求曲线方程的几种常用方法
求曲线方程的常用方法

化简得:x2+y2-2x=0(x≠0)。
方法二:(代入法)设P点坐标为(x,y),N点坐标为( ),根据中点坐标公式得 ,因为N在圆上,所以
(x≠0),
化简得:x2+y2-2x=0(x≠0)。
方法三:(参数法)设P点坐标为(x,y),直线ON的方程为:y=kx,
由 消去y得:(1+k2)x2-4x=0,
参数法是借助中间变量,间接得到x、y关系的方法。在预先无法判断曲线的类型,又不容易直接找到x、y关系的情况下,就必须使用参数法。参数法的关键是参数的选择。有时用一个中间变量,有时则用多个。平时提到的代入法、点差法、交轨法都属于参数法。使用参数法时,不一定要得到参数方程,在适当的时机消去参数即可。
本课通过对一个题目的多种解法,复习求曲线方程的常用方法,并通过一题多变,让学生体验各种方法的适用条件。学会具体问题具体分析,培养学生发散思维能力和创新能力。
的几种形式,圆、椭圆、双曲线和抛物线的标准方程等。使用公式法的前提是:知道曲线的类型。有时并不告诉曲线的类型,但是根据定义能够判断出曲线的类型,再利用公式(有些书上称为定义法)。在使用公式时,有时可以一一求出公式中的系数,再代入公式。有时则要带着系数运算,直到最后求出系数(这就是所谓的待定系数法)。
因为PC⊥PO,所以|OP|=|OC| =2 ,于是 , ,P点轨迹的参数方程为
,消去参数得:x2+y2-2x=0(x≠0)。
方法九:(参数法——点差法)设P点坐标为(x,y),直线ON与圆的两个交点的坐标分别为(x1,y1)、(x2,y2),则
, ,两式作差得
注意到x1+x2=2x,y1+y2=2y, ,代入整理得:
变化一:(变化圆心和转动点)
高中数学解二次曲线方程的常用技巧和注意事项

高中数学解二次曲线方程的常用技巧和注意事项在高中数学学习中,解二次曲线方程是一个重要的内容。
掌握解二次曲线方程的常用技巧和注意事项,不仅可以帮助我们更好地理解和应用数学知识,还可以提高解题的效率和准确度。
本文将介绍一些常用的解二次曲线方程的技巧和需要注意的事项,并通过具体的题目进行举例,帮助读者更好地理解和掌握。
一、一元二次方程的解法在解二次曲线方程时,首先要确定方程中未知数的个数。
如果方程中只有一个未知数,我们称之为一元二次方程。
解一元二次方程的常用方法有因式分解法、配方法和求根公式法。
以因式分解法为例,我们来看一个具体的例子:求解方程$x^2-5x+6=0$。
首先,我们观察方程中的系数,发现$a=1$,$b=-5$,$c=6$。
然后,我们寻找两个数,使得它们的和等于$b$,乘积等于$c$。
在这个例子中,我们可以找到两个数2和3,满足条件。
因此,我们可以将方程进行因式分解:$(x-2)(x-3)=0$。
根据乘法零原理,我们知道当两个数的乘积等于0时,至少有一个数等于0。
因此,我们可以得到两个解:$x=2$和$x=3$。
二、二元二次方程的解法除了一元二次方程,高中数学中还会遇到二元二次方程。
解二元二次方程的常用方法有代数法和图形法。
以代数法为例,我们来看一个具体的例子:求解方程组$\begin{cases}x^2+y^2=25\\x-y=3\end{cases}$。
首先,我们可以将第二个方程变形为$x=y+3$,然后将其代入第一个方程中,得到$(y+3)^2+y^2=25$。
展开并整理后,我们可以得到$2y^2+6y-16=0$。
接下来,我们可以使用一元二次方程的解法,求解这个二次方程。
解得$y=-4$或$y=2$。
将这两个解分别代入$x=y+3$,得到$x=-1$和$x=5$。
因此,方程组的解为$(-1,-4)$和$(5,2)$。
三、注意事项在解二次曲线方程时,还需要注意一些细节和特殊情况。
1. 方程的判别式:对于一元二次方程$ax^2+bx+c=0$,判别式$D=b^2-4ac$可以告诉我们方程的解的性质。
(完整版)求曲线方程的六种常用方法

