6.4 Newton-Cote求积公式
合集下载
牛顿—柯特斯(Newton-Cotes)求积公式

2
t(t
0
2)dt
2 3
C2
(1) 0 2 2!0!
2
t(t 1)dt
0
1 6
P130 表6-1给出了n从1~8的柯特斯系数。
当n = 8时,从表中可以看出出现了负系数,从 而影响稳定性和收敛性,因此实用的只是低阶公式。
数值计算方法
b
1dx 1
a
显然, Ck是不依赖于积分区间[a,b]以及被积函数
f(x)的常数,只要给出n,就可以算出柯特斯系数,譬
如当n=1时
C0
1 1 0!1!
1
(t
0
1)dt
1 2
C1
1
tdt
1
0
2
当n=2时
C0
(1) 2 2 0!2!
2
(t 1)(t 2)dt
0
1 6
C1
(1)1 2 1!1!
k!(n k)!hn 0
(b a) (1)nk
nn
( (t i))dt
nk!(n k)! 0 i0
ik
引进记号
Ck
(1) nk nk!(n k )!
nn
(
0 i0
(t i))dt
ik
( k=0,1…,n )
则
Ak (b a)Ck ( k=0,1…,n )
代入插值求积公式(6.4)有
这里 lk (x) 是插值基函数。即有
Ak
b
a lk (x)dx
bn a
i0
x xi dx xk xi
ik
将积分区间[a,b] 划分为n等分, 步长 h b a
n
求积节点为 xk a kh(k 由于 xk xi (k i)h , 所以
牛顿—柯特斯(Newton-Cotes)求积公式

k =0
n
n)
f ( xk )
( ckn)
称为柯特斯求积系数 称为柯特斯求积系数
∫ f ( x ) dx ≈ ( b a ) ∑ c
b a k =0
n
(n)
k
f ( xk )
c
(n) k
n=1时
C
(1) 0
n n (1)nk = ∫0 ∏(t j) dt k ! (n k )!n j =0 j ≠k
3 b
2 b
∫
b
a
a
( x b)2 dx ] 2
a
(b a ) 3 f ′′(η ) = 12
定理的其它证明从略。 定理的其它证明从略。
复合求积公式
Newton—Cotes求积方法的缺陷: 求积方法的缺陷 求积方法的缺陷: 从余项公式可以看出, 从余项公式可以看出,要提高求积公式的代数精 增加节点个数 必须增加节点个数,而节点个数的增加, 度,必须增加节点个数,而节点个数的增加,会导致 现象; (1)插值多项式出现 )插值多项式出现Runge现象; 现象 数值稳定性不能保证。( (2)Newton—Cotes数值稳定性不能保证。( ) 数值稳定性不能保证。(n>7) )
I4 ( f ) =
(b a ) [7 f ( x0) + 32 f ( x1) + 12 f ( x 2) + 32 f ( x3) + 7 f ( x 4)] 90
柯特斯公式
n=1时的求积公式 时的求积公式
1
梯形公式/*Trapezoidal Formula */ 梯形公式/*
I1 ( f ) = ∑ Ak f ( xk ) = A0 f ( x0 ) + A1 f ( x1 )
n
n)
f ( xk )
( ckn)
称为柯特斯求积系数 称为柯特斯求积系数
∫ f ( x ) dx ≈ ( b a ) ∑ c
b a k =0
n
(n)
k
f ( xk )
c
(n) k
n=1时
C
(1) 0
n n (1)nk = ∫0 ∏(t j) dt k ! (n k )!n j =0 j ≠k
3 b
2 b
∫
b
a
a
( x b)2 dx ] 2
a
(b a ) 3 f ′′(η ) = 12
定理的其它证明从略。 定理的其它证明从略。
复合求积公式
Newton—Cotes求积方法的缺陷: 求积方法的缺陷 求积方法的缺陷: 从余项公式可以看出, 从余项公式可以看出,要提高求积公式的代数精 增加节点个数 必须增加节点个数,而节点个数的增加, 度,必须增加节点个数,而节点个数的增加,会导致 现象; (1)插值多项式出现 )插值多项式出现Runge现象; 现象 数值稳定性不能保证。( (2)Newton—Cotes数值稳定性不能保证。( ) 数值稳定性不能保证。(n>7) )
I4 ( f ) =
(b a ) [7 f ( x0) + 32 f ( x1) + 12 f ( x 2) + 32 f ( x3) + 7 f ( x 4)] 90
柯特斯公式
n=1时的求积公式 时的求积公式
1
梯形公式/*Trapezoidal Formula */ 梯形公式/*
I1 ( f ) = ∑ Ak f ( xk ) = A0 f ( x0 ) + A1 f ( x1 )
牛顿科特斯求积公式

