磨损减轻。

车轮踏面形状主要有圆柱形、圆锥形以及鼓形三种。

从动轮采用圆柱形,驱动轮可以采用圆柱形,也可以采用圆锥形,单轮缘车轮常为圆锥形。

采用圆锥形踏面车轮时须配用头部带曲率的钢轨。

在工字梁翼缘伤运行的电动葫芦其车轮主要采用鼓形踏面。

图起重机钢轨332车轮与轨道的初选选用四车轮,对面布置桥架自重:G =0.45Q 起 0.82L =20.73t =207.3kN 式中Q 起――起升载荷重量,为16000 kgL ——起重机的跨度,为16.5 m满载最大轮压:P max = U 也/ •口4 2 L式中 q ——小车自重,为4tl ――小车运行极限位置距轨道中心线距离,为1.5 m代入数据计算得:P max =132.7kN 空载最大轮压:P m :x =^q q4 2 L代入数据得P m :x =60kN 空载最小轮压:P min= G q 丄42 L代入数据得P min =43.64 kN 载荷率:Qu 」600.772G 207.3查《机械设计手册第五版起重运输件•五金件》表8-1-120,当运行速度在60 ~ 90 m min ,Q 起 ^ 0.772,工作类型为中级时,选取车轮直径为600 mm 时, 型号为P 38的轨道的许用轮压为178kN ,故可用。

大车运行机构的计算

大车运行机构的计算

电动双梁桥式起重机的设计题目:设计计算某机械加工车间使用的电动双梁吊钩桥式起重机包括大车运行机构,桥架,小车运行机构及起升机构。

已知数据:起重量主起升50t,副起升10t;起升高度主起升12m,副起升14m;工作速度主起升6.2m/min,副起升12.5m/min;桥架采用箱形梁式结构,桥架跨度28.5m;大车运行速度85.9m/min;小车运行速度38.5m/min;工作级别A5;机构接电持续率JC%=25%;起重机估计总重(包括小车重量)G=53.6t,小车自重11921kg;大车运行机构采用分别式驱动方式。

大车运行机构计算.1.1 确定传动机构方案跨度为28.5m,为减轻重量,决定采用分别传动的大车运行机构的布置方式,如图所示:图2-1分别传动的大车运行机构布置方式1-电动机;2-制动器;3-带制动轮的半齿连轴器;4-浮动轴;5-半齿连轴器;6-减速器;7-车轮;8-全齿轮连轴器1.2 选择车轮与轨道,并验算其强度按照图1—2所式的重量分布,计算大车车轮的最大轮压和最小轮压:图2-2轮压计算图满载时,最大轮压:Pmax=(G-Gxc)/4+(Q+Gxc)(L-e)/2L (2.1) =(536-119.21)/4+(50+11.921)(28.5-2)/(2⨯28.5)=392.08KN空载时,最小轮压:Pmin=(G-Gxc)/4+Gxc/2L (2.2) =(536-119.21)/4+119.21/(2⨯28.5)=106.29KN车轮踏面疲劳计算载荷:Pc =(2Pmax+Pmin)/3 (2.3) =(2⨯329.08+106.29)/3=296.82KN车轮材料:采用ZG340-640(调质),σb=700MPa,σs=380MPa,由[3]附表18选择车轮直径Dc=800mm,由[3]表5-1查得轨道型号为Qu70按车轮与轨道为点接触和线接触两种情况来验算车轮的接触强度点接触局部挤压强度验算:Pc"=k2 *R2*c1*c2/m3(2.4)=0.181⨯4002⨯0.99⨯1/(0.3883) =490931.51N式中 k2—许用点接触应力常数(N/mm2),由[3]表5—2查得k2=0.181。