(完整版)求曲线方程的六种常用方法求曲线方程的六种常用方法在数学中,求解曲线方程是一个非常重要的问题。
这篇文档将介绍六种常用的方法,帮助你解决这个问题。
方法一:代数法代数法是求解曲线方程最常用的方法之一。
它的基本思想是将给定的曲线方程转化为代数方程,然后通过求解代数方程来得到曲线方程的解。
方法二:几何法几何法是另一种常用的求解曲线方程的方法。
它的基本思想是通过几何性质和图形的特点来确定曲线方程的形式和参数。
方法三:微积分法微积分法在求解曲线方程中也起到了非常重要的作用。
它利用微积分的工具和技巧来对曲线进行分析和求解。
通过求导、积分等操作,我们可以推导出曲线的方程式。
方法四:插值法插值法是一种通过已知的离散数据点来推测出未知数据点的方法。
利用插值法,我们可以找到曲线方程经过的点,并进而求解出曲线方程。
方法五:拟合法拟合法和插值法类似,它也是一种通过已知的数据点来求解曲线方程的方法。
拟合法通常通过根据给定的数据点,选择合适的曲线方程形式,使得曲线与这些数据点最为接近。
方法六:数值计算法数值计算法是一种通过数值计算的方式来求解曲线方程的方法。
它利用计算机的高速计算能力,通过迭代等方法快速求解出曲线方程的解。
通过掌握这六种常用的方法,相信你能更加轻松地求解曲线方程。
选择适合你的方法,并进行实践,相信你一定能够取得理想的结果。
结论本文介绍了六种常用的求解曲线方程的方法,包括代数法、几何法、微积分法、插值法、拟合法和数值计算法。
通过掌握这些方法,你能够更加有效地求解曲线方程,解决数学问题。
希望这些方法能够对你有所帮助。
高考研究:曲线方程常见解题方法

y2=-2x2+x.
探究2 (1)相关点法求曲线方程时一般有两 个动点,一个是主动的,另一个是次动的, 如本题中P是主动点,R是次动点.
(2)当题目中的条件同时具有以下特征时,一 般可以用相关点法求其轨迹方程:
x=x1+2 x2,
并且y=y1+2 y2,
⑦
y-x 1=xy11--xy22,
将⑦代入⑥并整理,得4x2+y2=y.⑧ 当x1=x2时,点A,B的坐标分别为(0,2),(0,-2).
这时点P的坐标为(0,0),也满足⑧.
所以点P的轨迹方程为
x2 1
+y-1 122=1.
16 4
【答案】 4x2+y2-y=0
例4
已知椭圆C:
x2 a2
+
y2 b2
=1(a>b>0)的一个焦点为
(
5,0),离心率为
5 3.
(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两 条切线相互垂直,求点P的轨迹方程.
【思路】 (1)由焦点坐标和离心率可求出椭圆的长 半轴长、半焦距长和短半轴长,可得椭圆的标准方 程;(2)讨论两条切线的斜率是否存在,斜率存在时, 设出切线方程,利用直线与椭圆相切得判别式Δ=0, 建立关于k的一元二次方程,利用两根之积为-1, 求出点P的轨迹方程.
【解析】 如下图,由切线性质,得
|PB|+|PC|=|BA|+|CA|=18>|BC|=6.可知P点轨迹是以
B,C为焦点的椭圆(但除去与BC的交点).以BC为x轴,BC
中点为原点建立坐标系得 P点轨迹方程为8x12 +7y22 =1(y≠0). 【答案】 8x12 +7y22 =1(y≠0)
人教版数学选修2-1:曲线方程课件求曲线方程的四种常用方法(共19张PPT)

二、参数法求曲线方程
例5 过点 P( 2 ,4) 作两条相互垂直的直线 l1, l2 ,若 l1 交 x 轴于点A,l2
交y 轴于点B,求线段AB的中点M的轨迹方程。
解析:设点M (x, y) 。
① 当直线 l1 的斜率垂直且不为0时,可设其方程为:y 4 k(x 2)
因为
l1 l2
建立适当的坐标系,求这条曲线的方程。
解析:如图:取直线 l 为轴,过点F且垂直于 直线 l 的直线为y轴,建立坐标系 xOy. 设点 M (x, y) 是曲线上任意一点,作MB x 轴
垂足为B,则M属于集合
P M || MF | | MB| 2 x2 (y 2)2 y 2 x2 (y 2)2 (y 2)2
③(四川卷)已知两定点 A(2,0), B(1,0) ,若动点P满足|PA|=2|PB|, 则点P的轨迹所围成的图形的面积等于( )
A B 4 C 8 D 9
二、直接法求曲线方程
例3 已知一条直线 l 和它上方的一个点F,点F到的距离是2.一条曲线 也 l 在的上方,它上面的每一点到F的距离减去到 l 的距离的差都是2,
二、相关点法求曲线方程
例4 在圆 x2 y2 4 上任取一点P,过点P作 x 轴的垂线段PD,D为垂
足。当点P在圆上运动时,线段PD的中点M的轨迹方程。
解析:设 M (x, y), P(x0, y0 ),则x
x0 , y
y0 2
.
因为点P在圆上,所以 x02 y02 4 。
把 x0 x, y0 2x 带入上式得:x2 4 y2 4.
所以点M的轨迹方程是 x2 4y2 4. 。
相关点法—知识总结与练习
求曲线解析式的六种常用方法