a
b
n
a Ln( x)dx (b a)
Ck(n) f ( xk )
k0
Newton-Cotes求积公式
Cotes系数性质
计算方法
(1)
Ck( n)
C (n) nk
(对
称
性)
n
(2)
C (n) k
1
k0
几种常用的Newton-Cotes求积公式
梯形公式,辛普生公式,Cotes公式
B 3C 8
B 9C 64 3
解得:
A 4, B 4,
9
3
所求公式为:
C 20 9
计算方法
4
0
f
( x)dx
14
9
f
(0)
12
f
(1)
20
f
(3)
计算方法
例3:试确定一个具有三次代数精度的求积公式
3
0 f ( x)dx A0 f (0) A1 f (1) A2 f (2) A3 f (3)
二 插值型求积公式
计算方法
基本思想:用插值函数的积分,作为数值积分 (取拉格朗日插值函数)
b
f ( x)dx
a
b
a LN ( x)dx
bN a
li (x) f ( xi )dx
i0
N i0
b a
li
(
x
)dx
f
(
xi
)
即:求积系数
Ai
b
Ai a li ( x)dx
能完全解决定积分的计算问题,因为积分学涉及的
b
n
a Ln( x)dx (b a)
Ck(n) f ( xk )
k0
Newton-Cotes求积公式
Cotes系数性质
计算方法
(1)
Ck( n)
C (n) nk
(对
称
性)
n
(2)
C (n) k
1
k0
几种常用的Newton-Cotes求积公式
梯形公式,辛普生公式,Cotes公式
B 3C 8
B 9C 64 3
解得:
A 4, B 4,
9
3
所求公式为:
C 20 9
计算方法
4
0
f
( x)dx
14
9
f
(0)
12
f
(1)
20
f
(3)
计算方法
例3:试确定一个具有三次代数精度的求积公式
3
0 f ( x)dx A0 f (0) A1 f (1) A2 f (2) A3 f (3)
二 插值型求积公式
计算方法
基本思想:用插值函数的积分,作为数值积分 (取拉格朗日插值函数)
b
f ( x)dx
a
b
a LN ( x)dx
bN a
li (x) f ( xi )dx
i0
N i0
b a
li
(
x
)dx
f
(
xi
)
即:求积系数
Ai
b
Ai a li ( x)dx
能完全解决定积分的计算问题,因为积分学涉及的
Newton-Cotes求积公式

Ck( n )称为Cotes系数,独立于区间[a,b]和被积函数, 只与等分区间数n有关,从而与求积问题本身没有关系.
所以Newton-Cotes公式化为
(n) ( b a ) C I n ( f ) Ak f ( xk ) k f ( xk ) k 0 k 0 n n
Nowton-Cotes型求积公式的误差分析
不同的 插值方 法 有不同 的 基函数, 不同的 表示形 式
用Ln ( x)作为被积函数 f ( x)的近似, 有
b
a
f ( x)dx Ln ( x)dx
a
n b k 0 a
b
b n
a
f ( x )l ( x)dx
k 0 k k
f ( xk ) lk ( x)dx
x xj xk x j
dx
令
I n ( f ) Ak f ( xk )
k 0
n
n阶Newton-Cotes求积公式 Newton-Cotes公式的余项(误差)
R( I n ) Rn ( x)dx
a
b
即有
I ( f ) I n ( f ) R( I n )
I ( f ) In ( f )
b
a
f ( x )dx f ( xi )h Ai f i
i 0 i 0
n 1
n
(1)
(b a ) A0 A1 A2 An 1 h , An 0 n
y
f ( x) f0
a=x0
f1
x1
f2
x2
fi
xi
fi+1
xi+1
Newton-Cotes求积公式

n
推论1 求积系数满足: Aj b a j0
(可用此检验计算求积系数的正确性)
证:
b
b
n
a f (x)dx a Ln (x)dx Ak f (xk )
k 0
当节点为n 1个时,插值求积公式有n次代数精度,
对于f (x) xn ,上式严格相等,
所以取f (x) 1时,上式也严格相等,
解决方法:
4.2.1 插值型求积法
1、方法
插值多项式
插值基函数
已知 (xi,
f (xi )),求得 Ln (x)
n i0
f
(xi )li (x),其中li (x)
n l0
x xl xi xl
,
则
b
b
bn
a f (x)dx a Ln (x)dx a f (xi )li (x)dx
权Ak仅仅与节点xk的选取有关,而不依赖于被积函数f(x) 的具体形式。
使积分公式具有通用性
我们的目的就是根据一定原则, 选择求积节点xk和 系数Ak,使得求积一般公式(4.2.1)具有较高的精确度, 同 时又计算简单。
记
n
In[ f ] Ak f (xk )
k 0
(4.2.2)
b
n
R( f ) I[ f ] In[ f ] a f (x)dx Ak f (xk ),
数值求积法与代数精度 4.2.1 插值型求积法 4.2.2 Newton-Cotes求积公式 4.2.3 Newton-Cotes 公式的误差分析
总结
一、求积公式的代数精度
b
N
I[ f ]
a
f (x)dx
Ak f ( xk )
第1节 Cotes型求积公式