吊钩桥式起重机大车运行机构部份表格

吊钩桥式起重机大车运行机构部份表格
7.25
5.10
7.05
28.5
468
340
7.9
5.75
7.7
31.5
497
369
8.4
6.24
8.15
20/5
10.5
367
188
21.05
0.9
5.82
2.98
940
5.00
YZR
21-6
940
2.9
5×2
13.5
385
204
0.10
3.23
5.85
16.5
407
227
6.45
3.66
6.20
91.5
0.57
0.3
0.12
0.99
17.6
12.3
18.74
13.44
13.5
19.4
14.1
20.54
15.24
16.5
21.8
16.5
22.94
17.64
19.5
91
0.41×2
0.3×2
0.23×2
1.88
25.1
19.7
27.26
21.86
22.5
27.1
22
29.26
24.16
25.5
0.126
0.266
5.67
4.65
5.5
31.5
362
314
6.18
5.35
6.0
10.5
233
137
16.24
0.9
3.98
2.34
945
3.85
YZR
22-6
945

10t单梁桥式起重机大车运行机构de设计

10t单梁桥式起重机大车运行机构de设计

10t单梁桥式起重机大车运行机构设计摘要:桥式起重机是一种工作性能比较稳定,工作效率比较高的起重机。

随着我国制造业的发展,桥式起重机越来越多的应用到工业生产当中。

在工厂中搬运重物,机床上下件,装运工作吊装零部件,流水在线的定点工作等都要用到起重机。

在查阅相关文献的基础上,综述了桥式起重机的开发和研究成果,重点对桥式起重机大车运行机构、端梁、主梁、焊缝及连接进行设计并进行强度核算,主要是进行端梁的抗震性设计及强度计算和支承处的接触应力分析计计算过程。

设计包括电动机,减速器,联轴器,轴承的选择和校核。

设计中参考了许多相关数据, 运用多种途径, 利用现有的条件来完成设计。

本次设计通过反复考虑多种设计方案, 认真思考, 反复核算, 力求设计合理;通过采取计算机辅助设计方法以及参考他人的经验, 力求有所创新;通过计算机辅助设计方法, 绘图和设计计算都充分发挥计算机的强大辅助功能, 力求设计高效。

关键词:桥式起重机,大车运行机构,主梁;端梁;焊缝The Design Of 10t Single Beam Bridge Crane Traveling MechanismAbstract:Bridge crane is a kind of performance is stability, the working efficiency is relatively high crane. Along with the development of China's manufacturing industry,bridge crane is applied to industrial production more and more . Carrying heavy loads in factories , machine tool fluctuation pieces, shipping work on the assembly line for hoisting parts, the designated work with a crane.On the basis of literature review, summarized the bridge crane development and research results, focusing on bridge crane during operation organization, main beam,end beam weld and connection for design and the strength calculation; Mainly for the girders extent design and strength calculation and the support of contact stress analysis program in calculation. Design including motor, reducer, coupling, bearing choosing and chec- king. The design refer to many related information, reference to apply a variety of ways, make the existing conditions to complete design. By considering various design scheme repeatedly, thinking deeply,strive to design reasonable; By taking computer aided design method and reference the experience of others,strive to make innovation; Through computer aided design method, graphics and design calculations give full play to the powerful auxiliary function, computer to design efficient.Keywords: bridge crane; during operation organization; main beam; end beam; weld1 绪论1.1 起重机背景及其理论桥式起重机是桥架在高架轨道上运行的一种桥架型起重机,又称天车。

桥式起重机小车与大车运行机构设计说明

桥式起重机小车与大车运行机构设计说明

毕业设计32/5t桥式起重机小车及大车运行机构设计毕业设计任务书32/5t桥式起重机小车及大车机构设计32/5t桥式起重机小车及大车机构设计摘要桥式起重机是一种工作效率较高,性能稳定的常用起重机。