求曲线解析式的六种常用方法本文介绍了求解曲线解析式的六种常用方法。
这些方法能够帮助我们确定曲线的解析表达式,从而更好地理解和分析曲线的特性。
1. 利用已知点和斜率求解析式这种方法通过已知点和该点处曲线的斜率来确定曲线的解析式。
我们可以选择一个已知点,并计算其在曲线上的斜率。
然后,使用该点和斜率来建立曲线的解析式。
2. 利用已知点和切线方程求解析式这种方法利用已知点处曲线的切线方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处切线的方程。
然后,使用该方程来建立曲线的解析式。
3. 利用已知点和法线方程求解析式类似于方法2,这种方法利用已知点处曲线的法线方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处法线的方程。
然后,使用该方程来建立曲线的解析式。
4. 利用已知点和曲线的导数求解析式这种方法依赖于已知点处曲线的导数,通过计算导数的值来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处导数的值。
然后,使用该值来构建曲线的解析式。
5. 利用已知点和曲线的微分方程求解析式这种方法利用已知点处曲线的微分方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处微分方程的形式。
然后,使用该方程来建立曲线的解析式。
6. 利用已知点和曲线的积分方程求解析式最后一种方法是利用已知点处曲线的积分方程来确定曲线的解析式。
我们可以选择一个已知点,并计算该点处积分方程的形式。
然后,使用该方程来建立曲线的解析式。
以上这些方法是求解曲线解析式时常用的六种方法。
根据具体情况,我们可以选择其中合适的方法来确定曲线的解析式。
在应用这些方法时,我们需要注意使用正确的数学工具和技巧,以确保求解的准确性和可靠性。
希望本文提供的信息能够对您有所帮助!。
求曲线方程的几种常用方法

求曲线方程的几种常用方法宜君县高级中学 马卫娟已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。
下面就通过实例介绍几种求曲线方程的常用方法。
一.直接法:即课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。
例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。
解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{222AB BCAC C P =+=所以()()()22222222)()(a ya x ya x =+-+++即222a y x =+因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既ax ±≠。
故所求点C 的轨迹方程为222ay x =+()a x ±≠。
解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=⋅BC AC K K∴1-=-⋅+ax y ax y (1)化简得:222a y x =+(2)由于a x ±≠时,方程(1)与(2)不等价,所以所求点C 的轨迹方程为222ay x =+()a x ±≠。
解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 21=所以a a yx =⋅=+22122即222ay x =+轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为222ay x =+()a x ±≠。
说明:利用直接法求曲线方程的一般步骤(1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式;(5) 证明以化简后的方程的解为坐标的点都是曲线上的点。
求曲线方程方法讲解