ik
n
0
f ( n1) ( )t (t 1)( t 2)(t n)dt
Ak yk Rn [ f ]
k 0
n
从而得到Newton-Cotes型求积公式:
b
a
f ( x )dx Ak f ( xk )
k 0
n
b a ( 1)n k n n Ak 0 (t i )dt n k! ( n k )! i 0
a a
b
b
(
b a k 0 i 0 ik
n
n
x xi ) yk dx xk xi
f ( n1) ( ) ( x x0 )( x x1 )( x xn )dx a ( n 1)! ba 由变换: x a th, xi a ih xk a kh , h n
(a , b)
为了估计误差限,设
M 2 max f ( x )
a x b
则得到
R1 f
M2 (b a ) 3 12
二、抛物线(辛普森-Simpson)公式(n=2)
b
a
f ( x )dx Ak f ( xk ) A0 f ( x0 ) A1 f ( x1 ) A2 f ( x2 )
则由
n
Π
i= 0 i¹ k
n n ti x - xi (a th) (a ih) ki xk - xi ii 0 (a kh) (a ih) ii 0 k k
xi=a+ih, xk=a+kh
得到
i 0 ik
n
n n x xi (a th) (a ih) t i xk xi i 0 (a kh) (a ih) i 0 k i i k ik
newton-cotes求积公式

f ( (a ~t h))
1
t(t 1)dt
f ()
0
0
6
其中 (a ~t h) (a,b) 。
因此,梯形公式
b f (x)dx b a [ f (a) f (b)]
a
2
的截断误差为
R1
(b a)3 12
f (),
(a,b)
1 x2
1
ex
f
( x)
(
2 x3
1 x4
1
)e x
max f (x) f (1) 8.1548
1 x2
截断误差估计为
R1
(2 1)3 12
max
1 x2
f (x)
0.6796
用Simpson公式计算,得
2 1
e x dx
2
1 (e
1
4e1.5
b
f (x)dx (b a)
a
n
C (n) k
f
( xk
)
④
k 0
这就是一般的牛顿—科茨公式,
其中 C (n) k
称为科茨系数。
从科茨系数公式③可以看出,科茨系数
C (n) k
的值与积分区间及被积函数都无关。只要给出了
积分区间的等分数n,就能算出 C0(n) , C1(n) , , Cn(n)
在实际计算中,我们常用以下公式进行计算。
梯形公式
b f (x)dx b a [ f (a) f (b)]
a
2
辛普森公式
b f (x)dx b a [ f (a) 4 f ( a b) f (b)]
牛顿-柯特斯公式

(a, b )
3 . 柯特斯公式的余项
若f
( x ) 在 [ a , b ]上连续 , 则柯特斯公式的余项为
6 (6)
2 (b a ) b a R4 [ f ] I C f 945 4
( ), [ a , b ]. (2.8)
四 复化求积公式
所以I = S,表明辛卜生公式对于次数不超过三次的多 项式准确成立,用同样的方法可以验证对于f (x)=x4,辛 卜生公式不成立,因此辛卜生公式的代数精度可以达到三 次。
定理3
2 n 阶 N C 公式至少具有 2 n 1次代数精度 .
2 n1
证明 : 设 f ( x ) a 2 n 1 x R2 n ( f )
b a
H ( x ) dx
ba 6
( H (a ) H (
a b 2
) H ( b ))
因此,辛卜生公式的误差就是对上述误差公式的积分: (4) f ( ) ab 2 b
RS I S
a
2
由于 ( x a )( x
ab
4!
( x a )( x
2
0 t ( t 2 ) dt
2
4 6
( 1)
1
2 1! 1!
0 t ( t 2 ) dt
2
1 6
当 n 2 时 , 得到 辛普森(Simpso n)公式 6 当 n 4 时 ,得到 柯特斯(cotes) 公式
C ba 90
a f ( x )d x S
此时复化梯形公式为
12
( b a ) k 1
f ( k ) n