桥式起重机的使用提高了工厂,矿山等工作环境的机械化程度。

本次设计结合生产实践并参阅了众多的相关书籍,介绍了32/5t标准桥式起重机的主要结构组成以及在生产中是如何进行工作的;论述了国外桥式起重机的最新动态和研发成果。

按照现有的设计理论进行了方案设计。

主要做了桥式起重机中的提升机构、小车行走机构和大车行走机构等方面的设计计算和校核。

大体容包含起升机构和行走机构的传动方案,零部件的空间位置分布,起升机构中卷筒,钢丝绳,滑轮组和吊钩组的设计以及运行机构中车轮和运行轨道的设计。

选择并校核了如联轴器、减速器、电动机、传动轴等重要零部件的工作性能。

关键词桥式起重机起升机构大车运行机构小车运行机构32/5t bridge crane lifting and travelling mechanismdesignAbstractBridge crane is a kind of common cranes which have high efficiency and stable performance. The use of bridge crane improved the degree of mechanization in factories, mines and other work environments. The design introduced 32/5t standard bridge cranes and the main structural component and their way to work in the production; discusses the latest developments at home and abroad of bridge crane and R & D results by combined production practice and refer to a large number of books. Make the program design in accordance with the existing design theory. Mainly carried out the design and calculations of the hoisting mechanism, crane trolley and travelling mechanism’s operating mechanism in the bridge crane . Generally contains the transmission scheme of hoisting mechanism and operating mechanism, the distribution of position of the parts ,the drum of lifting mechanism, wire rope, pulley and hookblock design and the design of the wheels and running track in the working mechanism. Selected and checked the parts like coupling, reducer, motor, drive shafts and other important parts of the job performance.Keywords Bridge crane hoisting mechanism crane traveling mechanism cart mechanism目录摘要Abstract1 前言 (1)1.1 概述 (1)1.2 起重机械的工作特点 (1)1.3 国外桥式起重机发展动向 (1)1.4 国桥式起重机发展动向 (2)2 起升机构设计 (3)2.1 主要工作参数 (3)2.2 主起升机构的计算 (3)2.2.1 确定起升机构的传动方案 (3)2.2.2 钢丝绳的选择 (4)2.2.3 滑轮的计算和选择 (6)2.2.4 卷筒的计算选择及强度验算 (6)2.2.5 电动机的选择 (8)2.2.6 电动机的发热和过载校验 (9)2.2.7 减速器的选择 (9)2.2.8 实际起升速度及所需功率计算 (9)2.2.9 校验减速器输出轴强度 (10)2.2.10 制动器的选择 (10)2.2.11 联轴器的选择 (11)2.2.12 验算启动时间 (12)2.2.13 验算制动时间 (12)2.2.14 高速浮动轴计算 (12)3 小车运行机构设计 (14)3.1 机构传动方案设计 (14)3.1.1 选择车轮与轨道并验算强度 (14)3.1.2 计算运行阻力 (15)3.1.3 计算选择电动机 (16)3.1.4 计算选择减速器 (16)3.1.5 验算运行机构速度和实际功率 (17)3.1.6 验算启动时间 (17)3.1.7 按启动工况校核减速器功率 (18)3.1.8 选择制动器 (18)3.1.9 选择联轴器 (19)3.1.10 验算低速浮动轴强度 (19)4 大车运行机构计算 (21)4.1 机构传动方案设计 (21)4.2 车轮与轨道的选择及校验 (21)4.3 运行阻力的计算 (23)4.4 电动机的选择 (23)4.5 减速器的选择 (24)4.6 验算运行速度和实际所需功率 (24)4.7 验算启动时间 (24)4.8 启动工况下校核减速器功率 (25)4.9 验算启动不打滑条件 (26)4.10 选择制动器 (27)4.11 选择联轴器 (28)4.12 浮动轴强度的验算 (28)4.13 缓冲器选择 (29)结论 (31)参考文献 (32)致 (33)1 前言1.1 概述桥式起重机是在架设好的桥架上沿轨道运行的一种起重机,又称天车。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章桥式起重机大车运行机构的计算3.1原始数据起重机小车大车载重量(T)跨度(m)起升高度(m)起升速度()m inm重量(T)运行速度()minm小车重量(T)运行速度()m inm16 16.5 10 7.9 16.8 44.6 4 84.7 大车运行传动方式为分别传动;桥架主梁型式,桁架式。