y ( x, y) 由中点坐标公式可知
x1 y1
x 2 y 2
A
∵AB 边上的中线 CD=3
D
∴ (x1 4)2 y12 9
B
化简整理得 (x 8)2 y2 36
∴点 A 的轨迹方程为 (x 8)2
y2
0
36
.
y
0C
Mx
法二: 添辅助线 MA,巧用图形性质, 妙极了! 注:这种求轨迹方程的方法叫做相关点坐标分析法(代入法)
变式练习
若三角形ABC的两顶点C,B的坐标分别是C(0,0),
B(6,0),顶点A在曲线y=x2+3上运动,求三角形ABC
重心G的轨迹方程.
y 10
8
y=x2+3
6
A
4
2
M
OB
x
-2
-4
四 例 3.经过原点的直线 l 与圆 x2 y2 6x 4 y 9 0 相交于
√√ 4.化简方程 f (x, y) 0 为最简形式;
5.证明(查漏除杂).
以上过程可以概括为一句话:建.设.现.(.限.).代.化..
知识回顾
在什么条件下,方程f(x,y)=0是曲线C 的方程,同时曲线C是该方程的曲线?
(1)曲线C上的点的坐标都是方程 f(x,y)=0的解;(纯粹性)
(2)以方程f(x,y)=0的解为坐标的点 都在曲线C上. (完备性)
简单地说:利用所求曲线上的动点与某一已知曲 线上的动点的关系,把所求动点转换为已知动点 满足的曲线的方程,由此即可求得动点坐标x,y之 间的坐标。
变 变式 .△ABC 的顶点 B、C 的坐标分别为(0,0)、(4,0), 式 A B 边上的中线的长为 3,求顶点 A 的轨迹方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求曲线方程的几种常用方法
求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有:
1.直接法:就是课本中主要介绍的方法。
若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
从而得到轨迹方程,这种求轨迹方程的方法称作直接法。
例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。
解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如
图).则有A (,0)a -,B (,0)a 。
设动点C 为(,)x y ,
∵222||||||AC BC AB +=,
∴2224a +=,
即222x y a +=.
由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。
解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-g
, (1) ∴1y y x a x a =-+-g , (2)
化简得:222x y a += , (3)
由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。
解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。
∵1||||2
CO AB =,
a =,即222x y a +=。
轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。
练习:1.已知向量OP 与OQ 是关于y 轴对称,且2OP ·OQ =1,则点P (x ,y )的轨迹方程是_________。
(y 2 -x 2 =1/2)
• 2.已知两点M (-1,0),N (1,0),且点P 使向量MP·MN ,PM·PN ,NM·NP
成公差小于零的等差数列,求点P 的轨迹方程。
(2002年天津考题)
说明:利用这种方法求曲线方程的一般方法步骤:
2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。
例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。
解:设A (,0)a ,B (0,)b ,M (,)x y ,
一方面,∵||6AB =,∴22
36a b +=, ① 另一方面,M 分AB u u u r 的比为12
, ∴1022133122130121312
a x a a x
b y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362
x y +=,即221164x y +=。
说明:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。
此外,与上例一样,求曲线的方程时,要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。
3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种求轨迹方程的方法称作几何法。
例3:如图,已知两定点A (6,0-),B (2,0),O 为原点,动点P 与线段AO 、BO 所张的角相等,求动点P 的轨迹方程。
解:设P (,)x y ,由题APO BPO ∠=∠,由三角形角平分线定理有||||||||
PA AO PB BO =,
3=, 整理得2260x y x +-=,当0x =时,0y =,
P 和O 重合,无意义,∴0x ≠,
又易知P 落在x 轴上时,除线段AB 以外的任
何点均有0
0APO BPO ∠=∠=,
∴0y =(6x <-或2x >)也满足要求。
综上,轨迹方程为2260x y x +-=(0x ≠)或0y =(6x <-或2x >)。
说明:本例利用平面几何的知识(三角形的角平分线定理进行解题),方便了求轨迹的方程。
4.参数法:有时很难直接找出动点的横、纵坐标之间关系。
如果借助中间量(参数),使(,)x y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。
例4:过不在坐标轴上的定点M (,)a b ,的动直线交两坐标轴于点A 、B ,过A 、B 作坐标轴的垂线交于点P ,求交点P 的轨迹方程。
解:设P (,)x y ,并设过M 的动直线为:()y b k x a -=-,
由于与坐标轴交于A 、B 两点,所以k 必存在,且0k ≠,
则A (0,b ak -),B (,0b a k -),所以P (,b a b ak k
--), 即b x a k y b ak
⎧=-⎪⎨⎪=-⎩,
消去参数k ,即:()()x a y b ab --=。
说明:本题由k 把,x y 联系在一起,k 称之为参数。
由于P 点是直线的交点,则P 的坐标一定会满足这两条动直线的方程,解出,x y ,消去参数k 就得到了,x y 的关系,这种求曲线方程的方法称为参数法。
练习:已知点P (x , y)满足x 2+y 2=4,则点Q (x y,x+y )的轨迹方程为y 2=2x+4 (-2≤x ≤2)
四、交轨法
求两条动曲线交点的轨迹方程时,可选择同一个参数及动点坐标x 、y 分别表示两条曲线方程,然后联立它们消去参数便得到交点的轨迹方程,这种方法称为交轨法.这类问题的解法有一定的技巧性.
例5 已知直线l 过定点(0,3),且是曲线y 2= 4x 的动弦12P P 的中垂线,求直
线l 与动弦12P P 的交点M 的轨迹方程.
解:设直线l :y = kx +3 (k ≠0),则12P P 所在直线l 可设为y =-
1x k
+b ,并把它代入y 2= 4x ,整理,得x 2-k(2b +4k)x +b 2k 2= 0,
∴△= [k(2b +4k)]2-4b 2k 2= 16 k 3(b +k)>0 ①,
且12P P 的中点M(k(b +2k),-2k)在直线l 上,
因此有-2k = k 2(b +2k)+3,即b =223k k ---2k 代入①式可得 k(k 3+2k +3)<0,即k(k +1)( k 2-k +3)<0⇒-1<k <0.
设中点为M(x ,y),则b =-2
23k k +-2k , ∴23(2),2.
k x k b k k y k --⎧=+=⎪⎨⎪=-⎩消去参数k ,得(x +2)y = 6. ∵-1<k <0,∴x >1.
故M 的轨迹方程为(x +2)y = 6 (x >1).
以上介绍了求曲线方法的几种主要方法,即直译法、相关点法、几何法、及参数法及交轨法。
求曲线方程的关键是仔细审题,分析已知条件和曲线的特征,寻找曲线上任一点(动点)所满足的条件,然后把动点所适合的条件转化为动点坐标所适合的等式。
其间要注意同解变形,并考虑一些特征点是否适合方程。