工作类型为中级。

3.2确定机构的传动方案本次设计采用分别驱动,即两边车轮分别由两套独立的无机械联系的驱动装置驱动,省去了中间传动轴及其附件,自重轻。

机构工作性能好,受机架变形影响小,安装和维修方便。

可以省去长的走台,有利于减轻主梁自重。

图大车运行机构图1—电动机2—制动器3—高速浮动轴4—联轴器5—减速器6—联轴器7低速浮动轴8—联轴器9—车轮3.3车轮与轨道的选择3.3.1车轮的结构特点车轮按其轮缘可分为单轮缘形、双轮缘形和无轮缘形三种。

通常起重机大车行走车轮主要采用双轮缘车轮。

对一些在繁重条件下使用的起重机,除采用双轮缘车轮外,在车轮旁往往还加水平轮,这样可避免起重机歪斜运行时轮缘与轨道侧面的接触。

这是,歪斜力由水平轮来承受,使车轮轮缘的磨损减轻。

车轮踏面形状主要有圆柱形、圆锥形以及鼓形三种。

从动轮采用圆柱形,驱动轮可以采用圆柱形,也可以采用圆锥形,单轮缘车轮常为圆锥形。

采用圆锥形踏面车轮时须配用头部带曲率的钢轨。

在工字梁翼缘伤运行的电动葫芦其车轮主要采用鼓形踏面。

图 起重机钢轨 图 大车行走车轮3.3.2车轮与轨道的初选选用四车轮,对面布置桥架自重:kN t L Q G 3.20773.2082.045.0==+=起 式中 起Q ——起升载荷重量,为16000kg L ——起重机的跨度,为16.5m 满载最大轮压:m ax P =LlL q Q q G -⋅++-24起 式中 q ——小车自重,为4tl ——小车运行极限位置距轨道中心线距离,为1.5m 代入数据计算得:kN P 7.132max =空载最大轮压:•max P =LlL q q G -⋅+-24 代入数据得•max P =60kN空载最小轮压:Llq q G P ⋅+-=24min 代入数据得m in P =43.64kN载荷率:772.03.207160==G Q 查《机械设计手册 第五版起重运输件•五金件》表8-1-120,当运行速度在m in 90~60m ,772.0=G Q 起,工作类型为中级时,选取车轮直径为600mm 时,型号为38P 的轨道的许用轮压为178kN ,故可用。

车轮材料为ZG310-570,320HB 。

3.3.2车轮踏面疲劳强度的校验车轮踏面的疲劳计算载荷:32minmax P P P c += 代入数据计算得:kN P c 103=车轮踏面的疲劳强度:≤c P 21322C C mR k式中 2k ——与材料有关的许用点接触应力常数,查《起重机械》表7-1取为 0.1R ——曲率半径,取车轮和轨道曲率半径中之大值,取为600mm m ——由轨道顶与车轮曲率半径之比所确定的系数,查表7-4取为0.468 1C ——转速系数,查表7-2取为0.96 2C ——工作级别系数,查表7-3取为1.00 代入数据计算得:21322C C mR k kN kN 10316.337≥= 故满足要求。

3.4电动机选择3.4.1选择电动机应综合考虑的问题(1)根据机械的负载性质和生产工艺对电动机的启动、制动、反转、调速以及工作环境等要求,选择电动机类型及安装方式。

(2)根据负载转矩、速度变化范围和启动频繁程度等要求,并考虑电动机的温升限制、过载能力和启动转矩,选择电动机功率,并确定冷却通风方式。

所选电动机功率应大于或等于计算所需的功率,按靠近的功率等级选择电动机,负荷率一般选择0.8~0.9。

过大的备用功率会使电动机的效率降低,对于感应电动机,其功率因数将变坏,并使按电动机最大转矩校验强度的生产机械造价提高。

(3)根据使用场所的环境条件,如温度、湿度、灰尘、雨水、瓦斯以及腐蚀和易燃易爆气体等考虑必要的保护方式,选择电动机的结构型式。

(4)根据企业的电网电压标准,确定电动机的电压等级和类型。

(5)根据生产机械的最高转速和对电力传动调速系统的过渡过程性能的要求,以及机械减速机构的复杂程度,选择电动机额定转速。

(6)选择电动机还必须符合节能要求,考虑运行可靠性、设备的供货情况、备品备件的通用性、安装检修的难易,以及产品价格、建设费用、运行和维修费用、生产过程中前期与后期电动机功率变化关系等各种因素。

图 三相异步电动机 3.4.2运行阻力风坡摩静P P P P ++= 式中 静P ——起重机大车运行静阻力 摩P ——起重机大车运行摩擦阻力坡P ——起重机大车在有坡度轨道上运行时须克服由起重机 重量分力引起的阻力风P ——室外起重机大车运行时由风载荷引起的阻力3.4.2.1运行摩擦阻力起重机大车满载运行时的最大摩擦阻力: ()()0002f G Q K D dK G Q P +=++=起附轮起摩μ 式中0G ——起重机大车自重,估计为2500kg K ——滚动摩擦系数,查表取0.06 d ——轴承内径,取为10cmμ——轴承摩擦系数,查表9-3取为0.015附K ——附加摩擦阻力系数,查表9-4取为1.5轮D ——车轮直径,取为60cm 0f ——摩擦阻力系数 故计算得: kgP 9.124=摩 满载运行时最小摩擦阻力:()轮起摩满D dK G Q P μ++=20min代入数据得:kg P 25.83min =摩满 空载运行时最小摩擦阻力: 轮摩空D dK G P μ+=20min 代入数据得:kgP 25.11min =摩空 3.4.2.2满载运行时最大坡度阻力起重机大车满载运行时的最大坡度阻力: ()0G Q K P +=起坡坡式中 坡K ——坡度阻力系数,查表9-5取为0.001 故计算得: 坡P =18.5kg3.4.2.3满载运行时最大风阻力本次设计的桥式起重机是在理想条件下运作的,故不考虑风的因素,即:风P =0故综上所述,起重机大车运行静阻力风坡摩静P PP P ++==143.4kg 3.4.3初选电动机3.4.3.1满载运行时的电动机的静功率mvP N η6120静静=式中 静P ——起重机大车满载运行时的静阻力 v ——起重机大车运行速度为84.7min m η——机构传动效率取为0.9m ——电动机个数,本次设计采取分别传动的方案,故取2 故计算得: 静N =1.1kw3.4.3.2电动机的初选对于吊钩桥式起重机的大车运行机构,可按下式初选电动机: 静电N K N =式中 电K ——电动机启动时为克服惯性的功率增大系数,查表9-6,取为1.87 故:==静电N K N 1.87×1.1kw =2.057kw冶金及起重用三相异步电动机是用于驱动各种型式的起重机械和冶金设备中的辅助机械的专用系列产品。

它具有较大的过载能力和较高的机械强度,特别适用于短时或断续周期运行、频繁启动和制动、有时过负荷及有显著的振动与冲击的设备。

故查询《机械设计课程设计手册》表12-7,选取电动机额定功率为2.5kw ,故初选电动机型号为YZR132M1-6,其额定转速为892min r 。

3.4.3.3初选电动机后确定减速器的传动比和车轮的转速车轮的转动速度为84.7min m ,即为1.41s m 轮轮πD vn =代入数据得:=轮n 44.9min r 故减速器的传动比:轮n n i ==9.44892=19.85 3.4.3.4满载运行时电动机的静力矩ηi D P M 2轮静静=式中 i ——减速器的传动比 代入数据计算得:=静M 2.41m kg ⋅3.4.3.5电动机的过载能力校验运行机构的电动机必须进行过载校验。

aas n t nJ v P m P 91280100012⋅+⋅⋅≥∑ηλ静 式中 n P ——基准接电持续率时电动机额定功率as λ——平均启动转矩表示值(相对于基准接电持续率时的额定转矩); 对绕线型异步电动机取1.7,笼型异步电动机取转矩允许过载倍数的0090。

静P ——运行静阻力为1405.32N v ——运行速度,即为车轮的转速1.41s m η——机构传动效率,取为0.9∑J ——机构总转动惯量,即折算到电动机轴上的机构旋转运动质量与直线运动质量转动惯量之和;按下式计算得:()()2222190.13.9m kg n v G Q m J J k J =+++=∑η1J ——电动机转子转动惯量2J ——电动机轴上制动轮和联轴器的转动惯量k ——考虑其他传动件飞轮矩影响的系数,一般取k =1.1~1.2,取1.1 n ——电动机额定转速a t ——机构初选启动时间,桥式起重机大车运行机构a t =8~10s ,取10s 。

故计算得:kw P d 3.2=已知n P =2.5kw >d P ,故满足要求。

3.4.4起动时间与起动平均加速度验算3.4.4.1起动时间的验算()静平起起满-M mM Jn t 55.9∑=式中 平起M ——电动机的平均起动转矩静M ——满载、上坡、迎风时作用于电动机轴上的静阻力矩 m ——电动机个数,m =2 n ——电动机转速,为892min r 查《起重机设计手册》表8-11得:()m kg M M ⋅=⨯==875.15.275.08.0~7.0max 平起 代入数据计算得:s t 71.2=起满对起重机的起重时间一般要求s t 10~8≤,故满足要求。

3.4.4.2平均加速度的验算252.071.241.1s m t v a ===起满平查表9-7得知起重机大车运行机构的平均加速度需在0.4~0.72s m 之间即为合理,故满足要求。

3.4.5电动机的发热校验对工作频繁的工作性运行机构,为避免电动机过热损坏,需进行发热校验。

ηm v P GP P s 1000静=≥ 式中 P ——电动机工作的接电持续率JC 值、CZ 值时的允许输出容量 s P ——工作循环中负载的稳态功率G ——稳态负载平均系数,查《起重机械》表7-11取9.0=G 代入数据计算得:P kw P s ≤=99.0,即满足不发热条件。

3.4.6起动打滑验算为了使起重机运行时可靠的启动,应对驱动轮作启动时的打滑验算。

大车空载时更易发生打滑现象,故校验空载时大车是否打滑。

()⎥⎦⎤⎢⎣⎡+-≥⎪⎪⎭⎫ ⎝⎛+平轮联电平起轮驱轮a gD i GD GD k M D i R D d K 2222min ημϕ 式中 ϕ——粘着系数,对室内工作的起重机取0.15K ——粘着安全系数,上式中取平均起动力矩,故取K=1.12 η——机构在起动时的传动效率m in 驱R ——驱动轮最小轮压2电GD ——电动机转子飞轮矩之和 2联GD ——电动机轴上带制动轮联轴器的飞轮矩k ——计及其他传动件飞轮矩影响的系数,换算到电动机轴上取1.1 平起M ——验算打滑一侧电动机的平均起动力矩 平a ——起重机大车起动时的平均加速度大车空载起动时,驱动轮最小轮压为空载最大轮压与最小轮压之和,即:min 'maxmin P P R +=驱=60+43.64=103.64kN =10.364kg 故:min 驱轮R D d K ⎪⎪⎭⎫ ⎝⎛+μϕ=414.1364.106010015.012.115.0=⨯⎪⎭⎫ ⎝⎛⨯+ ()⎥⎦⎤⎢⎣⎡+-平轮联电平起轮a gD i GD GD k MD i 2222η =()⎥⎦⎤⎢⎣⎡⨯⨯⨯⨯+⨯-⨯⨯⨯52.0601022028.1465.11.1875.1609.0202 =1.1093<1.414故()⎥⎦⎤⎢⎣⎡+-≥⎪⎪⎭⎫ ⎝⎛+平轮联电平起轮驱轮a gD i GD GD k M D i R D d K 2222min ημϕ成立,即满足启动不打滑条件。

相关文档
最新文档